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Abstract

Background: The role of the innate immune system in Alzheimer’s disease (AD) and neurodegenerative disease

susceptibility has recently been highlighted in genetic studies. However, we do not know whether risk for

inflammatory disease predisposes unaffected individuals to late-life cognitive deficits or AD-related neuropathology. We

investigated whether genetic risk scores for seven immune diseases and central nervous system traits were related to

cognitive decline (nmax = 1601), classical AD neuropathology (nmax = 985), or microglial density (nmax = 184).

Methods: Longitudinal cognitive decline, postmortem amyloid and tau neuropathology, microglial density, and gene

module expression from bulk brain tissue were all measured in participants from two large cohorts (the Rush Religious

Orders Study and Memory and Aging Project; ROS/MAP) of elderly subjects (mean age at entry 78 +/− 8.7 years). We

analyzed data primarily using robust regression methods. Neuropathologists were blind to clinical data.

Results: The AD genetic risk scores, including and excluding APOE effects, were strongly associated with cognitive

decline in all domains (min Puncor = 3.2 × 10− 29). Multiple sclerosis (MS), Parkinson’s disease, and schizophrenia risk did

not influence cognitive decline in older age, but the rheumatoid arthritis (RA) risk score alone was significantly

associated with microglial density after correction (t146 = − 3.88, Puncor = 1.6 × 10− 4). Post-hoc tests found significant

effects of the RA genetic risk score in multiple regions and stages of microglial activation (min Puncor = 1.5 × 10− 6).

However, these associations were driven by only one or two variants, rather than cumulative polygenicity. Further,

individual MS (Pone-sided < 8.4 × 10− 4) and RA (Pone-sided = 3 × 10− 4) variants associated with higher microglial density

were also associated with increased expression of brain immune gene modules.

Conclusions: Our results demonstrate that global risk of inflammatory disease does not strongly influence aging-

related cognitive decline but that susceptibility variants that influence peripheral immune function also alter microglial

density and immune gene expression in the aging brain, opening a new perspective on the control of microglial and

immune responses within the central nervous system. Further study on the molecular mechanisms of peripheral

immune disease risk influencing glial cell activation will be required to identify key regulators of these pathways.
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Background
Genetic studies have highlighted the shared architecture

of susceptibility among inflammatory diseases [1]; how-

ever, in unaffected individuals, the significance of this

genetic predisposition to immune dysfunction for

aging-related processes is unknown. Recent genetic stud-

ies of neurodegenerative diseases have also implicated

the immune system – particularly the innate component

– in susceptibility to aging-related conditions [2], with

Alzheimer’s disease (AD) susceptibility being most clearly

enriched for variants that influence the expression and

splicing of genes expressed in myeloid cells [3, 4]. In the

brain, microglia, the resident myeloid cells, have a prom-

inent role, but infiltrating macrophages, B cells, and T

cells also contribute to brain pathology in older age.

Today, it is not clear whether a predisposition to patho-

logic inflammatory responses influences the function of

organ systems in individuals that are not affected by an

autoimmune disease. Here, we evaluate whether a propen-

sity for excessive inflammation that has not manifested it-

self clinically in one’s life course can influence the

likelihood of (1) late-life cognitive deficits, (2) the accumu-

lation of common neuropathology, including amyloid-β

(Aβ) and hyperphosphorylated tau, or (3) microglial re-

cruitment and activation.

The genetic architecture of aging-related traits is not

yet well understood; although their prevalence in the

population and the heterogeneity observed among older

individuals suggest that the allelic spectrum influencing

susceptibility includes many common variants of modest

effect [5–7]. To assess this hypothesis, we used a com-

mon strategy in which the effects of validated suscepti-

bility variants are aggregated into a single additive

genetic risk score (GRS). While useful as a screening

tool, a GRS obscures the intrinsic granularity of the gen-

omic risk landscape; therefore, they need to be comple-

mented with targeted investigations of individual

variants, where possible. We evaluated two representa-

tive inflammatory diseases for which the genetic archi-

tecture of susceptibility has been well described: MS,

which targets the central nervous system, and rheuma-

toid arthritis (RA), for which a recent study of medical

claims data from over 8.5 million adults reported an in-

creased relative risk of AD among patients with RA. Fur-

ther, anti-TNFα therapy for RA may lower this risk [8].

