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| INVESTIGATION

Polygenic Adaptation to an Environmental Shift:
Temporal Dynamics of Variation Under Gaussian

Stabilizing Selection and Additive Effects on a
Single Trait

Kevin R. Thornton1

Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697

ABSTRACT Predictions about the effect of natural selection on patterns of linked neutral variation are largely based on models

involving the rapid fixation of unconditionally beneficial mutations. However, when phenotypes adapt to a new optimum trait value,

the strength of selection on individual mutations decreases as the population adapts. Here, I use explicit forward simulations of a single

trait with additive-effect mutations adapting to an “optimum shift.” Detectable “hitchhiking” patterns are only apparent if (i) the

optimum shifts are large with respect to equilibrium variation for the trait, (ii) mutation rates to large-effect mutations are low, and (iii)

large-effect mutations rapidly increase in frequency and eventually reach fixation, which typically occurs after the population reaches

the new optimum. For the parameters simulated here, partial sweeps do not appreciably affect patterns of linked variation, even when

the mutations are strongly selected. The contribution of new mutations vs. standing variation to fixation depends on the mutation rate

affecting trait values. Given the fixation of a strongly selected variant, patterns of hitchhiking are similar on average for the two classes

of sweeps because sweeps from standing variation involving large-effect mutations are rare when the optimum shifts. The distribution

of effect sizes of new mutations has little effect on the time to reach the new optimum, but reducing the mutational variance increases

the magnitude of hitchhiking patterns. In general, populations reach the new optimum prior to the completion of any sweeps, and the

times to fixation are longer for this model than for standard models of directional selection. The long fixation times are due to a

combination of declining selection pressures during adaptation and the possibility of interference among weakly selected sites for traits

with high mutation rates.

KEYWORDS polygenic adaptation; hitchhiking; linked selection; forward simulation

EMPIRICAL population genetics seeks to understand the

evolutionary histories of natural populations by analyzing

genome-widepatternsofpolymorphism.The interpretationof

observed patterns relies heavily on mathematical models,

accompanied by various simulation methods, which make

concrete predictions about the effect of evolutionary forces

(natural selection, demographic events, etc.) on patterns of

variation.

Themodels of natural selection used to interpret data come

primarily from what we may call “standard population genet-

ics”models. In these models, mutations have a direct effect on

fitness (a “selection coefficient”). The fitness effects of mutations

are most often assumed to be constant over time. For example,

background selection is a model of unconditionally deleterious

mutations resulting in strong purifying selection (Charlesworth

et al. 1993, 1995;Hudson andKaplan 1995; Cvijovíc et al. 2018).

The model of a selective sweep from a new mutation similarly

posits that the variant is unconditionally beneficial with a con-

stant effect on fitness over time (Maynard-Smith and Haigh

1974; Kaplan et al. 1989; Braverman et al. 1995; Durrett and

Schweinsberg 2004), and a similar assumption ismade inmodels

of selection from standing genetic variation (Hermisson and

Pennings 2005; Berg and Coop 2015).
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The effect of natural selection on linked neutral variation

has been extensively studied for the case of directional selec-

tion on mutations with direct effects on fitness (e.g., Kaplan

et al. 1989; Stephan et al. 1992; Wiehe and Stephan 1993).

This framework leads to a natural simulation scheme using

the structured coalescent (Kaplan et al. 1988), which has

been widely used to study the power of various approaches

to detect recent sweeps from new mutations (Fay and Wu

2000; Kim and Nielsen 2004), from standing variation

(Innan and Kim 2004; Hermisson and Pennings 2005;

Przeworski et al. 2005), from new mutations occurring at a

fixed rate in the genome (Braverman et al. 1995; Przeworski

2002), or to test methods to distinguish between various

models of adaptation (Garud et al. 2015; Schrider and Kern

2016).

The model of Gaussian stabilizing selection around an

optimal trait value differs from the standard model in that

mutations affect fitness indirectly via their effects on trait

values. For the additive model of gene action considered

here, and considering a single segregating mutation affect-

ing the trait, the mode of selection is under- or overdomi-

nant in a frequency-dependent manner (Robertson 1956;

Kimura 1981). This model has been extended to multiple

mutations in linkage equilibrium by several authors (Barton

1986; de Vladar and Barton 2014; Jain and Stephan 2015,

2017b).

The equilibrium conditions of models of Gaussian stabi-

lizing selection on traits have been studied extensively

(Bürger 2000, chapters 4 and 5). In general, the dynamics

are quite complicated, with many possible equilibria exist-

ing for the case of many biallelic loci with equal effect sizes

and no linkage disequilibrium (Barton 1986). It is also com-

mon to assume that the forward and backward mutation

rates per locus are equal (Barton 1986; de Vladar and

Barton 2014; Jain and Stephan 2015, 2017b). Under these

assumptions, and assuming distributions of mutational ef-

fects symmetric �0, large-effect variants (e.g., those with

effect sizes . 2
ffiffiffi

2
p

ffiffiffiffiffi

VS

p
, where VS is the variance of the

Gaussian fitness function) will be near the boundaries while

small-effect variants will be at frequencies near one-half (de

Vladar and Barton 2014; Jain and Stephan 2017b). Here,

large and small effect is with respect to the effect of a variant

on the genetic load of a population (de Vladar and Barton

2014).

While the fitness effects of individual mutations on trait

values affect their fixation probabilities, change in the mean

phenotype of a population depends on the additive genetic

variance (Robertson 1960). When most mutational effects

are small and additive, fixations require on the order of the

population size in generations because phenotypic change

proceeds via the fixation of small-effect mutations, primarily

by genetic drift (Robertson 1960). Recent theoretical work

has attempted to clarify when sweeps should happen and

when adaptation should proceed primarily via subtle allele

frequency shifts. Chevin and Hospital (2008) considered the

case of a single mutation with a large effect on fitness in a

highly polygenic background evolving according to an infin-

itesimal model. The authors found that sweeps stall at inter-

mediate frequencies because frequency shifts in the polygenic

background contribute to adaptation. Under models of link-

age equilibrium, additive mutational effects, and equal rates

of forward and back mutation at a biallelic locus (Barton,

1986; de Vladar and Barton 2014), polygenic traits adapt

quickly to a sudden shift in the optimum via directional se-

lection (Jain and Stephan 2017b). In an infinitely large pop-

ulation, mutations that are rare at the time of the optimum

shift may fix if their effect sizes are not overly large relative

to the magnitude of the shift. The number of large-effect

sweeps during adaptation depends on the magnitude of the

shift and the average effect size of segregating variants (Jain

and Stephan 2017b). After the directional phase, selection

becomes disruptive, and mutations affecting fitness are fixed

or lost to reduce the genetic load of the population.

Under amodel of a trait with a small number of phenotypic

classes, Höllinger et al. (2019) describe the dynamics of mu-

tations following an optimum shift for traits with low muta-

tion rates and for highly polygenic traits. The key parameter

in their model is Q ¼ 4Nm, where m is the mutation rate

relevant to the trait. When Q  ≲  1, adaptation primarily oc-

curs via complete sweeps. At intermediate values ðQ � 10Þ,
partial and complete sweeps occur by the time the population

has adapted. When Q � 100, adaptation (defined as when

mean fitness has recovered following the optimum shift) pro-

ceeds via frequency shifts at many loci.

While the work described above identifies the conditions

where sweeps are expected, we do not have a picture of the

dynamics of linked selection during adaptation to an opti-

mum shift. In large part, the difficulty of analyzing models of

continuous phenotypes with partial linkage among sites has

beenan impediment toa theoreticaldescriptionof theprocess.

In general, the standard model of a single trait with additive-

effect mutations and Gaussian stabilizing selection assumes

linkage equilibrium (or quasi-linkage equilibrium) (Turelli

1984; Barton 1986; de Vladar and Barton 2014; Jain and

Stephan 2015, 2017b). Höllinger et al. (2019) were able to

accommodate partial linkage by simplifying how mutations

affect phenotype and focusing on the dynamics up until a

particular mean trait value was first reached. In their simplest

model, an individual is either mutant or nonmutant, and

therefore there are only two phenotypes possible.

