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Abstract

The molecular mechanisms underlying Major Depressive Disorder (MDD) are largely unknown. 

Limited success of previous genetics studies may be attributable to heterogeneity of MDD, 

aggregating biologically different subtypes. We examined the polygenic features of MDD and two 

common clinical subtypes (typical and atypical) defined by symptom profiles in a large sample of 

adults with established diagnoses. Data were from 1,530 patients of the Netherlands Study of 

Depression and Anxiety (NESDA) and 1,700 controls mainly from the Netherlands Twin Register 

(NTR). Diagnoses of MDD and its subtypes were based on DSM-IV symptoms. Genetic overlap 

of MDD and subtypes with psychiatric (MDD, bipolar disorder, schizophrenia) and metabolic 

(BMI, C-reactive protein, triglycerides) traits was evaluated via genomic profile risk scores 

(GPRS) generated from meta-analysis results of large international consortia. SNP-heritability of 

MDD and subtypes was also estimated. MDD was associated with psychiatric GPRS, while no 

association was found for GPRS of metabolic traits. MDD subtypes had differential polygenic 

signatures: typical was strongly associated with schizophrenia GPRS (OR=1.54, p=7.8e-9), while 

atypical was additionally associated with BMI (OR=1.29, p=2.7e-4) and triglycerides (OR=1.21, 

p=0.006) GPRS. Similar results were found when only the highly discriminatory symptoms of 

appetite/weight to were used to define subtypes. SNP-heritability was 32% for MDD, 38% and 

43% for subtypes with, respectively, decreased (typical) and increased (atypical) appetite/weight. 

In conclusion, MDD subtypes are characterized by partially distinct polygenic liabilities and may 

represent more homogeneous phenotypes. Disentangling MDD heterogeneity may help the 

psychiatric field moving forward in the search for molecular roots of depression.
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INTRODUCTION

Major Depressive Disorder (MDD) is highly prevalent(1) and one of the main contributors to 

disability worldwide(2). Though the heritability of MDD has been estimated to be 37%(3), 

the search for specific genetic variants has not yet been successful: the largest GWAS mega-

analysis to date detected no significant associations with common polymorphisms(4). 

Statistical hints suggest that depression liability is polygenic, with the majority of variance 

due to joint effects of multiple loci with small effects scattered across the genome(5;6). 

Failure to detect single effects is attributable to underpowered sample sizes and to 

depression’s clinical heterogeneity, that additionally compromises the power of association 

studies(5–9). Patients with the same diagnosis of MDD (any five out of nine DSM-5 

accessory symptoms(10)) may endorse very different symptom profiles. From clinical 

observations, criteria to identify two severe subtypes – each present in ~25–35% of patients - 

based on more homogenous symptom profiles have been proposed: typical/melancholic and 

atypical(11), reflected in the DSM-5 specifiers for melancholic and atypical depression. 

However, not all DSM criteria have been justified by research, and recent studies based on 

data-driven techniques highlighted the importance of vegetative symptoms (particularly 

appetite and weight) in distinguishing subtypes (decreased in typical, increased in atypical)

(12–17). Increasing evidence suggests that subtypes are associated with different 

pathophysiological correlates: environmental stress (e.g. childhood trauma), smoking and 

HPA-axis hyperactivity appear more specific for typical depression, while obesity, metabolic 

dysregulations (e.g. abdominal adiposity, hypertriglyceridemia) and inflammation up-

regulations appear more specific for atypical depression(11;18;19). In line with this 

observation, we recently showed(20) that the association between a variant in the FTO gene 

and MDD was completely driven by the atypical subtype. Based on these findings we 

hypothesized that MDD subtypes may be characterized by a partially distinct genetic 

liability, with genetic profiles for stress-related and psychiatric traits more specifically linked 

with typical MDD, and those for obesity-related metabolic dysregulations with atypical 

MDD. We tested our hypothesis in a sample of 3,230 Dutch adults with established 

psychiatric diagnoses and GWAS data. We examined for MDD and its subtypes: 1) the 

genetic overlap with major psychiatric disorders (MDD, bipolar-disorder, schizophrenia) and 

metabolic traits (BMI, C-reactive protein and triglycerides, capturing central metabolic 

dysregulations found to be strongly linked with atypical MDD(11;18;19)) using genomic 

profile risk scores (GPRS); 2) the proportion of variance in liability explained by the joint 

effect of all common SNPs using genomic-relationship-matrix restricted maximum 

likelihood (GREML) methods. MDD subtypes were identified by using both data-driven 

techniques and a parsimonious sub-phenotyping strategy focusing on appetite and weight 

symptoms.