In MS, a neuropathological study reported no significant

difference in the presence of AD pathologies compared

to controls [9]; however, the prevalence of late-life path-

ologies and cognitive deficits in genetically-defined pop-

ulations remains to be characterized.

We also evaluated GRS for four other traits that could

influence brain aging and have been characterized genet-

ically: Parkinson’s disease (PD), telomere length, coron-

ary artery disease (CAD), as well as schizophrenia,

which may also have an inflammatory component [10].

Specifically, we deployed our GRS in two deeply charac-

terized cohorts of aging individuals, deconstructed poly-

genic associations to resolve whether an association is

driven by selected variants or a broad distribution of

variants, and accessed cortical RNA sequence data to

further develop our mechanistic understanding of ob-

served genetic effects.

Methods

Subjects

Participants in this study were from the Religious Orders

Study (ROS) [11] and the Rush Memory and Aging Pro-

ject (MAP) [12], two cohort studies of elderly popula-

tions from the Chicago area conducted by investigators

at the Rush Alzheimer’s Disease Center (Rush University

Medical Center, Chicago, IL, USA). All subjects were

older and recruited free of dementia (mean age at entry

78 +/− 8.7 years), agreed to annual clinical and neuro-

cognitive evaluation, and signed an Anatomical Gift Act

allowing for brain autopsy at time of death.

Genetics and imputation

In total, 1878 subjects were genotyped using the Affyme-

trix 6.0 Genechip. DNA was extracted from whole blood,

lymphocytes, or frozen brain tissue and genotype data

underwent standard quality control procedures using

PLINK (v1.08), as previously described [13]. Briefly, sub-

jects and variants were filtered based on genotype suc-

cess rate > 0.95, Hardy-Weinberg Equilibrium P > 0.001,

and mishap test P> 1 × 10− 9. After quality control of the

initial genotype dataset, 1709 individuals and 750,173

autosomal variants remained. Whole genome imputation

was performed using BEAGLE (v3.3.2) [14] and the 1000

Genomes reference panel (phase I haplotypes). To

analyze the major histocompatibility complex (MHC) re-

gion in detail, a specialized imputation pipeline,

SNP2HLA [15], was used. This was necessary given the

major contribution of variation in this region to the

pathogenesis of immune-related traits analyzed in this

study. See Additional file 1: Supplementary Methods for

details.

Postmortem amyloid-β and tau neuropathology

Postmortem neuropathology data were available for up

to 985 subjects at time of study. All brains were exam-

ined by a board-certified neuropathologist blinded to age

and clinical data. Aβ and abnormal tau deposition were

measured using immunohistochemistry and automated

image processing for total amyloid and paired helical

filament tau, and a modified Bielschowsky silver staining

technique for neuritic and diffuse plaques, and neurofib-

rillary tangles, as published previously [16].
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Postmortem microglial count density

A subset of up to 183 brain samples with genomic data

were evaluated for the presence of microglia at three

stages of activation, based on morphology: stage 1 (thin

ramified processes), stage 2 (plump cytoplasm and

thicker processes), and stage 3 (appearance of macro-

phages). For each of four regions (midfrontal cortex, in-

ferior temporal cortex, ventral medial caudate, and

posterior putamen), four microglial density scores (total

count of microglia/area surveyed) were calculated: stage

1 only, stage 1 + 2 + 3, stage 2 + 3, and stage 3 only [3]

(see Additional file 1: Supplementary Methods).

Cognitive decline

A total of 1601 subjects with genomic data also had lon-

gitudinal cognitive performance data available at the

time of study. ROS and MAP subjects were both admin-

istered 17 cognitive tests annually spanning five cogni-

tive domains: episodic memory, semantic memory,

working memory, perceptual speed, and visuospatial

ability. Measures of cognitive performance for each do-

main were calculated by averaging z-scores across tests

[11, 12, 17], and rates of cognitive decline were calcu-

lated per subject using general linear mixed models of

cognitive scores over time, co-varying for age at baseline,

years of education, and sex, as described [6].