Here, I use explicit forward-time simulations to describe

the average dynamics of linked selection during the adap-

tation of a single trait under “real” stabilizing selection

(Johnson and Barton 2005) as it adapts to a single, sudden

shift in the optimum trait value. These simulations accommo-

date genetic drift and partial linkage, and are also able to

track the dynamics of neutral variants over time. By restrict-

ing mutations affecting the trait to specific “loci” (within

which linkage is still relatively loose) and allowing neutral

mutations to occur over much larger genomic intervals con-

taining the loci, I describe the physical distances over which

hitchhiking during polygenic adaptation leaves detectable
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signatures. The simulations conducted here are therefore

analogous to those used to study the spatial dynamics of

linked selection via the structured coalescent (Kaplan et al.

1988; Braverman et al. 1995; Kim and Stephan 2002;

Przeworski 2002). The key conceptual difference is that the

model of adaptation is changed from constant directional

selection to the sudden optimum shift models involving a

continuous trait considered in de Vladar and Barton (2014)

and Jain and Stephan (2015, 2017b). I also investigate the

effect of the recombination rate on the time to adaptation and

the fixation time of beneficial mutations with respect to the

mean time required to adapt to the new optimum.

Materials and Methods

Modeling stabilizing selection

I modeled a single trait under real stabilizing selection

(Johnson and Barton 2005). Mutations affecting trait values

arise at rate m per haploid genome per generation according

to an infinitely many sites scheme (Kimura 1969). For the

majority of results, the effect sizes of new mutations on trait

values, g, are drawn from a Gaussian distribution with mean

zero and SD sg. Mutations have additive effects on trait value

and therefore an individual’s genetic value, z, is the sum of all

effect sizes in that individual.

Here, I use the term “locus” to refer to a continuous geno-

mic region within which mutation and recombination events

occur uniformly. Within a locus, mutations occur at positions

according to a uniform continuous distribution according to

an infinitely many sites scheme. Thus, each mutation results

in a biallelic variant and, in the case of trait-affecting muta-

tions, the derived allele affects trait values. What I refer to

here as mutations are typically referred to as loci in much of

the theoretical literature (Robertson 1956, 1960; Turelli

1984; Barton 1986; de Vladar and Barton 2014; Jain and

Stephan 2015, 2017b).

Traits are under Gaussian stabilizing selection, such that

fitness, w, is w ¼ e
2

ðz2zoÞ2
2VS , where zo is the optimal trait value

and VS is the sum of the variance in fitness plus the environ-

mental variance in phenotype (Bürger 2000, p. 160). Figure 1

shows a schematic of the model. For all simulations per-

formed here, I use VS ¼ 1.

I modeled an environmental challenge as a sudden opti-

mum shift, where the optimum trait value changed from

zo ¼ 0 to zo . 0.

It is important to note that I considered all of the heritable

variation for the trait to be modeled in the genomic regions

that are explicitly simulated. Thus, the approach is similar in

spirit to that of de Vladar and Barton (2014), but with partial

linkage. An alternative would be to allow for a genetic back-

ground that also evolves, for which we are not tracking mu-

tation fates. Chevin and Hospital (2008) used the latter

approach to mathematically model the dynamics of large-

effect mutations in an infinitesimal background and Stetter

et al. (2018) used a simple version of this method to simulate

the dynamics of quantitative traits evolving under truncation

selection.

Forward simulation schemes

I ran all simulations using two different Python packages (see

Software availability below) based on the C++ library fwdpp

(Thornton 2014). For a given diploid population size, N, I

simulated for 10N generations with zo ¼ 0, at which point

the optimum shifted and evolution continued for another

10N generations.

Simulating large genomic regions with only selected

variants: To study the dynamics of mutations affecting trait

values over time, I evolved populations of size N ¼ 5; 000

diploids, where mutations affecting trait values occur uni-

formly (at rate m) in a continuous genomic interval in which

recombination breakpoints arise according to a uniform Pois-

son process with a mean of 0.5 recombination breakpoints

per diploid. The mutation rates used were 2:53 1024, 1023,

and 53 1023, which is the total mutation rate per haploid

genome. The total mutation rate per diploid, U, was 2m.

These mutation rates corresponded to Q ¼ 4Nm values of

5, 20, and 100, respectively, meaning sweeps were expected

to be high frequency, mixes of partial and complete sweeps,

and adaptation primarily by allele frequency changes, respec-

tively, as the population approached the new optimum

(Höllinger et al. 2019). The three postshift optima used were

zo ¼ 0:1, 0.5, and 1. For all combinations of m and zo, VS ¼ 1

and sg ¼ 0:25. At mutation–selection equilibrium, these pa-

rameters result in an equilibrium genetic variance given by

the “House of Cards” approximation, which is � 4m for the

definition ofmutation rate and the VS used here, and ignoring

the contribution of genetic drift (Turelli 1984).With drift, the

expected VG differs from the deterministic approximation by

a factor of� 1=½1þ VS=ðNs2
gÞ� (Bürger (2000), p. 270, Equa-

tion 2.8), which is � 1 for the parameters used here. For the

low m and low VS used here, the expected genetic variance is

therefore small and new mutations are more likely to have

large effects relative to standing variation.

For the mutation rates and sg defined above, the muta-

tional variances of the trait are 2ms2
g, or 3:253 1025,

1:253 1024, or 6:2531024, respectively, for each mutation

rate. In practice, mutational variances are often estimated

with respect to the environmental variants, which poses a

small issue in relating the parameters to available estimates.

Here, I simulated all traits with VS ¼ 1 and did not explicitly

model random effects on trait values. If we were to simulate a

trait with environmental variance equal to the expected ge-

netic variance and hold VS ¼ 1 instead, the heritability of the

trait would be one-half and the evolutionary dynamics would

be unaffected because the contribution of the environmental

variance to VS would be small (because the genetic variances

simulated here are small with respect to the total VS). Assum-

ing a hypothetical simulation of a trait with heritability

equal to one-half, these parameters result in a ration of the

Hitchhiking During Polygenic Adaptation 1515



mutational variance to the environmental variance of

Oð1022Þ, which is the upper limit of the ranges reported

based on experimental results [Lynch (1988) and Falconer

and Mackay (1996), p. 349]. Below, I describe simulations

varying the distributions of effect sizes, thus changing the

mutational variance.

For all combinations of m and zo, various summaries of the

genetic variation (VG;�z, etc.) in the population were recorded

every generation. In total, I ran 1024 replicates of each pa-

rameter combination. For the first 256 replicates, the fre-

quency trajectories of all mutations were recorded.

Simulating a 10-locus system with neutral and selected

variants: For multilocus simulations, a locus has scaled neu-

tral mutation rate u ¼ 4Nmn ¼ 1000 and scaled recombina-

tion rate r ¼ 4Nr ¼ 1000, where mn is the neutral mutation

rate per gamete at a locus and r is the mean number of re-

combination events per diploid at a locus. Mutation and re-

combination events occur uniformly along a locus, and each

locus is separated by 50 cM. For these simulations, I performed

256 simulation experiments per parameter combination.

Figure 2 shows how a locus is broken up into windows for

analysis. Mutations affecting the trait occurred in the sixth

out of 11 equal-sized windows in a locus and I analyzed each

window separately. Thus, each window had u ¼ r � 90 and

mutations affecting trait values were clustered in the middle

of each locus (and were intermixed with neutral mutations).

In these simulations, the total mutation rate affecting the

trait, m, was the sum over loci and the rate per locus was

equal ðm=10Þ.
At each locus,mutations affecting the trait occurred only in

the middle window (Figure 2); therefore, the mean number

of recombination events per diploid was� 0:0045 in themid-

dle window where trait-affecting variants arose. Similarly,

the mean number of new mutations per diploid at a given

locus affecting the trait was m=5. For the largest mutation

rate used here ðm ¼ 0:005Þ, the ratio of recombination events

to new mutations affecting the trait in this window was nine

to one. The entire genome consisted of 10 such loci, for a total

mutation rate of m and a total u ¼ 104.