METHODS AND MATERIALS

Study Population

The sample consisted of 3,230 participants (median year of birth 1967, range 1926–1994; 

64.7% females) of North-European ancestry from the Netherlands Study of Depression and 
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Anxiety (NESDA, n=1,846) and from the Netherlands Twin Register (NTR, n=1,384). 

Unrelated participants were selected applying a cut-off threshold of 0.025 (i.e., no closer 

relationships than third or fourth cousin) to a relationship matrix measuring genetic 

similarity calculated using GCTAv.1.24.1(21). Detailed descriptions of the rationale, design 

and methods for both studies are given elsewhere(22;23). Briefly, NESDA is an ongoing 

cohort study into the long-term course and consequences of depressive and anxiety 

disorders. In 2004–2007 2,981 participants aged 18 to 65 years were recruited from the 

community (19%), general practice (54%) and secondary mental health care (27%) and were 

followed-up during three biannual assessments. The NTR study has been collecting data on 

Dutch twin families since 1991 and comprises longitudinal data on nearly 40,000 adult 

participants. The research protocols from both studies were approved by the ethical 

committee of participating universities, and all participants provided written informed 

consent.

MDD ascertainment

The sample included 1,530 patients with a lifetime diagnosis of MDD and 1,700 screened 

healthy controls. All cases were drawn from NESDA. Presence of DSM-IV lifetime 

diagnosis of MDD was assessed using the Composite Interview Diagnostic Instrument 

(CIDI, version 2.1)(24) administered by specially trained research staff at baseline or one of 

the biannual follow-up assessments. From NESDA, 316 healthy controls were also selected, 

including participants without any lifetime psychiatric disorder. The majority of controls 

(n=1,384) were drawn from NTR participants who had no reports of MDD, no known first-

degree relatives with MDD and a low factor score based on a multivariate analyses of 

depressive complaints, anxiety, neuroticism and somatic anxiety(25). Case-control selection 

criteria in the present study are the same as previously applied to include NESDA and NTR 

participants in the Genetic Association Information Network (GAIN) MDD dataset(25), 

which was used in previous studies(26–29) including the largest MDD GWAS available to 

date by the Psychiatric Genomics Consortium(4). Of note, 1,452 cases and 99 controls from 

the current study were previously included in the larger (1,943 cases, 1,807 controls) GAIN-

MDD dataset. In GAIN, cases and controls were genotyped on a different platform 

(Perlegen-Affymetrix 5.0) as compared to the current study (Affymetrix 6.0).

Determination of MDD subtypes

Among cases, 1,477 subjects had MDD symptom-level data ascertained by the CIDI 

interview for the most severe episode in lifetime. Data on neurovegetative symptoms 

(appetite, weight, sleep and psychomotor disturbances) were disaggregated to code 

separately for increase, decrease and both increase/decrease. Subtypes of MDD were derived 

using two strategies. First, lifetime depression symptoms were used as input variables in a 

latent class analysis (LCA; Supplemental Methods) clustering persons on the basis of their 

endorsed symptom profiles. A 3-class model was found to fit the data best, similarly to 

previous results obtained applying LCA to NESDA patients with current MDD (extensive 

descriptions of subtypes and their correlates have been previously published (15;16;18)). 

Two classes were characterized by high severity and were labeled “severe typical” and 

“severe atypical” based on symptom profiles. Consistent with other latent modeling 

studies(12–16;18) the most discriminating symptoms were appetite and weight, decreased in 
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typical and increased in atypical. Of note, LCA-subtypes do not necessarily overlap with 

DSM classification of melancholic and atypical. The third class was labeled “moderate” and 

was characterized by lower severity. For the analyses based on LCA-subtypes we initially 

included 1,176 patients (~80% of those available) whose class could be assigned with 

confidence (average posterior probability > 0.7, indicating adequate separation and 

classification precision(30)). Proportions of the subtypes were 19.4% for severe typical, 

21.3% for severe atypical and 59.3% for moderate.