Gene expression

RNA sequencing and post-processing

RNA was extracted from DLPFC and sequenced on the

Illumina HiSeq (50 million paired-end reads of 101 bp

each), as described [13]. Expression FPKM values were

quantile-normalized, correcting for batch effect with

Combat [18]. Paired-end reads were mapped to genes

using the Ensemble human genome transcriptomic data-

base (http://www.ensembl.org). Expression QTL (eQTL)

analyses were performed in the ROS/MAP sample to as-

certain potential mechanisms of pathology-associated

gene variants with respect to gene expression [19]. The

GTEx portal [20, 21] was used to corroborate eQTL

effects.

Clustering and module enrichment analyses

Gene modules of co-expressed genes were derived using

the SpeakEasy consensus clustering algorithm [22]. In

ROS/MAP, SpeakEasy identified 47 mutually exclusive

modules with 20–556 gene members (median = 331),

several of which have been shown to correlate strongly

with pathology, cognition, and cell-type specific markers

of gene expression in multiple datasets [23]. Of these

modules, five (modules #5, #113, #114, #115, and #116)

show substantial enrichment for immune- and

microglia-related functions and processes [23]. Immune

gene modules were defined based on hypergeometric

enrichment for microglia-specific genes (enrichment p <

0.0011). These microglia-specific genes were defined

based on Olah et al. (2018) [24] as at least four-fold up-

regulated in human bulk microglia. Module 113 (in-

cludes AD genes CLU, SPPL2A, SQSTM1, MPZL1, and

ETS1) has an overlap of 24 microglial genes/313 total

module genes (P = 0.0024); module 114 (no major AD

genes) has an overlap of 24/276 (P= 4.5 × 10− 4); module

115 (no major AD genes) has an overlap of 33/232 (P=

4.1 × 10− 10); module 116 (TREM2, INPP5D) has an over-

lap of 144/224 (P= 5.6 × 10− 148); and module 5 (BIN1,

PVRL2) has an overlap of 58/431 (P =8.5 × 10− 16). See

Patrick et al. (2018) for details [25]. As such, expression

levels of these five modules were used to benchmark the

transcriptional effects of variants in functionally cohesive

immune pathways.

Statistical analysis

GRS calculation

GRS were calculated using PLINK (v1.90b) [26] and

all other analyses were performed using R (v3.3.3)

[27]. We tested eight different GRS in this study: two

inflammatory disease scores (MS and RA) and com-

parator scores that could influence aging-related cog-

nitive decline, including those for AD (including (+)

and excluding (−) APOE), PD (which frequently in-

cludes a dementing illness), CAD (the second most

common cause of dementia in older individuals),

schizophrenia (previously known as dementia prae-

cox), and telomere length (a marker of biological

aging). For each score, lists of genome-wide signifi-

cant variants were extracted from state-of-the-art

genome-wide association studies (listed in Table 1).

Individual publications were chosen rather than an

aggregate database to limit error due to

between-study heterogeneity in outcome definitions,

sample characteristics, and statistical methodology.

The PLINK --score command was then used to gen-

erate average per-allele scores, weighted by each vari-

ant’s published effect. Briefly, for each published trait,

the number of effect alleles (i.e. those associated with

an increase in trait outcome or disease liability) for

each genome-wide significant variant was multiplied

by its effect size (natural logarithm of the odds ratio

or standardized beta coefficient), and these quantities

were summed across variants within each subject to

generate individual polygenic scores. Default parame-

ters were used for this calculation, and missing geno-

types contributed an amount to each score equal to

the effect allele frequency in our sample, minimizing

potential bias. Nonetheless, imputed genotype quality

was high and each GRS calculation was manually

inspected to ensure negligible and non-systematic

missingness.
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Associations of GRS with postmortem pathology and

cognitive decline

Associations of GRS with study outcomes were modeled

using iterated re-weighted least squares, from the “MASS”

R package [27]. The iterated re-weighted least squares re-

gression technique employed here provides effect esti-

mates robust to outliers by assigning weights to each

observation and iteratively fitting Huber M-estimators

[28]. All models of neuropathology co-varied for age at

death, sex, postmortem interval, and the top three

EIGENSTRAT principal components [29]. Tests were cor-

rected using Benjamini & Hochberg’s false discovery rate

(FDR) procedure [30]. Significant associations (two-sided

PFDR < 0.05) were analyzed further to determine region

and activation stage-specific effects on microglial density.