For a model of a single trait under Gaussian stabilizing

selection with a constant optimum, the selection coefficient

was s ¼ g2

2VS
[Simons et al. (2018), see also Kimura and Crow

(1978)]. Here, VS ¼ 1, and therefore the relevant scaled

strength of selection acting on a segregating variant was

Ng2. For many of the results presented here, it is helpful to

treat the dynamics of strongly selected mutations separately.

To do so, I define a large-effect variant as havingNg2 $ 100,

meaning that the deterministic force of selection is much

stronger than that of drift. To vary the probability that a

new mutation is of large effect, I performed a second set of

simulations, also involving 10 unlinked loci, varying the dis-

tribution of effect sizes (DES) such that the probability was

that Ng2 $ 100 would take on values of 0.1, 0.5, or 0.75. For

Gaussian DES, the mean g is zero, as above, and sg is found

by numerical optimization using scipy (Jones et al. 2001) to

give the desired PrðNg2 $ 100Þ. I also used g distributions

with shape parameters equal to either one or one-half, and

then found a value for the mean of the distribution using

scipy. These shape parameters gave probability density func-

tions that were “exponential-like” in shape. For simulations

with g DES, I used an equal mixture of g distributions with

mean g and 2g such that the DES was symmetric around a

value of zero. I performed 100 simulation replicates for each

parameter combination. Using the argument from above, as-

suming hypothetical simulations of a trait with a heritability

of one-half, the Gaussian distribution and the gwith a shape

of one gave a ratio of the mutational variance to the envi-

ronmental variance of 23 1023 to 33 1023 when the pro-

portion of new mutations with Ng2 $ 100 was 0.1. These

values were close to the mean of � 1023 reported for a

variety of traits [Lynch (1988) and Falconer and Mackay

(1996), p. 349].

In a third set of simulations, I varied r ¼ 4Nr, the recom-

bination rate within each locus. I ran 256 replicates of these

simulations using the tree sequence recording algorithm

(Kelleher et al. 2018) implemented in fwdpy11 version

0.3.2. For these simulations, I recorded the entire population

as nodes in the tree sequences for each of 200 generations

after the optimum shift. Recording nodes from these time

points allows them to be analyzed after the simulation has

completed. Each replicate was simulated twice. The first run

simply output metadata about mutations that reached fixa-

tion. The second run was performed with the same random

number seed as the first and used the metadata from the first

run to track linkage disequilibrium around fixations over

time, outputting those data along with the tree sequence

for the simulation.

Genome scan statistics from multilocus simulations

The10-locus simulations describedabovewereused to look at

the temporal dynamics of several population–genetic sum-

maries of a sample. Each of the 10 loci consisted of 11 non-

overlapping windows (Figure 2) and all summary statistics

were calculated on a per-window basis. I used pylibseq ver-

sion 0.2.1 (https://github.com/molpopgen/pylibseq), which

is a Python interface to libsequence (Thornton 2003), to cal-

culate all genome-scan statistics. All statistics were obtained

from 50 randomly chosen diploids.

z-scores for the nSL statistic: Individual values of the nSL
statistic (Ferrer-Admetlla et al. 2014) from the first and last

window of each locus were binned into intervals of size 0.1

based on derived frequency. These windows were used be-

cause they were the furthest from mutations affecting trait

values, and thus the least affected by linked selection. The

data from all loci were combined, and the means and SDs of

each bin were used to obtain z-scores for markers from the

remaining windows.

Coalescent simulation: I usedmsprime (Kelleher et al. 2016)

version 0.5.0 for all coalescent simulations under neutral

1516 K. R. Thornton
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models and discoal (Kern and Schrider 2016) version 0.1.1

for all simulations of selective sweeps. All simulation outputs

were processed using pylibseq version 0.2.1.

Software availability: I used fwdpy version 0.0.4 (http://

molpopgen.github.io/fwdpy) compiled against fwdpp ver-

sion 0.5.4 (http://molpopgen.github.io/fwdpp) for single-

region simulations. I used fwdpy11 versions 0.1.4, 0.2.1,

0.3.2, and 0.5.1 (http://molpopgen.github.io/fwdpy11) for

all multiregion simulations. fwdpy11 is also based on fwdpp,

and includes that library’s source code for ease of installation.

Both packages were developed for the current work, but only

the latter will be maintained.

I used the Python package pylibseq version 0.2.1 (http://

pypi.python.org/pypi/pylibseq/0.2.1), which is a Python in-

terface to libsequence (Thornton 2003), to calculate popula-

tion–genetic summary statistics.

Allof thesepackagesareavailableunder the termsof theGNU

Public License from http://www.github.com/molpopgen. The

specific software versions used here are available for Linux via

Bioconda (Grüning et al. 2017), with the exception of fwdpy11

0.2.1, which must be installed from source. I have made all

Python andR (RCoreTeam2016) scripts for thiswork available

at http://github.com/molpopgen/qtrait_paper.

Open source tools used: Data processing and plotting relied

heavily on the following open-source libraries for the R lan-

guage (R Core Team 2016): dplyr (Wickham and Grolemund

2017), ggplot2 (Wickham and Grolemund 2017), land attice

(Sarkar 2008), as well as the following Python libraries: pan-

das (McKinney 2017), numpy (VanderPlas 2016), matplotlib

(Hunter 2007; VanderPlas 2016), and seaborn (http://

seaborn.pydata.org). The sqlite3 library (www.sqlite.org)

facilitated data exchange between Python and R via the pandas

and dplyr libraries, respectively.

Data availability

The authors state that all data necessary for confirming the

conclusions presented in the article are represented fully

within the article. Supplementalmaterial available atfigshare:

https://figshare.com/articles/simaterial_pdf/10046279.

Results

Single-region results

In this section, I describe simulations of a large contiguous

region with mutations affecting the trait occurring uniformly

throughout the region. The technical details of the simulation

parameters are given in the Materials and Methods. Briefly, I

evolved populations for 10N generations to mutation–selection

equilibrium around an optimum trait value of zo ¼ 0, at

which point zo was changed to 0.1, 0.5, or 1.0 and evolution

continued for another 10N generations. These simulations

may be viewed as similar to the numerical calculations in

de Vladar and Barton (2014) and Jain and Stephan

(2017b), but with loose linkage between selected variants,

whereas the previous studies assumed linkage equilibrium

and I allowed for newmutation after the optimum shift. They

differ from the approach of Höllinger et al. (2019) in that I

simulated continuous traits and did not stop evolution once a

specific mean fitness was first reached.

The mean trait value, �z, rapidly approached the new op-

timum, typically reaching the new optimum within 100 gen-

erations [Figure 3A, see also de Vladar and Barton (2014),

Jain and Stephan (2017b), and Höllinger et al. (2019)]. Prior

to the optimum shift, the average genetic variance was given

by 4mVS [Turelli (1984) and Figure 3B]. Following the opti-

mum shift, the genetic variance spiked as the population

adapted [see also de Vladar and Barton (2014) and Jain

and Stephan (2017b)], and then recovered to a value near

4mVS within � 200 generations when the mutation rate was

small and took longer to return to equilibrium when the mu-

tation rate was higher.

Figure 4 shows examples of the dynamics of �z, VG, and of

mutation frequencies following the optimum shift. Each ex-

ample is a single simulation replicate. The top row of plots

Figure 1 Schematic of the model. A Wright–Fisher population evolves to

equilibrium around an optimum trait under Gaussian stabilizing selection

with mean zero, where the parameter VS represents the intensity of selec-

tion against extreme trait values ðw ¼ e2z2=2VS Þ. At equilibrium, the mean

trait value is �z � 0 and the genetic variance VG equals the phenotypic

variance Vz . Mutations arise at a constant rate with effect sizes, g, drawn

from a Gaussian distribution with mean zero and variance s2
g . The optimum

then shifts to zo .0, such that w ¼ e2ðz2zoÞ2=2VS . During adaptation, �z

approaches zo due to allele frequency change and new mutations. At

any point during adaptation, mutations with effect sizes g. ðzo 2�zÞ=2 will

overshoot the optimum if they reach high frequency or fix.