In large collaborative studies symptom-level data necessary to apply more sophisticated 

data-driven techniques may not be available in all involved cohorts. For this reason we 

additionally tested an alternative parsimonious sub-phenotyping strategy using only 

information on the direction of change in appetite and weight, as these were the symptoms 

with the highest discriminative power between subtypes (Supplemental Methods). Among 

the 1,477 patients with available data, two subtypes, namely “decreased appetite/weight” 

(39.7% of sample) and “increased appetite/weight” (26.2%), were defined by the presence 

of, respectively, decrease or increase in at least one of the two symptoms. The proportion of 

MDD cases with lifetime anxiety disorder did not differ across typical and atypical subtypes 

(respectively, 84.7% and 81.3%; p=0.33), nor across decreased and increased appetite/

weight subtypes (respectively, 76.3% and 80.3%; p=0.15). Supplemental eFigure 1 

summarizes the number of subjects included/excluded for both sub-phenotyping strategies.

Genotyping, quality control and genetic relationship matrix

Methods for biological sample collection and DNA extraction have been described 

previously(25). Autosomal SNPs were genotyped on the Affymetrix 6.0 Human Genome-

Wide SNP Array in three separate batches. Main QC steps have been previously 

described(31;32). Primary analyses included 497,347 SNPs. Additional stringent QC was 

performed to build a genetic-relationship-matrix (GRM) in order to reduce the possibility 

that estimates from GRM-based analyses could be inflated by artifacts. The remaining 

435,579 SNPs were used to build the GRM using GCTAv.1.24.1(21). All QC steps are 

described in supplemental methods.

Genomic profile risk scores (GPRS)

GPRS for psychiatric and metabolic traits were generated based on discovery GWAS meta-

analysis results from large international consortia (see supplemental methods for detailed 

description). Results from the Psychiatric Genomics Consortium (PGC) were used to derive 

GPRS for MDD(4) (~8K cases, ~8K controls), bipolar disorder(33) (BIP; ~7K, ~9K 

controls) and schizophrenia(34) (SCZ2; ~36K cases, ~113K controls). Discovery GWAS 

meta-analyses for metabolic traits were from GIANT Consortium(35) for BMI (~120K 

samples), Dehghan et al.(36) for C-reactive protein (CRP; ~70K samples) and Teslovich et 

al.(37) for triglycerides (TR; ~100K). Since NESDA and NTR samples contributed to MDD 

and BMI discovery GWAS, meta-analyses for these traits were performed with the Dutch 

GWAS cohort excluded in order to remove any chance of overlap between discovery and 

target samples. For all traits, eight sets of independent SNPs were selected based on 

significance thresholds (Pt <0.0001, <0.001, <0.005, <0.01, <0.05, <0.1, <0.5, <1) of the 

discovery samples associations. GPRS were calculated as the number of scores alleles 
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weighted by effect sizes from the discovery statistics using PLINKv1.07(38) and were 

standardized to aid interpretation of the results. Number of SNPs included in the GPRS 

according to Pts are reported in Table 1.

Statistical analyses

Differences in year of birth and gender across MDD cases and controls were tested using 

Wilcoxon-Mann-Whitney and chi-square statistics. Cross-correlations between GPRS were 

evaluated with Pearson’s coefficient. The association of GPRS with MDD (subtypes) was 

estimated by (multivariate) logistic regressions with controls as the reference category. The 

proportion of variance explained by GPRS on the liability scale for MDD (subtypes) was 

estimated using the R2 coefficient proposed by Lee at al.(39), which is directly comparable 

with heritability and robust against ascertainment bias. Linear transformation on the liability 

scale was based on prevalence (K) of 0.18 for MDD (Dutch lifetime prevalence(40)); Ks for 

subtypes were empirically derived based on subtypes proportions among cases. In order to 

examine the overlap between subtypes obtained with different sub-phenotyping strategies, 

the performance of appetite/weight subtypes to predict the corresponding LCA-subtypes 

(decreased appetite/weight→typical and increased appetite/weight→atypical) was evaluated 

using receiver operating characteristic (ROC) analyses. All analyses were performed with 

SAS (v. 9.2, SAS Institute, Inc., Cary, NC) and R (v. 3.0.1, R Project for Statistical 

Computing). Finally, the total variance in liability to MDD (subtypes) explained by the joint 

effect of all SNPs (SNP-heritability, h2
SNP) was estimated using genomic-relationship-

matrix restricted maximum likelihood (GREML) analyses(41) implemented in GCTAv.