All variants within each significantly associated GRS (with

minor allele frequency > 0.1) were then tested individually.

Overlap between variants affecting microglial density and

gene module expression

To compare effects of risk variants on microglial density

vs. effects of the same risk variants on gene module ex-

pression, the -log(P-value) for each variant’s effect on

both phenotypes were multiplied by their allelic direc-

tions of effect (+ 1 or − 1) and tested for association

using Spearman rank correlations. Thus, whole sets of

variants, grouped by the GRS to which they contribute,

could be tested for synergistic effects on both microglial

density and gene module expression. Correlation coeffi-

cients were calculated separately for each GRS and mod-

ule combination, where positive ρ values indicate a

tendency for variants within a given GRS to influence

both microglial density and gene module expression in

concordant directions. The ranks of these coefficients

for the five immune modules were then evaluated for

significance by calculating the probability that the lowest

of five randomly selected ranks would be equal to the

lowest observed rank by chance alone (see Additional

file 1: Supplementary Methods).

Results
The RA but not the MS GRS is associated with cognitive

decline and postmortem neuropathology

Table 2 summarizes the demographic characteristics of

the ROS/MAP participants that were included in our

analyses. In comparing the GRS to one another, we

found a modest correlation between the RA and MS

scores (Spearman ρ = − 0.13, Puncor = 2.29 × 10− 8), as ex-

pected given the documented sharing of susceptibility

loci between the two diseases (see Additional file 1:

Figure S1).

After FDR correction, both the AD GRS including

(AD+APOE) and excluding (AD-APOE) the APOE ɛ4 risk

haplotype were significantly associated with faster de-

cline in all cognitive domains proximal to death (min

Puncor < 1 × 10− 16), but no other GRS demonstrated

significant associations (Fig. 1). The AD+APOE GRS was

also strongly associated with both amyloid (4.7 × 10− 21 >

Puncor > 1.8 × 10− 23) and tau (7.1 × 10− 20 > Puncor > 1.2 ×

10− 22) phenotypes; whereas the AD-APOE GRS was only

associated with tau measures (5.5 × 10− 4 > Puncor > 5.5 ×

10− 4) (Fig. 2). There were no associations of either AD

GRS with microglial counts, confirming findings previ-

ously reported in these and other cohorts. [5, 31] Across

all other scores, only the RA GRS was significantly asso-

ciated with brain-wide microglial density after correc-

tion: an increase in liability for RA was associated with a

decrease in microglial density (t146 = − 3.88, Puncor =

1.6 × 10− 4) (Fig. 2). We then accessed our more detailed

microglial data and repeated the analyses to test for the

effects of each GRS on microglial count density across

each brain region and stages of microglial activation. We

found that the effect of the RA GRS is widely distrib-

uted, being present in multiple brain regions and stages

of activation (1.4 × 10− 3 > Puncor > 1.5 × 10− 6). In addition,

significant (CAD; t171 = 3.44, Puncor = 7.3 × 10− 4) and sug-

gestive (MS and AD) associations, particularly in relation

to the activated stage 3 microglia, were noted in the infer-

ior temporal gyrus (Fig. 3).

Table 1 Summary of Studies Used to Derive Polygenic Scores

Trait/Disease Publication Total study size
(cases/controls)a

# of SNPs in score SNPs with ROS/MAP
MAF > 0.1

AD Lambert et al., 2013 (Nat. Genet.) 25,580 / 48,466 22 18

CAD Nikpay et al., 2015 (Nat. Genet.) 60,801 / 123,504 63 54

MS Patsopoulos et al.,2017 (Biorxiv) 47,351 / 68,284 232 196

PD Nalls et al., 2014 (Nat. Genet.) 13,708 / 95,282 32 27

RA Okada et al., 2014 (Nature) 29,880 / 73,758 76 67

Schizophrenia Psychiatric Genomics Consortium,
2014 (Nature)

36,989 / 113,075 106 100

Telomere length Codd et al., 2013 (Nat. Genet.) 48,423b 8 8

aStudy size represents all subjects analyzed, regardless of study design (i.e. case/control, meta-analysis, and family-based designs) or analysis stage.
bThe study by Codd et al., 2013 [43] was not a case/control design, as telomere length was evaluated as a continuous outcome. MAF =minor allele frequency.