Figure 2 Schematic of a single locus for multilocus simulations. The

scaled neutral mutation and recombination rates, u and r, respectively,

are modeled as uniform processes across a locus. A locus is divided into

11 windows of equal size. Mutations affecting the trait only occur in the

central window, shown in pale blue. Multiple loci are separated by 50 cM.
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shows that �z quickly reached zo for the individual replicates.

The approach of �z to zo corresponded with a substantial in-

crease in the genetic variance, similar to what is shown for

the average genetic variance over time in Figure 3B. The

middle row of panels in Figure 4 shows the frequency dynam-

ics of mutations that eventually fixed. Importantly, �z typically

reached zo before the first fixation had occurred (see Supple-

mental Material, Figure S1 for details over a shorter time-

scale). The legends the panels in Figure 4 contain the effect

sizes of variants where Ng2 $100. The legends also contain

the origin times, o, of these large-effect mutations, measured

as generations since the optimum shift.

For these examples, mutations with large effects on trait

value fix first, as predicted by Robertson (1956). In Figure 4,

fixations of large effect typically have origin times close to zero,

meaning that the mutations arose close to the time of the

optimum shift. This observation is expected as such mutations

contribute significantly to genetic load, and thus their equilib-

rium frequencies prior to the optimum shift should be near the

boundaries (de Vladar and Barton 2014; Jain and Stephan

2015, 2017b). Here, because of the one-way mutation model,

such large-effect variants are at frequencies near zero.

The final row of plots in Figure 4 shows the dynamics of

mutations that reached a frequency of $ 1% but were even-

tually lost from the population. Large-effect mutations only

exist for a relatively brief period of time after the optimum

shift, after which most segregating variation reaching appre-

ciable derived allele frequencies are of relatively small effect.

An important observation in the final row of Figure 4 is that,

for a short time following the optimum shift, several inter-

mediate-frequency mutations with large effects on trait val-

ues may be segregating. Many of these variants are adaptive

ðg. 0Þ but will only make short-term contributions to adap-

tation prior to their loss. The dynamics of these mutations

recapitulate results from de Vladar and Barton (2014): due to

epistatic effects on fitness, some mutations that are initially

beneficial later become deleterious and are removed. Figure

S1 shows the data from Figure 4 over a shorter timescale,

allowing a more detailed look at the dynamics of mutations

during adaptation.

Figure 4 suggests that fixation times are rather long, in the

order of N generations even for mutations with large Ng2.

These long fixation times are in fact typical, and large-effect

mutations typically fix in N=2 to N generations (Figure S2),

which is long relative to the deterministic expectation for

strongly selected sweeps from new mutations (Stephan

et al. 1992). Large-effect mutations that reach fixation arise

close to the time of the optimum shift (Figure S3) and typi-

cally show shorter fixation times (Figure S4). In general, the

numbers of sweeps from new mutations and from standing

variants are similar, although fixations of smaller-effect

standing variants are more common in simulations with

higher m (Figure S5). In Figure S5, a sweep from a new

mutation is defined as a mutation arising within 100 genera-

tions of the optimum shift and then reaching fixation. While

somewhat arbitrary, this definition is justified by the rapid

mean time to adaptation (Figure 3). In this model, large-

effect standing variants that fixed after the optimum shift

were rare at the time of the shift (Figure S6). Small-effect

mutations were also typically rare at mutation–selection bal-

ance, in particular when the mutation rate was small (Figure

S6).

For theparameters simulatedhere, and for the geneticmap

simulated here (Figure 2), Figures S3, S4, and S6 suggest that

large-effect fixations occur from both new mutations and

from standing variation, with more large-effect fixations oc-

curring when m is smaller and/or the optimum shift is larger.

Thus, we may predict that large-effect fixations from new

mutations may show signs of “hard sweeps,” such as an ex-

cess of high-frequency-derived neutral variants (Fay and Wu

2000; Zeng et al. 2006). Given that large-effect fixations from

standing variation are typically rare at the onset of directional

Figure 3 (A) Mean trait value

over time. (B) Mean genetic vari-

ance over time. The dot-dashed

lines correspond to 4mVS, which

is the equilibrium genetic variance

expected under the House of Cards

model (Turelli 1984).
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selection (Figure S6), we may also expect them to affect

linked neutral variation (Przeworski et al. 2005; Berg and

Coop 2015). For the parameters simulated here, fixations

from variants that are common at the time of the optimum

shift have small effects on trait values (Figure S6). The fixa-

tion of suchmutations are unlikely to generate the patterns of

haplotype diversity associated with “soft sweeps” because

such patterns require strong selection on mutations at inter-

mediate frequencies (Garud et al. 2015).

Fitness effects of mutations during adaptation

In this section, I explore inmoredetail the strengthof selection

on individual mutations during the directional phase of se-

lection. These dynamics are relevant to the long fixation times

noted in the previous section and also to the extent to which

hitchhikingwill affect patternsof linkedvariation,which is the

topic of thenext section. As the focus of the remaining sections

will be on patterns of variation during adaptation, we switch

fromsimulatingasingle largeregiontosimulating10unlinked

regions. The only difference between these simulations and

those described above is the genetic map, and the position of

mutations affecting trait values (see the Materials and Meth-

ods for technical details).

Figure 5 plots the dynamics of mutations in a 10-locus

system for one replicate of each of the three mutation rates

used here. In each column, the gray vertical line is the time

the population first reaches amean trait value of 0:9zo, which

corresponds to a mean fitness of$ 0.9 for each replicate. For

simplicity, we will call this the time of adaptation. The top

row of Figure 5A shows the frequency trajectories of muta-

tions that eventually fixed. These replicates were chosen be-

cause each had one fixation of a strongly selected mutation

Figure 4 Trajectories of selected mutations. The three columns show results from a single simulation replicate for low-, moderate-, and high-mutation

rate simulations. Parameter values are at the top of each column. The first row of plots shows the trait value and the genetic variance (multiplied by a

constant for plotting purposes) over time, for up to N generations post optimum shift. As in Figure 3, the populations adapt quickly to the new optimum

of zo ¼ 1. The middle row shows the frequency trajectories of fixations. Solid, darker (purple/blue) colors reflect larger effects on trait values, and more

transparent colors in the green/yellow range reflect smaller effect sizes. Fixations with effect sizes Ng2 $100 are indicated in the legend. The bottom

row shows the frequency trajectories of mutations that are eventually lost. The coloration is as for the fixations, and any mutations that did not reach a

frequency of 1% are excluded. A maximum of five mutations, corresponding to the five largest jgj, are included in the legend in the final row. Figure S1

shows the same data on a smaller timescale, showing the details on allele frequency change during the rapid adaptation to the new optimum.
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with a similar effect size. As the mutation rate increases, the

genetic background of these fixing variants becomes more

polygenic. As a result, the initial rate of frequency change

of the fixation lessens because other mutations are involved

in the response to the optimum shift, some of which may

contribute to adaptation but not fix in the long-term. For all

replicates, the fixations are at different loci (separated by

$ 50 cM) with one exception. For the high-mutation rate

case, the locus with the large-effect fixation also fixed one

mutation with small g.

Figure 5B shows the frequency dynamics of mutations

arising prior to adaptation that were eventually lost. As

the mutation rate increases, there are more large-effect mu-

tations increasing in frequency during adaptation. For

the lowest mutation rate simulated here, two such muta-

tions are decreasing in frequency prior to adaptation. At

m ¼ 0:001, four strongly selected mutations sweep to fre-

quencies . 0:10 and are later lost. For m ¼ 0:005, several

large-effect mutations experience more modest increases in

frequency during adaptation. From left to right, the columns

of Figure 5, A and B show that allele frequency changes are

less dramatic prior to adaptation as the mutation rate in-

creases. These results are consistent with the theoretical

predictions from Höllinger et al. (2019) that the dynamics

of mutations on the timescale of adaptation are dependent

on 2NU.