1.24.1(21). H2
SNP is estimated in a linear mixed model in which the measure of genetic 

similarity (based on the GRM) is included as a random effect to predict the phenotype. All 

analyses were corrected for year of birth, gender and three ancestry-informative principal 

components(32) to take possible population stratification into account. Significance level 

was set at p<0.05, two-tailed.

RESULTS

Descriptives

The study sample included 2,085 women and 1,145 men. The 1,530 participants with 

lifetime MDD, as compared to the 1,700 controls, were younger (year of birth: 1962[IQR:

1952–1973] vs 1972[IQR:1958–1979], p<0.0001) and more likely to be female (68.1% vs 

61.4, p<0.0001).

Psychiatric traits GPRS analyses

MDD case/control status (Figure 1A; full results available in eTable 1) was significantly 

predicted by the GPRS of psychiatric traits, especially at liberal Pts. Psychiatric GPRS 

including all independent SNPs (Pt<1) were significantly, although not strongly, correlated 

(MDD-BIP r=0.22; MDD-SCZ2 r=0.16; BIP-SCZ2 r=0.27; all p<0.0001). When including 

all three scores in the same model for Pt bins <0.05, <0.01, <0.5 and <1 only GPRS-MDD 

and GPRS-SCZ2 remained independently associated with MDD. Analyses were repeated 

including dummy covariates indexing the different genotyping batches and results were 

essentially unchanged (data not shown). The variance explained on the liability scale for 
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MDD is shown in Figure 2A. GPRS-SCZ2 explained the higher proportion of variance, up 

to 1.6%, while GPRS-MDD and GPRS-BIP explained up to, respectively, 0.6% and 0.3%. 

The figure includes also GPRS-SCZ1 derived from the first PGC-GWAS on 

schizophrenia(42) (~9K cases, ~12K controls) in order to highlight the importance of 

discovery sample size in GPRS predictive performance(43): GPRS-SCZ1 predicted at best 

up to 0.5% of the variance on MDD liability. In order to further confirm these findings, we 

used the equations based on genetic quantitative theory developed by Dudbridge(43) in order 

to estimate the expected predictive accuracy of GPRS Pt<0.5 (the best performing threshold) 

as a function of parameters such as discovery sample size (Supplemental Methods). The 

theoretical estimates of explained variance were highly convergent (GPRS-MDD 0.5%, 

GPRS-BIP 0.3%, GPRS-SCZ2 1.2%, GPRS-SCZ1 0.3%) with the empirical values of 

explained variance obtained in the present study. More interestingly, a model assuming 

GPRS-MDD based on a discovery sample of the same size of SCZ2 indicated that an even 

larger amount of variance explained in MDD liability could be expected (3%).

Figure 1 graphically depicts the associations between GPRS with LCA-based typical and 

atypical subtype estimated by multinomial logistic regressions (associations with MDD are 

also depicted as benchmark for comparison; full results including moderate subtype are 

available in eTables 2,3). In general, GPRS for psychiatric traits were also associated with 

both severe subtypes, but the associations were stronger with typical, especially for GPRS-

SCZ2 (Pt<0.5:OR=1.54,95%CI=1.33–1.78, p=7.8e-9). GPRS-SCZ2 explained up to 1.3% of 

the variance for atypical, similar to MDD, and up to 2.4% for typical MDD (Figure 2C,E)

Metabolic traits GPRS analyses

No association was found for GPRS of metabolic traits with MDD (Figure 1; eTable 1). 