MAP = Rush Memory and Aging Project. ROS = Rush Religious Orders Study
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Individual variants drive GRS associations with microglial

density

To understand what drives the association of the RA

and CAD GRS with microglial phenotypes, we analyzed

individual variants contributing to each GRS. For CAD,

rs4977574 (chr. 9) alone drove the GRS association, and,

for RA, two variants, rs9268839 (chr. 6) and rs10175798

(chr. 2), were responsible (Fig. 4). After removal of these

two top RA GRS variants and re-calculation of the RA

score, we found no association with total microglial

density (P = 0.74) nor with any of the region- or

stage-specific measures (0.23 > P < 0.88). The more

strongly associated RA variant, rs9268839, is found in

the Human Leukocyte Antigen (HLA) class II region

and is also the strongest RA susceptibility variant in

Europeans (O.R. = 2.47, C.I.95% = [2.39,2.55], Pmeta =

1.5 × 10− 300) [32]. Therefore, upweighting of this variant

in the calculation of the RA GRS biased its effect on

microglial density (Additional file 1: Figure S3). In the

CAD GRS, a similar pattern was observed: rs4977574

drives the association and is the strongest hit in the CAD

genome-wide association study (O.R. = 1.21, C.I.95%
= [1.19,1.24], Pmeta = 2.29 × 10− 98) [33] (Additional file 1:

Figure S4).

Table 2 Sample Sizes and Characteristics for Each Analysis

Phenotype N Mean SD Min Max

Neuritic Plaques 985 0.86 0.85 0.00 5.04

Diffuse Plaques 0.73 0.77 0.00 4.61

Neurofibrillary Tangles 0.63 0.76 0.00 6.23

Sex (F/M) 641/344 – – –

APOE ε4 status (−/+) 723/262 – – –

Age at death 89.06 6.39 66.22 108.28

Dx at last visit (CN/MCI/AD/other) 319/237/343/86 – – –

PMI 8.57 7.59 0.00 85.08

Total Amyloid 952 4.21 4.20 0.00 19.93

Sex (F/M) 617/335 – – –

APOE ε4 status (−/+) 697/255 – – –

Age at death 88.95 6.38 66.22 108.28

Dx at last visit (CN/MCI/AD/other) 309/230/329/84 – – –

PMI 8.52 7.57 0.00 85.08

Total PHF-Tau 946 6.43 7.70 0.00 78.52

Sex (F/M) 615/331 – – –

APOE ε4 status (−/+) 694/252 – – –

Age at death 88.91 6.38 66.22 108.28

Dx at last visit (CN/MCI/AD/other) 312/228/326/80 – – –

PMI 8.47 7.56 0.00 85.08

Microglial Density (all regions) 154 191.02 54.88 48.30 348.64

Sex (F/M) 96/58 – – –

APOE ε4 status (−/+) 117/37 – – –

Age at death 89.50 5.15 74.83 101.19

Dx at last visit (CN/MCI/AD/other) 51/41/58/4 – – –

PMI 7.36 5.97 2.50 54.50

Cognition 1601 −0.01 0.09 −0.48 0.17

Sex (F/M) 1113/488 – – –

APOE ε4 status (−/+) 1 594a 1186/408 – – –

Age at baseline evaluation 1601 86.50 6.81 60.15 108.15

Dx at last visit (CN/MCI/AD/other) 700/357/436/108 – – –

Note: All values of N are given for samples that have data for both the specified phenotype and genome-wide genotypes.
aAPOE ε4 status was obtained separately from genome-wide genotypes, so seven samples with cognitive data did not have APOE ε4 status data available at time

of study, CN cognitively normal, Dx diagnosis, F female, M male, MCI mild cognitive impairment, PHF-Tau paired helical filament tau, PMI postmortem interval, SD

standard deviation
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In ROS/MAP cortical RNA and GTEx, the top variant influ-

encing microglial density for the RA score (rs9268839, Puncor
=2.48 × 10−5) influences HLA class II expression (see

Additional file 1: Supplementary Methods). The top CAD

SNP, rs4977574, has no cis-eQTL effects in these data but has

been reported to influence VIL2 in blood (P=6.1 × 10−6) [34].