The second row in Figure 5 shows the mean deviation of a

genotype with a given mutation standardized by the SD in

trait values (the z-score). The mutations that fix (Figure 5A)

are all initially found in heterozygous genotypes with trait

values multiple SDs greater than the mean. Such mutations

are not necessarily the largest-effect variants present at the

time of the optimum shift, which is seen for the two higher

mutation rates in Figure 5. The mutations that did eventually

fix were initially at higher frequencies and/or associated with

higher-fitness genotypes than large-effect mutations that

were eventually lost.

As the population adapts, the deviation in trait value (from

the population mean) for a mutation with a given effect size

decreases. These z-scores decrease because the genetic

variance transiently increases following the optimum shift

(Figure 3B) (de Vladar and Barton (2014); Jain and

Stephan (2017b) because mutations are increasing in fre-

quency and the variance is a function of allele frequency

times the squared effect size. Mutations causing larger de-

viations are expected to become lost, as seen most clearly

in the first column of Figure 5B: the blue and green muta-

tions over- and undershoot the optimum, respectively. At

Figure 5 Phenotypic and fitness effects of fixations and losses. The data shown are for a single simulation replicate with sg ¼ 0:25, zo ¼ 1, and the

mutation rate m shown at the top of each column. The mutation rate shown is the sum over loci and individual loci mutate at equal rates ðm=10Þ. In all

panels, solid lines refer to Ng2 $100, dashed lines 10#Ng2
,100, and dotted lines 1#Ng2

,10. The vertical line is the generation when the mean

trait value first crossed 90% of the new optimal value ð0:9zoÞ. (A) The dynamics of fixations. The top row shows the frequency trajectory of mutations

that eventually reached fixations. For mutations with Ng2 $10, the legend shows Ng2, and the mutation’s origin and fixation times in parentheses,

scaled so that zero is the time of the optimum shift. Defining an a2 genotype to be any genotype containing at least one copy of these “focal”

mutations, the second row shows the mean deviation from the mean trait value for the focal genotypes, standardized by the phenotypic SD. The final

row shows the mean relative deviation in fitness for a2 genotypes. The horizontal line in the last row is placed at the reciprocal of the population size

ð1=NÞ. (B) The dynamics of losses. Plotting is identical to (A), but the data are filtered to only include mutations arising prior to the population first

crossing 0:9zo and eventually reaching a frequency of $ 0:05.
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low mutation rates, there is a tendency to slightly over-

shoot on average (Figure 3) because such mutations will have

larger initial increases in allele frequency than smaller-effect

variants.

Finally, we can turn to the long fixation times. These are, in

part, due to the decreasing strength of selection on individual

mutations during the time period where directional selection

occurs. The final row of Figure 5 shows the relative deviation

due to genotypes carrying each mutation over time. As

expected, genotypes with fitness above the mean increase

in frequency, and these genotypes are associated with trait

values multiple SDs closer to the new optimum. As the mean

trait value approaches the new optimum, the relative excess

fitness of these genotypes declines, approaching the recipro-

cal of the population size. Once the population has adapted,

these mutations have small effects on phenotypic variation

and their long-term dynamics are governed by underdomi-

nant selection against phenotypic variance (Robertson 1956;

Kimura 1981). The underdominant selection means that mu-

tations with frequencies greater than one-half will be weakly

favored and are expected to fix, and those with frequency less

than one-half will most likely be removed from the popula-

tion. The small fitness differences among genotypes at the

time of adaptation predict that fixation times will be slow

due to relatively weak selection (Figure 5). Note that all of

the sweeping alleles in Figure 5 are from standing variation

(origin times , 0) and are rare at the onset of directional

selection (also see Figure S6).

Finally, traits with higher mutation rates have larger num-

bers of small-effect mutations segregating prior to adaptation

(Figure 5). Once the population is adapted, the deviations

from mean fitness tend to be small for most genotypes and

the large-effect mutants are not yet fixed, implying that in-

terference (Hill and Robertson 1966) may also increase fixa-

tion times when the mutation rate is higher. We will return to

the role of interference below. The observation in Figure 4

and Figure 5 of mutations not reaching fixation by the time

the new optimum is hit is consistent with previous results

from other authors (Chevin and Hospital 2008; Jain and

Stephan 2017b; Höllinger et al. 2019).

Dynamics of linked selection in a multilocus system

I nowdescribe the temporaldynamicsofgenetic variationover

time in a 10-locus system. The technical details of the simu-

lations are identical to the previous section, and are described

in detail in the Materials and Methods.

Figure 6 summarizes patterns of variation in the central

window (Figure 2) of each locus where large-effect muta-

tions segregate during adaptation to the new optimum. The

figure is based on the data from Figure 5. The first two rows

plot the frequency trajectories of eventual fixations and los-

ses, and the next three rows summarize patterns of variation

calculated from a random sample of individuals. These sum-

maries of variation only show deviations from equilibrium

values consistent with positive selection at loci where large-

effect fixations occur. Further, the deviations are more pro-

nounced when the mutation rate is smaller. The partial

sweeps occurring at intermediate mutation rates (middle col-

umn of Figure 6) are not associated with strong signals of

hitchhiking, at least when the sample size is relatively small,

as is the case here. The time when a given statistic shows its

maximum departure from equilibrium values differs for each

statistic and, for the replicate with m ¼ 0:001, the maximum

departure may occur � 100 generations after the time to

adaptation. However, visually one could argue that haplotype

diversity tends to minimize closer to the time to adaptation

than the summaries of the site frequency spectrum.

Figure 7 shows patterns of variation along each of the

10 loci from an additional simulated replicate for each of

the parameters shown in Figure 5 and Figure 6. Each line

corresponds to a different time point in the approach to the

new optimum value of zo ¼ 1, showing data for the first time

the population mean trait value crosses the thresholds of
�z$ 0:1, $ 0:5, and $ 0:9. While the values are noisy along

a genome, it is apparent that directional selection is affecting

patterns of variation at linked sites in the replicates with

smaller mutation rates. In the leftmost column, where

m ¼ 2:53 1024, an excess of high-frequency-derived variants

is seen at locus 4, along with a reduction in haplotype di-

versity. A standing variant of large effect swept to high fre-

quency at this locus during adaptation. In the middle column

ðm ¼ 1023Þ, one sees a less-dramatic reduction in haplotype

Figure 6 Signals of directional selection in single replicates of a 10-locus

system. The data shown are based on the same simulations as in Figure 5.

The first two rows show frequency trajectories for fixations and losses,

with the colors indicating the locus where the mutation is found. The

vertical gray line is the generation when the mean trait value first crosses

90% of the optimal trait value. The remaining rows show Tajima’s D

Tajima (1989), H9(Zeng et al. 2006), and haplotype diversity in a random

sample of 50 diploids, calculated using genotypes taken from the central

“window” of a locus where causal mutations are occurring (Figure 2).
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diversity at locus 10, where a strongly selected standing var-

iant reached high frequency. For these two replicates, there is

some evidence of reduced haplotype diversity at loci 8 and 5,

respectively, that is not associated with any fixations. In the

final column, where m ¼ 53 1023, there are no obvious tem-

poral nor spatial patterns to variation in diversity levels, and

the largest deviations from the background are not associated

with the fixation of beneficial mutations.

Overall, Figure 6 and Figure 7 suggest that patterns of

strong hitchhiking are more likely at loci where large-effect

mutations fix. Moreover, such mutations must arise on aver-

age before themean time to adaptation. Below, when looking

at average patterns of variation over time and along ge-

nomes, we will distinguish patterns of variation where fixa-

tions meeting these conditions occur from the mean pattern

expected from a randomly chosen locus.