Among the metabolic traits GPRS-BMI (Pt<0.0001:OR=1.29,95%CI=1.12–1.47, p=2.7e-4) 

and GPRS-TG (Pt<0.005:OR=1.21,95%CI=1.06–1.38, p=0.006) were associated with 

atypical MDD, particularly at stringent Pts. Cross-correlation between GPRS-BMI and 

GPRS-TG was low even at Pt<1 including all independent SNPs (r=0.04;p=0.02). When 

including both GPRS in the same model they remained independently associated with 

atypical in Pt bins <0.0001, <0.001, <0.005,<0.01 and 0.05. Figure 1F shows that GPRS-

BMI explained up to 1.2% and GPRS-TG up to 0.5% of the variance for atypical MDD. 

GPRS for metabolic traits were not associated with typical MDD (Figure 1, eTable 3) 

Association analyses between LCA-based subtypes with all GPRS were repeated after 

lowering the cut-off for classification precision (average posterior probability > 0.6, 

including up to ~90% of the available subjects with symptom-level data) and results were 

very similar (data not shown).

Alternative sub-phenotyping

Subtypes defined by increase/decrease in appetite/weight were tested next. Increased 

appetite/weight almost perfectly predicted LCA-atypical (Area Under the Curve [AUC]:

0.99; 95%CI=0.98–1.00; sensitivity 98.4%; specificity 99.5%), while the prediction of LCA-

typical by decreased appetite/weight subtype was less accurate (AUC:0.81; 95%CI=0.78–

0.83; sensitivity 87.8%; specificity 72.8%), suggesting that other symptoms beyond appetite/

weight may be relevant to reliably identify this subtype. The decreased appetite/weight 
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subtype captured indeed a large proportion of participants classified in LCA moderate class 

(Supplemental Methods). Multinomial logistic regression analyses testing the associations 

between GPRS and appetite/weight subtypes resulted in profiles (eFigure 2) similar to LCA-

subtypes. In a sensitivity analysis addressing the impact of the symptoms increased weight 

when testing the association with GPRS-BMI we identified the atypical-like cases (N=364) 

using only the symptom increased appetite. The strength of the association (OR=1.19, 

95%CI=1.06–1.34, p=0.004) with GPRS-BMI Pt<0.0001 was similar to that found when 

combining the two symptoms in the increased appetite/weight sub-phenotype 

(OR=1.20,95%CI=1.06–1.33, p=0.003; eFigure 2).

GREML analyses

Results from GREML analyses showed that common SNPs significantly captured a 

substantial part of the heritability of MDD (estimate=0.31; se=0.13; p=0.006). We estimated 

also h2
SNP for the subtypes defined by appetite/weight symptoms since they allowed us to 

include a higher number of cases (587 decreased, 385 increased) as compared to LCA-

subtypes (228 typical, 251 atypical). With the available sample size, for both subtypes 80% 

power to detect a significant (>0) h2
SNP could be reached only assuming heritability 

estimates higher than those for MDD (eFigure 3). Estimates of h2
SNP were significant for 

both decreased (K=0.072; estimate=0.38; se=0.17; p=0.01) and increased (K=0.047; 

estimate=0.43; se=0.20; p=0.01) appetite/weight, and higher than those for MDD, although 

with large standard errors due to restricted sample sizes.

DISCUSSION

In a large sample of depressed adults and controls with GWAS data, we examined the 

polygenic features of MDD and two common subtypes, typical and atypical, defined on the 

basis of symptom profiles.

We confirmed that MDD disease liability reflects the combined small effects of a large 

number of genetic variants across the genome(5;6). MDD case/control status was 

significantly predicted by GPRS-MDD based on the largest dataset to date(4), especially by 

scores including SNPs associated with MDD at liberal significance thresholds. This pattern 

indicates that the explanatory power of the scores is increased by the addition of many 

variants of small effect scattered across the genome. The score including all independent 

SNPs explained 0.6% of the variance in MDD liability. Consistently with previous cross-

disorders analyses by PGC(28;29), we also confirmed that MDD shares genetic risk with 

major psychiatric disorders such as bipolar disorder and schizophrenia. Among the GPRS 

for psychiatric disorders, schizophrenia scores explained the highest proportions of variance 

in MDD liability (1.6%). This higher explanatory power is attributable to the larger training 

dataset (43), leading to smaller sampling variance on the individual SNP effects. For GPRS 

based on the latest schizophrenia PGC-GWAS(34) the discovery sample size was ~150K 

samples, whereas this was ~16K for GPRS based on MDD(4) and bipolar disorder(44). In a 

seminal paper, Dudbrige(43) elegantly showed that the accuracy of GPRS predictions 

depends on the size of the training samples. Since PGC cross-disorder analyses showed(28) 

that MDD could be predicted by GPRS for the other psychiatric disorders, we could expect 
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that - due to a training sample that was almost 10-times larger - the schizophrenia GPRS 

may explain a portion of MDD variance even larger than GPRS for the same trait. Using 