Variants affecting microglial density also tend to affect

expression of immune gene modules

Another approach to exploring the role of GRS in the

aging brain involves assessing their effects on the cor-

tical transcriptome of ROS/MAP participants, using the

47 modules of co-expressed genes previously defined in

Fig. 1 Analysis of GRS vs. cognitive decline slopes (n = 1601). Two-sided uncorrected P-values derived from robust regression are shown within

tiles. Models co-varied for age at initial assessment, sex, years of education, and three EIGENSTRAT principal components. The color scale indicates

magnitude and direction of the effect T-statistic. *significant after FDR correction (PFDR < 0.05)

Fig. 2 Analysis of GRS vs. aggregate AD-related pathologies and microglial density. Immunohistochemistry images showing (a) neuritic amyloid

plaques (stained with 4G8), (b) neurofibrillary (tau) tangles (stained with AT8), and (c) microglia at three stages of activation (stained with CR3–43)

in our postmortem tissue samples. (d) Two-sided uncorrected P-values derived from robust regression are shown within tiles. Models co-varied

for age at death, sex, and three EIGENSTRAT principal components. The color scale indicates magnitude and direction of the effect T-statistic.

*significant after FDR correction (PFDR < 0.05)
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these individuals [23]. Additional file 1: Figure S5A

shows the results of the direct association of each

gene module’s expression with each GRS. After cor-

rection, this analysis yielded no significant results

overall; however, 17 correlations exceeded Puncor <

0.05. Evaluating gene module expression directly

against midfrontal microglia density (stages 1 + 2 + 3),

only module #118 had a significant effect after cor-

rection (t94 = − 3.60, Puncor = 5.1 × 10− 4), whereby in-

creased expression was associated with a decrease in

microglial density (Additional file 1: Figure S5B). To

evaluate the intersection of gene variant effects on

both microglial density and gene expression, Spear-

man correlations of variant effects on both outcomes

were evaluated within each GRS. Again, no results

were significant after correction, largely due to a

sparsity of individually significant associations of GRS

SNPs with either microglial density or module expres-

sion. Nonetheless, our exploratory findings suggest a

possible tendency for variants which affect microglial

density to also influence immune module expression

(See Additional file 1: Figure S7, Additional file 1:

Supplementary Results).

Discussion

We show that polygenic risk burden for RA and CAD

significantly impact microglial count density, in different

regions and at different stages of activation, in postmor-

tem brain of elderly individuals. However, these associa-

tions were driven by only one or two variants within

each GRS, highlighting a key limitation in the use of

polygenic risk models of complex traits. In joint analyses

of GRS, microglial densities, and RNA sequencing from

the frontal cortex, we found no significant direct associa-

tions between GRS and immune gene module expres-

sion. However, when evaluating pleiotropy among GRS

variants, microglial density and immune gene expres-

sion, we noted significant associations of MS, CAD, and

RA risk variants with brain-wide microglial density and

expression of at least one immune module. In parallel, a

high genetic MS burden was linked to a loss of modules

that are enriched for neuronal or mitochondrial genes,

suggesting that it may play a role in exacerbating the

dysfunction or loss of neurons or their transcriptional

programs.

Several GRS tested showed effects in the directions ex-

pected based on existing literature: both the AD+APOE

Fig. 3 Analysis of GRS vs. microglial densities across four regions for each measured stage of activation. Two-sided uncorrected P-values derived

from robust regression are shown within tiles. Models co-varied for age at death, sex, and three EIGENSTRAT principal components. The color

scale indicates magnitude and direction of the effect T-statistic. *significant after FDR correction (PFDR < 0.05)
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and AD-APOE GRS were significantly associated with cog-