The site-frequency spectrum over time

The expected histogram of mutation frequencies in a sample

(the site-frequency spectrum) is a geometrically decreasing

function of increasing mutation frequency under the standard

neutral model (Wakeley 2008). Departures from this expecta-

tion are often summarized as single numbers whose expecta-

tions are � 0 under this null model. In this section, I describe

the average dynamics of two widely used statistics (Tajima

1989; Zeng et al. 2006) as a function of both time since the

optimum shift and of distance from trait-affecting mutations.

Figure 8 shows the average behavior of Tajima’sD (Tajima

1989) over time. Figure 8A shows the mean D per window,

averaging across loci and across replicates. Prior to the opti-

mum shift, the mean D is negative in the central window

containing selected variants. For highly polygenic traits, the

equilibrium D is � 2 0:1 in this window due to a large num-

ber of rare deleterious alleles segregating. After the optimum

shift, D becomes more negative when the optimum shift is

large and the mutation rate is smaller. In linked windows, the

magnitude of the change in averaged D decays rapidly with

increasing genetic distance.

Averaging over loci experiencing large-effect fixations,

Figure 8B shows a stronger hitchhiking pattern centered on

the window containing selected variants. Although the de-

viation in D from equilibrium decays relatively quickly both

along a chromosome and over time, large-effect substitutions

generate sufficiently negative D values that such loci will be

enriched in the tails of empirical distributions of the statistic.

Qualitatively similar patterns hold for the overall reduction in

diversity (Figure S7) and the H9 statistic (Figure S8). The

latter statistic returns to equilibrium rather rapidly, consistent

with previous results (Przeworski 2002).

Here, large-effect fixations from new mutations and from

standingvariantshavesimilaraverageeffectsonstatistics likeD

andH9 (Figure 8 and Figure S8). Figure 9 shows the number of

haplotypes at a locus associated with sweeps from standing

variation as a function of the effect size of the variant. Here, a

haplotype is defined as a unique genotype at a locus, including

all neutral and nonneutral variants. Large-effect sweeps from

standing variation are either extremely rare (at high m) or are

rare at the time of the optimum shift when m is small, and are

usually associatedwith few (and often only one) haplotypes at

the onset of directional selection (Figure 9).

Power to reject the null model using the
site-frequency spectrum

Figure S9A shows the power to detect a value of D more

negative than expected under the standard neutral model,

Figure 7 Patterns of genetic

variation along genomes in a

10-locus system during adapta-

tion to an optimum value of

zo ¼ 1 and sg ¼ 0:25. The muta-

tion rate shown is the sum over

loci and individual loci mutate at

equal rates ðm=10Þ. Each column

corresponds to a single simulated

replicate with the mutation rate

given at the top. The three rows

correspond to nucleotide diversity

(p), H9  (Zeng et al. 2006), and

haplotype diversity. The three

point colors refer to statistics cal-

culated from 50 randomly chosen

diploids in the first generation

that the population mean trait

value first crossed values of at

least 0.1, 0.5, or 0.9. The gray

shades refer to the locations

within each locus where muta-

tions affecting trait values occur

(Figure 2). The triangles along

the top of each panel show where fixations occurred. Triangles pointing up are fixations from standing variation. Magenta refers to fixations with

scaled effect sizes Ng2 $100 and yellow refers to 1#Ng2 #10.
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after applying a multiple testing correction such that the

per-window rejection rate under the null model is 0.05.

The overall power of the test is low due to the number of

tests performed (one per window) and is consistent with pre-

vious work (Braverman et al. 1995; Przeworski 2002). How-

ever, the set of loci representing “significant” deviations from

the null model are enriched for large-effect substitutions

(Figure S9B), of which there are relatively few per replicate

(Figure S10). When mutation rates are smaller, significant D

values are most common at loci where large-effect mutations

fix. As the trait becomes more polygenic and/or the optimum

shift is less drastic, the enrichment shifts toward sweeps from

standing variation.

The behavior of H9 is similar to that of D, but power de-

creases more rapidly with time since the optimum shift [Fig-

ure S11A; also see Przeworski (2002)]. The behavior of a

related test, the composite likelihood ratio test of Nielsen

et al. (2005), evaluated using SweeD (Pavlidis et al. 2013),

is qualitatively similar to that of H9 (Figure S12).

Haplotype homozygosity

Rapid increases in allele frequency due to selection will result

in long stretches of homozygosity flanking the selected mu-

tation (Kim and Nielsen 2004). Summaries of haplotype ho-

mozygosity are widely used to detect recent selection (Voight

et al. 2006; Ferrer-Admetlla et al. 2014) and are indirect

summaries of the underlying linkage disequilibrium in the

data (Sabatti and Risch 2002).

The nSL statistic (Ferrer-Admetlla et al. 2014) measures

the ratio of homozygosity on the ancestral allele to that on the

derived allele for each variant in the data. A negative value of

the statistic implies longer runs of homozygosity around the

derived allele. Figure S13 shows the average behavior of

z-scores obtained from binning nSL scores by derived allele fre-

quencies (see the Materials and METHODS). The signal of strong

positive selection, indicated by a negative z-score, is short-

lived, and only observed when the mutation rate is smaller

and the optimum shift is large. The signal is also restricted to

regions closest to where selected mutations arise.

Shortly after the optimum shift, the mean z-score becomes

positive (Figure S13). This temporal dynamic is qualitatively

similar to what is seen under standard models of selective

sweeps, as the time since the sweepmoves further into the past

(Figure S14). Thus, the positive z-scores in Figure S13 may be

interpreted as either older sweeps from new mutations or

strong sweeps from common variants. However, the latter

class of sweeps does not occur in these simulations (Figure

9). This difficulty in interpretation is a general issue arising

from the fact that patterns of variation due to strong sweeps

from standing variation overlap considerably with those of

older sweeps from new mutations (Schrider et al. 2015).

A relatedclass of statistics designed todetect strong sweeps

from standing variation are based on the overall haplotype

Figure 8 Tajima’s D statistic over time. (A) The average value of Tajima’s D Tajima (1989) over time. The data are shown separately for windows of

different distances from the central window where mutations affecting the trait arise (Figure 2). (B) The mean value of D conditioning on a locus fixing a

mutation with effect size Ng2 $100. These loci are separated by whether the fixation was from standing variation, meaning a mutation predating the

optimum shift, or from a new mutation arising after the shift.
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diversity in a window (Garud et al. 2015). The temporal

patterns associated with these statistics are again short-lived

and are all in the direction of reduced overall haplotype het-

erozygosity, which is a signal of strong sweeps from new

mutations (Figures S15, S16, and S17).

Robustness to variation in the recombination rate

In this section, I explore the effect of varying the scaled

recombination rate within a locus, r. At higher mutation

rates, longer fixation times are more likely as r decreases

(Figure 10). In individual replicates, there is a tendency to-

ward negative disequilibrium among beneficial mutations

(g. 0, Figure S18), suggesting a role for interference among

selected sites affecting times to fixation (Hill and Robertson

1966; Felsenstein 1974). In the previous sections, the ratio of

r to u within loci was one, which is roughly “human”-like

(Dumont and Payseur 2008; Ségurel et al. 2014). For species

like Drosophila melanogaster, where r � u (Haddrill et al.

2005), fixation times will bemuch shorter on average (Figure

10). Note that the effect of recombination rate on fixation

Figure 9 The number of haplotypes associated with fixations from standing variation of different effect sizes. Each panel shows the effect size of a

fixation from standing variation (x-axis) and the number of unique haplotypes in the entire population containing that mutation. The number of

haplotypes for each mutation is taken immediately prior to the optimum shift and excludes any mutations that arose that generation. Thus, all mutations

found on a single haplotype are more than one generation old.

1524 K. R. Thornton



time is most dramatic for m ¼ 0:005, which is also the part of

the parameter space explored here where fixations of larger-

effect ðNg2 $ 1000Þ are rare.

The within-locus recombination rate has no discernible

average effect on �z nor on VG (Figure S19). The differences in

the height of the “spike” in VG when m ¼ 2:53 1024 show no

clear pattern with r and are thus attributable to Monte Carlo

error in estimating a second-order statistic from 256 replicates.