Dudbrige’s equations(43) estimating the predictive accuracy of GPRS as a function of 

parameters such as discovery sample size, we confirmed the empirical values of explained 

variance obtained in the current study. More interestingly, results indicated that the 

availability of a discovery GWAS for MDD of the same size as that for schizophrenia, may 

lead to an even larger amount of variance explained in MDD liability by MDD GPRS. These 

results confirmed that the predictive accuracy of GPRS should be always interpreted in light 

of the genetic characteristics of the specific trait and the size of the discovery sample; any 

attempt to frame findings from different GPRS in terms of simple direct comparisons 

between each other should be avoided.

The evidence of shared genetic risk factors between different psychiatric disorders has been 

previously interpreted as a first step in moving beyond descriptive syndromes toward a 

biology-informed nosology(28). A project pursuing this aim is represented by the National 

Institute of Mental Health’s Research Domain Criteria (RDoC), which support research 

examining fundamental biobehavioral dimensions that cut across current heterogeneous 

disorder categories(45). The present study used a similar approach and results are the first to 

show partially different polygenic signatures across MDD subtypes. While typical had a 

stronger genetic overlap with psychiatric traits, particularly with schizophrenia (2.4% 

explained variance), atypical MDD showed an additional contribution of genetic signals 

from the metabolic traits of BMI (1.2% explained variance) and triglycerides (0.5% 

explained variance). These findings show intriguing consistencies with previous clinical and 

research observations. The overlap between schizophrenia genetic risk and typical MDD is 

consistent with the common presence of psychotic symptoms in patients with melancholic 

depression(46). Furthermore, previous findings from NESDA cohort showed that patients 

categorized as severe typical were more likely to be smoker(15;16;18); smoking is highly 

comorbid with psychiatric disorders, especially with schizophrenia, although the underlying 

biology is not well understood(47). For the atypical subtype, converging epidemiological 

evidence suggests a correlation with obesity and immuno-metabolic alterations(11;18;19). In 

the current study, atypical was associated with GPRS for BMI and triglycerides, particularly 

when based on SNPs strongly associated with traits at stringent significance threshold, 

suggesting the presence of loci of moderate effect. This is consistent with our previous 

findings showing the strong association between the FTO rs9939609-A variant and atypical 

MDD(20). When tested, the FTO-atypical association was also independent from BMI; 

similarly, in the current study the association of the best performing GPRS (Pt<0.0001) for 

BMI and triglycerides with atypical was reduced in effect size after controlling for BMI, but 

was still evident. Nevertheless, we decided not to adjust these analyses for BMI: our results 

of a shared genetic basis sustain indeed the hypothesis that atypical depression and BMI-

related metabolic dysregulations may represent epiphenomenon stemming from the same 

pathophysiological mechanism, and adjusting for BMI may therefore represent an 

overadjustment. Nevertheless, the association with GPRS-BMI was unchanged when using 

only the increased appetite symptom to define the atypical-like subtype. Finally, no genetic 

overlap was found between MDD or the atypical subtype with CRP. This is in line with a 
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recent large mendelian-randomization study showing that genetically elevated CRP is not 

associated with increased risk of depression(48).