nitive decline at corrected thresholds, but, interestingly,

the AD-APOE GRS was only significantly associated with

tau-related neuropathology, complimenting existing evi-

dence from in vivo PET imaging and CSF analyses show-

ing an effect of APOE ε4 on amyloid- but not

tau-related biomarkers in healthy elderly [35]. While our

observed association of the CAD GRS with microglial

density in the inferior temporal cortex was not expected,

the variant driving this association, rs4977574, is in high

linkage disequilibrium (r2 = 0.89) with another variant,

rs1333049, that has been associated at genome-wide sig-

nificance with risk for ischemic stroke [36]. It is possible

that the overlapping susceptibility at this locus for CAD

and stroke drives cerebrovascular changes that lead to

the recruitment and activation of microglia. Analyses of

regional interactions between microglia density and

other types of brain pathology, such as silent infarction,

is beyond the scope of our current study and is a topic

of future interest. For our observed association of the

RA GRS with microglia across multiple activation stages,

there appears to be little regional specificity other than

that the association is much less pronounced is the in-

ferior temporal gyrus. Interestingly, this region is the

earliest affected in AD [37] and appears to behave

differently from the other three brain regions in our ana-

lyses: it harbors additional, significant (CAD) and sug-

gestive (MS and AD) associations in secondary analyses,

particularly in relation to the activated, stage 3 microglia.

Finally, we note that, while we elected to use an

FDR-based correction in our original analysis plan, our

main results also meet more conservative thresholds of

significance, such as Bonferroni correction.

Many tests revealed a lack of GRS effects on our out-

comes: for example, the schizophrenia GRS was not asso-

ciated with any measure of cognitive decline or

neuropathology. This seemingly contradicts previous evi-

dence of increased HLA-DR+ microglia in brains of

schizophrenia patients compared to age-matched controls

[38]. Our lack of association of schizophrenia GRS with

microglial density in any area and at any stage of activa-

tion suggests that the mechanism behind aberrant micro-

glial recruitment in the schizophrenia brain is less likely to

be due to schizophrenia-specific genetic risk factors; ra-

ther, it may be driven by environmental factors or be a

consequence of processes downstream of the onset of

schizophrenia. In addition, for telomere length variants,

we find a lack of association with AD pathology or cogni-

tive decline, in contrast to a recent meta-analysis finding

that AD patients have shorter telomeres than controls

Fig. 4 Analysis of individual variants in the RA GRS on microglial density in the ventral medial caudate. Published effect sizes on the x-axis have

been transformed using a natural logarithm and oriented in the positive direction to align allelic effects (color denotes direction of effect on

microglial density). P-values (uncorrected) are two-sided and derived from robust iterated re-weighted least squares regression models, co-varying

for age at death, sex, and three EIGENSTRAT principal components
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[39], as well as Mendelian randomization analyses sug-

gesting causal links between telomere length and AD [40].

Also, our top signals for association across all GRS (in-

cluding RA) localized to the MHC region, which influ-

ences many immune traits, and resolving the mechanism

of this association to the HLA class II region within the

MHC will be difficult given the extensive linkage disequi-

librium that exists in this unique genomic region [41].

The main limitation of our GRS is that they were de-

rived from lists of genome-wide significant loci only. We

chose this approach due to (1) the lack of unrestricted

availability of full summary statistics for all diseases tested,

and (2) validity assumptions of individual variant analyses.

If many variants well below genome-wide significance

from each GWAS were included in our GRS calculations,

then post-hoc associations of individual variants may not

be relevant in the context of risk for the disease of interest.

Moreover, our post-mortem measure of microglial activa-

tion is based on morphologic criteria and is subject to

error associated with misclassification of individual cells

to specific microglial stages of activation. However, by

analyzing multiple binned groups of microglia by stage in

our detailed analyses, the confounding of misclassification

over the spectrum of groups has likely been mitigated.

Also, the challenge of objectively classifying microglial ac-

tivation states is not unique to our study; microglial sta-

ging is an active field of investigation [42].

Conclusions
Together, our findings demonstrate limited links between

microglial activation and liability for archetypal inflamma-

tory diseases of both the central nervous system (MS) and

periphery (RA). Thus, the immune dysfunction involved

in AD susceptibility seems to be largely distinct from

those genes and pathways that are involved in susceptibil-

ity to inflammatory disease in young and middle-aged

adults. Nonetheless, we have uncovered a handful of vari-

ants that have strong effects on both inflammatory disease

risk and microglial density, which informs our under-

standing of human microglial biology in aging which re-

mains poorly understood today.
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