Unlike the mean trait value and variance, the mean tem-

poral dynamics of summaries of variation data are strongly

affected by r (Figure S20) as expected (Kaplan et al. 1989;

Braverman et al. 1995). Figure S21 shows how the within-

locus recombination rate affects patterns of haplotype diver-

sity in a 10-locus system with sg ¼ 0:25. When r is small, the

impact of linked selection is much more apparent. These ef-

fects of the local recombination rate on patterns of hitch-

hiking are expected from standard theory of directional

selection, because both the magnitude and extent along the

genome of linked selection depend on the ratio of the recom-

bination rate to the selection coefficient (Kaplan et al. 1989;

Durrett and Schweinsberg 2004; Nielsen et al. 2005).

Varying the DES

The results described in the previous sections are based on a

GaussianDESwhose SD is held constant. In this section, I vary

the DES such that the fraction of mutations with Ng2 $ 100

varies, and compare the average dynamics of adaptation and

patterns of hitchhiking. I also compare a Gaussian distribu-

tion to a g distribution with different shape parameters. To

simplify the presentation, I only show results for the case of a

large optimum shift ðzo ¼ 1Þ, which is the case resulting in

themost extreme hitchhiking signals. I compare the results of

Gaussian distributions of effect sizes to two g distributions

with shape parameters of one and one-half.

Varying the fraction of large-effect mutations has a weak

effect on the mean time to reach the new optimum, with traits

with lowmutationratesadaptingmore slowlyonaveragewhen

the majority of variants are of small effect (Figure S22A). This

observationshouldbeunsurprisingas thepopulationmustwait

longer for a strongly selected mutation in this case.

Patterns of variation expected due to hitchhiking are more

extreme when PrðNg2 $ 100Þ is small, as the population has

towait longer for strongly selected variants (Figure S23). The

overall pattern is that the average differences between DES

are subtle, with g distributions showing less-extreme hitch-

hiking patterns (negative values) on average than the Gauss-

ian DES. However, this difference between DES is only

observed when both the mutation rate and the proportion

of new mutations of large effect are both small.

Discussion

I have used simulations to describe the average behavior of

selected and neutral mutations during the adaptation of a

Figure 10 The sojourn times of fixations in a 10-locus

system with varying recombination rates within loci.

The x-axis is the effect size of a fixation and the y-axis

is its time to fixation scaled by the population size. The

expected fixation time due to drift alone is 4 and the

distribution of fixation times under neutrality has a

long tail including large values. The points are col-

lected from 256 replicates for each parameter combi-

nation and colored by order-of-magnitude ranges of

their scaled strength of selection ðNg2Þ.
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quantitative trait to a single, sudden shift in the optimal trait

value. The genotype-to-phenotype model considered here is

the classic model of evolutionary quantitative genetics, as-

suming strictly additivemutational effects on trait valueswith

fitness determined by Gaussian stabilizing selection (Turelli,

1984; Barton 1986; Bürger 2000). The primary goal here was

to merge this model of a phenotype with the simulation

methods commonly used in population genetics to study

the effect of natural selection on the dynamics of linked neu-

tral variation (Kaplan et al. 1988, 1989; Braverman et al.

1995; Przeworski 2002; Innan and Kim 2004).

The simulations performed here have several important

differences from recent theoretical treatments of adaptation

to sudden optimum shifts (see below). However, the condi-

tions for a selective sweep are consistent with predic-

tions made using theoretical results from Jain and Stephan

(2017b) and Höllinger et al. (2019). Direct comparison with

the quantitative predictions from Jain and Stephan (2017b)

is difficult because their expressions depend on the assump-

tion of equal forward and backward mutation rates at each

position. However, several qualitative comparisons can be

made. First, the simulations presented here are comparable

to the “most effects are large” case from Jain and Stephan

(2017b) because the trait variance increases during adapta-

tion [also see de Vladar and Barton (2014)] due to large-

effect mutations moving from low to intermediate frequency.

Mutations with large effects on trait values at the time of the

optimum shift are most likely to rise in frequency (Figure 4

and Figure 5), although mutations that eventually fix are not

necessarily those with the largest effect size. When several

large-effect mutations cosegregate, those with the highest

initial frequencies tend to reach fixation. If initial frequencies

are similar, the variant with the highest initial fitness typically

fixes. For a given DES, faster sweeps are more likely at lower

mutation rates.

Regimes where the genetic variance decreases during

adaptation are not possible for any of the simulations pre-

sented here. The decrease in variance is seen in the “most

effects are small” domain where the equilibrium frequency of

variants prior to the optimum shift is one-half, which maxi-

mizes the variance (de Vladar and Barton 2014; Jain and

Stephan 2017b). Adaptation to the new optimum displaces

allele frequencies, reducing the variance from its maximum

value [see, for example, figure 9 of de Vladar and Barton

(2014)]. However, the equilibrium frequency of one-half

for small-effect mutations requires equal rates of forward

and back mutation (de Vladar and Barton 2014; Jain and

Stephan 2017b, and is therefore incompatible with the in-

finitely many sites assumption made here.

When considering the pattern of hitchhiking at a locus, the

presence or absence of a large-effect fixation at a locus is a

reliable predictor of themagnitude of hitchhiking patterns. As

expected, suchfixations aremore commonwhen themutation

rate is smaller (Höllinger et al. 2019) and thus strong depar-

tures from equilibrium patterns of variation are not expected

for more polygenic traits (Figure 8). For the optimum shift

model considered here, the strength of selection is not con-

stant over time [Figure 5; see also Kimura (1981)]. Thus,

genotypes containing variants that were initially strongly fa-

vored by selection are subject to much weaker selection by

the time the population has reached the new optimum. This

weakening of selection increases fixation times to the order of

the population size (Figure S2), which is much longer than

the times� N generations expected for directional selection

in large populations (Stephan et al. 1992).

The exploration of hitchhiking signals here involved the

simulation of 10 unlinked loci within which mutations affect-

ing the traitwere concentrated ina centralwindow(Figure2).

While the ratio of recombination tomutation events is at least

nine to one for the majority of the results shown here (see

Materials and Methods), it is possible that signals of selection

are made more pronounced by the localization of selected

mutations and should be explored further.

Here, the number of selected mutations segregating over

time ranged from dozens to several hundred, as a function of

the underlying mutation rate (Figure S24). At high mutation

rates, the number of segregating loci are roughly the same as

some of the results presented in de Vladar and Barton (2014).

However, the partial linkage among sites in this work leads to

some negative linkage disequilibrium (Figure S18), which is

a signal of interference (Hill and Robertson 1966; Felsenstein

1974). This interference has little effect on the mean time to

adaptation, but fixation times are increased. The lack of effect

on time to adaptation is driven by initial large fitness differ-

ences among genotypes [Figure 5, also see Höllinger et al.

(2019)]. Once the population is close to the new optimum,

selection on individual genotypes is much weaker (Figure 5),

setting up the conditions for interference to affect fixation

times (Hill and Robertson 1966).

The DES has different effects on properties of the trait than

on patterns of hitchhiking. Themutation rates used here span

the parameter space from partial and complete sweeps being

most common to the optimum being reached via allele fre-

quency shifts of many mutations (Figure 4; Höllinger et al.

2019). In general, the mean time to adapt is not strongly

affected by the DES if the fraction of new mutations of large

effect is constant (Figure S22A). For a given mutation rate,

lowering the mutational variance lowers the probability of a

strongly selected mutation, increasing the waiting time until

such mutations arise, and thus resulting in stronger signals of

hitchhiking Figure S23). When the trait is more polygenic,

the average patterns of variation are not strongly dependent

on the DES nor on the proportion of new variants with large

effect (Figure S23).