Intriguingly, the differential polygenic signatures were found when deriving subtypes by 

LCA applied to all endorsed symptoms or by simply coding the direction of change 

(increase/decrease) in the highly discriminatory(12–16;18) symptoms of appetite and 

weight. It should be highlighted that while increased appetite/weight almost perfectly 

predicted LCA-atypical, the decreased appetite/weight→LCA-typical prediction was less 

accurate, suggesting that other symptoms beyond appetite/weight may be relevant to reliably 

identify this subtype. This should be carefully evaluated in specifically dedicated diagnostic-

accuracy studies. Nevertheless, the possibility of using parsimonious and effective sub-

phenotyping strategies may be relevant for large collaborative studies for which symptom-

level data necessary to apply more sophisticated data-driven techniques may not be available 

in all involved cohorts. Moreover, symptom endorsement profiles may be highly variable 

across cohorts, reflecting differences such as settings (e.g. clinical, population-based), 

ascertainment (e.g. psychiatric interviews, medical records) or diagnosis timeframe (e.g. 

lifetime, current). When applying typical/atypical sub-phenotyping strategies an important 

aspect to consider may be the possible impact of antidepressant medications (AD), some of 

which may affect weight change and other metabolic disturbances(49). For the current study, 

previous results from NESDA point toward a reduced likelihood of AD impact. The AD 

classes more commonly used were not cross-sectionally associated with metabolic 

dysregulations(50) nor with 2-year trajectories of weight change(51). In another study(18) 

focusing on a subset of patients with current chronic MDD, AD used were similar across 

typical and atypical subtypes; moreover, the differential associations across subtypes of 

characteristics such as waist circumference, BMI, triglycerides and CRP was unchanged 

after adjustment for antidepressant use.

Results of the present study also showed that 31% of the variance in MDD liability was 

explained by the joint effect of all common SNPs. This perfectly replicates the h2
SNP 

estimate (0.32) obtained by a previous study based on the GAIN MDD dataset (26), 

including overlapping cases with the current study and different controls genotyped on a 

different platform. Estimates of h2
SNP were higher for the subtypes: 38% for MDD with 

decreased and 43% for MDD with increased appetite/weight. This suggests that subtypes 

may be genetically more homogeneous. It is important to remark, however, that due to the 

limited sample size the standard errors around the estimates were large. Nevertheless, our 

results are in line with recent twin-based estimates(52) showing higher heritability for 

atypical depression defined according to DSM-III (0.51) as compared to MDD (0.43). Major 

strengths of the current study include the availability of GWAS data in a large sample well-

characterized in terms of psychiatric diagnoses, the use of different sub-phenotyping 

strategies to identify MDD subtypes and GPRS based on large international consortia. An 

important limitation is that the sample size was still largely underpowered to perform 

bivariate-GREML analyses to calculate the SNP correlation (average genome-wide 

relationship)(41) between the subtypes.

In summary, our results suggest that MDD subtypes based on symptom profiles are 

characterized by partially distinct polygenic liabilities and may represent more 
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homogeneous phenotypes. Similarly to other complex diseases MDD may represent a 

diagnostic aggregation of biologically different subtypes. As shown by recent simulations 

studies(7;8), this heterogeneity could severely compromise the power of association studies. 

Moreover, the finding of partially distinct genetic signature across more homogenous 

subtypes suggest translational implication in the long term: it could be hypothesized that 

distinct subtypes may specifically respond to different treatments. Our results provide proof 

of principle evidence that should stimulate further studies scaling up the dissection of MDD 

heterogeneity in larger samples. As we demonstrated, the use of cost-effective sub-

phenotyping strategies to identify subtypes, in particular atypical, may be a successful 

strategy to harmonize phenotypes across different cohorts. While we dissected MDD along 

symptom-profiles, other clinical features (e.g.; age of onset, post-partum onset, sensitivity to 

environmental stressors) may be also tested in future studies. Disentangling MDD 

heterogeneity (provided a constant parallel effort in increasing samples size of genetic 

studies) may help the psychiatric field moving forward in the search for molecular roots of 

depression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Associations of GPRS for psychiatric and metabolic traits with MDD and subtypes (severe 

typical and severe atypical).

Results (Odds Ratios and 95% Confidence Intervals) from binary (MDD: 1,530 cases) and 

multinomial (subtypes: 228 severe typical, 251 severe atypical) logistic regressions 

(reference: 1,700 controls) adjusted for year of birth, gender and three ancestry-informative 

principal components
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Figure 2. 
Proportions of variance explained on the liability scale for MDD and subtypes (severe 

typical and severe atypical) by the GPRS for psychiatric and metabolic traits. Explained 

variance based on R2 coefficient proposed by Lee at al.(39); prevalences for linear 

transformation into liability scale: MDD K=0.18, severe typical K=0.035, severe atypical 

K=0.038
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