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Abstract 

Polygenic risk scores (PRS) are commonly used to quantify the inherited susceptibility 

for a given trait. However, the standard PRS fail to account for non-linear and interaction 

effects between single nucleotide polymorphisms (SNPs). Machine learning algorithms can be 

used to account for such non-linearities and interactions. We trained and validated polygenic 

prediction models for five complex phenotypes in a multi-ancestry population: total 

cholesterol, triglycerides, systolic blood pressure, sleep duration, and height. We used an 

ensemble method of LASSO for feature selection and gradient boosted trees (XGBoost) for 

non-linearities and interaction effects. In an independent test set, we found that combining 

a standard PRS as a feature in the XGBoost model increases the percentage variance explained 

(PVE) of the prediction model compared to the standard PRS by 25% for sleep duration, 26% 

for height, 44% for systolic blood pressure, 64% for triglycerides, and 85% for total 

cholesterol. Machine learning models trained in specific  racial/ethnic groups performed 

similarly in multi-ancestry trained models, despite smaller sample sizes. The predictions of 

the machine learning models were superior to the standard PRS in each of the racial/ethnic 

groups in our study. However, among Blacks the PVE was substantially lower than for other 

groups. For example, the PVE for total cholesterol was 8.1%, 12.9%, and 17.4% for Blacks, 

Whites, and Hispanics/Latinos, respectively. This work demonstrates an effective method to 

account for non-linearities and interaction effects in genetics-based prediction models. 

 

Keywords: Machine Learning, Gradient Boosted Trees, Diverse Population, XGBoost, 

Genetic Prediction, Polygenic Risk Scores.  
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Introduction      

In the last few years, genetics-based trait prediction using polygenic risk scores (PRS) 

have become increasingly popular. PRS are calculated as weighted sums of allele counts for 

variants that are associated with an outcome of interest and are used to quantify the inherited 

susceptibility for a given trait or disease (1). Traditionally, genome wide association studies 

(GWAS) are used to identify the univariate relationships between single nucleotide 

polymorphisms (SNPs) and a given phenotype. These univariate relationships are then used 

to construct the PRS (2).  

The prediction models that use PRS are generally able to explain only a small 

percentage of the observed variance for a given trait (3), which could be due to several 

factors. Because they rely on univariate effect sizes derived from linear GWAS models, 

standard PRS as defined above do not account for potential non-linearities in the association 

between the genetic data and the outcome of interest. Additionally, additive PRS models do 

not account for interactions between SNPs, which are known to exist (4). One common 

strategy employed during the SNP selection stage of PRS construction is clumping, to exclude 

SNPs within a predefined distance of one another and levels of linkage disequilibrium (LD). 

Potential interactions are not usually taken into account by this approach –  as in haplotypes 

(5) or epistatic effects (6) both inside and outside the clumping region. Examples of strong 

haplotypes effects that may not be captured by a clump and threshold approach are APOE 

(associated with Alzheimer’s disease) (7) and APOL1 (associated with chronic kidney disease) 

(8) haplotypes. Many other haplotypes with lower effect sizes may be yet unknown and 

harder to detect. In addition, clumping may not select causal variants or optimally tag SNPs 

for the population at hand. Moreover, effect sizes based on summary statistics from a GWAS 
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conducted in one population may not be optimal for a different population. Specifically, PRS 

performance is known to be significantly affected by the population in which the GWAS was 

conducted, and PRS may not generalize well to different  populations (9–11).  

Some of the challenges of PRS modeling can be addressed using advanced machine 

learning (ML) methodologies. Many ML algorithms such as random forests, gradient boosted 

trees, and neural networks are explicitly non-linear, and allow interaction between features. 

Gradient boosted trees, for example, allow for the effect size of a given SNP to vary depending 

on the presence of an allele of a different SNP (12). Accordingly, ML methods have been used 

successfully to improve the prediction of complex phenotypes using genetic data (13). For 

example, a study employing random forests to predict type 2 diabetes found that it out-

performed linear models, such as support vector machines (14). Gradient boosted trees have 

been used to predict breast cancer risk (15). Another study, however, have found that ML 

models that explicitly attempt to model non-linear effects do not perform as well as standard 

PRS (16). Finally, while ML models do not explicitly allow for generalization to non-sampled 

populations, we hypothesize that a large and ancestry diverse cohort would improve genetic 

prediction across populations. 