Thegeneticmodel assumedheredoes not lead to sweeps of

large-effect mutations from common variants (frequencies

greater than, say, 5%).Rather, the stabilizing selection around

the initial optimum keeps large-effect mutations rare, such

that sweeps from such standing variants start at low frequen-

cies. Importantly, it is not possible to tune the model param-

eters toobtain sweeps fromlarge-effect, but common, variants

with high probability. Changing the strength of stabilizing
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selection ðVSÞ preserves the rank orders of fitness for all ge-

notypes, merely changing how fit they are in an absolute

sense. One could randomly reassign effect sizes at the time

of the optimum shift in an attempt to approximate a gene-by-

environment interaction. However, such a procedure would

be arbitrary, and thus not represent a principled model for

generating detectable soft sweep patterns. Rather, it is tempt-

ing to invoke a need for pleiotropic effects to have large-effect

mutations segregating at intermediate frequencies at the

time of the optimum shift, with the shift itself accompanied

by a change in the covariance between trait values and

fitness.

It is important to note a key methodological difference

between this work and that of other authors. Höllinger et al.

(2019) stopped their simulations when the population was

close to the new optimum while the simulations conducted

here allowed evolution to continuemuch longer. Thus, on the

timescale during which the population adapts, fixations are

not observed when Q is high [see figure 4 of Höllinger et al.

(2019)]. Here, we observe fixations of large effect for the

mutation rates corresponding to Q ¼ 4Nm ¼ 100 (Figure

4), which Höllinger et al. (2019) show is the parameter range

where adaptation occurs primarily by changes in allele fre-

quency. These results are consistent with the theoretical pre-

dictions from Höllinger et al. (2019), as the fixations in the

simulations described here take place on timescales longer

than the mean time to reach the new optimum. In the right-

most column of Figure 4, the population has adapted quickly,

with the fixations occurring over a much longer timescale

(Figure S1). Likewise, the leftmost column of Figure 4 corre-

sponds to Q ¼ 5, where we observe a mixture of partial and

complete selective sweeps by the time the new optimum is

reached, which is expected from the theory presented in

Höllinger et al. (2019).

This work [and that of Höllinger et al. (2019)] differs from

the analytical and numerical work of de Vladar and Barton

(2014) and Jain and Stephan (2015, 2017b) in several key

aspects. First, we consider irreversible mutation here [the

infinitely many sites model of Kimura (1969)], while de

Vladar and Barton (2014) assumed equal rates of forward

and reverse mutation [see also Barton (1986) and Jain and

Stephan (2015, 2017b)]. The infinitely many sites model

used here was chosen because it is the most commonly used

mutational model for investigating the effects of linked

selection during adaptation (e.g., Braverman et al. 1995;

Przeworski 2002; Przeworski et al. 2005). I also allowed for

partial linkage among sites, which is a key difference from the

work based on the Barton (1986) framework, which assumes

free recombination. As noted above, partial linkage affects

the long-term dynamics of selected mutations (Figure 10).

I have focused on standard summaries of variation data

that have been widely applied to detect selection from se-

quence data. The behaviors of the majority of such summary

statistics haveonlybeen testedusing coalescent simulationsof

strong selection on a single sweeping variant, which is the

dominant generative model used to make predictions about

linked selection. Thus, it is unsurprising that these statistics

show the strongest departures from equilibrium neutrality for

traits with low mutation rates. However, an important obser-

vation here is that the mean behaviors of these statistics are

similar for sweeps from new mutations and sweeps from

standing genetic variation, which is a consequence of the

standing variants being rare at the onset of selection [Figure

S6; also see Orr and Betancourt (2001), Hermisson and

Pennings (2005), Przeworski et al. (2005), and Berg and

Coop (2015)]. The only test statistic based on patterns of

SNP variation for detecting polygenic adaptation that I am

aware of is the singleton density score (Field et al. 2016). I

have not explored this statistic here, as it would be more

fruitful to do so using simulations of much larger genomic

regions applying tree sequence recording (Kelleher et al.

2018), and explicit modeling of trait architectures at or near

the infinitesimal limit Robertson (1970, 1977). It also ap-

pears that the magnitude of selective effects on phenotypes

attributable to changes in the singleton density by Field et al.

(2016) were substantially overestimated due to uncon-

trolled-for population structure in the genome-wide associa-

tion study data, and there was little evidence for selection on

height when the analysis was redone using effect sizes from

the UK Biobank data (Berg et al. 2019; Sohail et al. 2019).

I have only considered the equilibrium Wright–Fisher

model here. However, it is well understood that departures

from this demographic model affect patterns of neutral var-

iation and thus the detection of regions affected by linked

selection (Thornton and Andolfatto 2006; Jensen et al.

2007, 2008; Thornton and Jensen 2007; Thornton et al.

2007). Demographic departures from constant population

size indeed affect the prevalence of sweeps and the rate of

phenotypic adaptation in optimum shift models (Stetter et al.

2018). Here, we are primarily interested in how the param-

eters affecting the trait’s “architecture,” mainly the parame-

ters affecting the mutational variance of the trait, impact

patterns of linked selection.

It is crucial to restate the assumptions of the genetic model

assumed here, which involves strictly additive effects on a

single trait under real stabilizing selection (Johnson and

Barton 2005). This model is the standard model of evolution-

ary quantitative genetics (Turelli 1984; Barton 1986; Bürger

2000), which is why it is the focus of this work. However, a

more thorough understanding of the dynamics of linked se-

lection during polygenic adaptation will require investigation

of models with pleiotropic effects (e.g., Zhang and Hill 2002;

Simons et al. 2018). Because the adaptation to the new opti-

mum is rapid when the mutation rate is large, the allele

frequency changes involved are also small when mutational

effects are pleiotropic (Simons et al. 2018). The question in a

pleiotropic model is the role that large-effect mutations may

play, which is an unresolved question.

The simulations here also model the entirety of heritable

variation for the trait. An alternative approach would be to

allow for an unlinked additive genetic background with

its own mutational variance. Such an approach would be
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straightforward assuming an infinitesimalmodel for the back-

ground, as has been done previously (Chevin and Hospital

2008; Stetter et al. 2018). Stetter et al. (2018) simulated

“domestication” traits evolving to a new optimum via trunca-

tion selection and a heritable background affecting the focal

trait. They concluded that the contribution of genetic back-

ground to several outcomes of interest (speed of adaptation,

fixations of beneficial mutations, etc.) was of overall less

importance to the dynamics than the variance in mutational

effect sizes, sg. Clearly, however, the details will depend on

the specifics of the model, with Chevin and Hospital (2008)

at one extreme and the current work at perhaps the other.

Here, the simulations with highmutation rates imply that any

single segregating variant finds itself in a mutation-rich ge-

netic background of up to several hundred segregating vari-

ants, the majority of which have small fitness effects (Figure

S24). Another appealing alternative would be to simulate

entire genomes using an adaptation of Robertson’s (1977)

method to incorporate tree sequence recording (Kelleher

et al. 2018) and large-effect mutations occurring at some

rate. Such a scheme would generate large-effect genomic

regions through two different mechanisms: the occasional

large-effect mutation as well as via large-effect haplotypes

arising from stochastic recombination events (Sachdeva

and Barton 2018).

It may also be of interest to explore nonadditive genetic

models in future work. In particular, models of noncomple-

menting recessive effects within genes are a specific class of

model with epistasis that deserve consideration due to their

connection with observations of allelic heterogeneity under-

lying variation in complex traits (Clark 1998; Gruber and

Long 2009; McClellan and King 2010; Thornton et al.

2013; King et al. 2014; Long et al. 2014; Sanjak et al. 2017;

Chakraborty et al. 2018). Acknowledging the focus on the

standard additive model, the current work is best viewed as

an investigation of a central concern in molecular population

genetics (the effect of natural selection on linked neutral

variation) having replaced the standard model of that sub-

discipline with the standard model of evolutionary quantita-

tive genetics. As laid out by several authors (Messer and

Petrov 2013; Jain and Stephan 2017a,b), there are consider-

able theoretical and empirical challenges remaining in the

understanding of the genetics of rapid adaptation. For mod-

els of phenotypic adaptation, our standard “tests of selection”

are likely to fail, and are highly underpowered evenwhen the

assumptions of the phenotype model are closer to that of the

standard model.
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