Here, we explore the use of genetic data in prediction of five complex phenotypes: 

three established  cardiovascular disease risk factors (total cholesterol levels (17), 

triglycerides (18), and systolic blood pressure (19)), sleep duration, a phenotype of lower 

heritability that is also associated with cardiovascular disease (20,21), and height, a highly 

heritable and well-studied phenotype. For each of these five complex phenotypes, we 

develop ensemble machine learning models for genetic trait prediction accounting for 

interactions, trained on a multi-ethnic dataset from the National Heart Lung and Blood 

Institute’s Trans-Omics in Precision Medicine (TOPMed) consortium (22). We examine the 
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accuracy of the results to clump and threshold (C+T) PRS and explicitly compare ML models 

that allow for interactions and non-linear effects to those that do not. Finally, we assess the 

accuracy of the predictions for the ML models and the PRS models among White, Black, and 

Hispanic/Latino race/ethnic groups. 

Methods 

Study population 

The study sample included 34,072 unrelated (3rd degree or less) TOPMed participants 

from eight U.S. based cohort studies: Jackson Heart Study (JHS; n = 2,504), Framingham Heart 

Study (FHS; n = 3,520), Hispanic Community Health Study/Study of Latinos (HCHS/SOL; 

n=6,408), Atherosclerosis Risk in Communities study (ARIC; n=6,197), Cardiovascular Health 

Study (CHS; n=2,835), Multi-Ethnic Study of Atherosclerosis (MESA; n=3,949), Cleveland 

Family Study (CFS; n=1,182), and Coronary Artery Risk Development in Young Adults Study 

(CARDIA; n=2,468). Study descriptions are provided in Supplementary Materials. Phenotypes 

were harmonized by the TOPMed Data Coordinating Center (DCC) (23), and included age, sex, 

race/ethnicity, study (used as covariates),  phenotypes of interest, and medications, which 

were used to adjust measures of relevant phenotypes (Supplementary Table S1). The dataset 

included 7,601 non-Hispanic Black participants, 14,142 non-Hispanic White participants, and 

7,320 participants of Hispanic/Latino descent. All participants provided informed consent, 

and the study was approved by IRBs in each of the participating institutions. The dataset was 

divided such that  20% of the data was held out as a validation set. A secondary analysis used 

a larger training dataset that included related individuals but in which all individuals in the 

training dataset were still unrelated to those in the test dataset.  
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Genotype data 

We used whole genome sequencing data from TOPMed (24) Freeze 8, without 

restriction on sequencing depth, which contains 705,486,649 variants. The dataset includes 

samples sequenced through the National Human Genome Research Institute’s Centers for 

Common Disease Genomics (CCDG) program, where the sequence data for all TOPMed and 

CCDG samples were harmonized together via joint allele calling. The methods for TOPMed 

WGS data acquisition and quality control (QC) are provided in 

https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8. Principal 

Components (PCs) and kinship coefficients were computed for the genetic data by the 

TOPMed DCC using the PC-Relate algorithm (25) implemented in the GENESIS R package (26). 

In this work, we used 5 PCs computed via the GENESIS R package PC-Air algorithm (27) to 

adjust for global ancestry.  Based on the kinship coefficients, we identified related individuals 

and generated a dataset in which all individuals were degree-3 unrelated, i.e., all kinship 

coefficients were lower than 0.0625. We extracted allele counts of variants that passed QC  

from GDS files using the SeqArray (28) package version 1.28.1 and then further processed 

using R and Python scripts. For all variants, we set the effect allele to be the minor allele.  

Heritability estimation 

 

Let K denote an A × A kinship matrix, having twice the kinship coefficient between the 

i-th and j-th participants in its i,j entry. For an outcome C, we assume the linear model: 

 
C! = E!F +	H! ,																																  

 
JKL(N) = P"#Q$×$ + P&#R																																		 
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where N = (H', … , H$)( 	 is the normally-distributed vector of errors across the sample. We 

estimated the narrow-sense heritability	ℎU # = PV&# PV&# + PV)#⁄  using the Restricted Maximum-

Likelihood approach as implemented in the GCTA (29) software (version 1.93.2).    

Phenotypes 

We trained genetic prediction models to predict height, systolic blood pressure, total 

cholesterol, triglycerides concentration, and self-reported sleep duration, and used sex, 

study, race/ethnicity, and age as covariates. For reproducibility, Supplementary Table S1 

provides the coded names of each of the phenotypes and covariates used in the analysis. 

For each of the covariate-adjusted phenotypes of interest, we excluded outlying 

individuals defined by phenotypic values above the 99th quantile and values below the 1st 

quantile for the phenotype, computed over the multi-ethnic dataset. Then, each phenotype 

was regressed on age, sex, study, and race/ethnicity. The residuals were extracted and rank-

normalized. Subsequent analyses used these rank-normalized residuals as the outcomes  (30), 

and we refer to them henceforth as “adjusted phenotypes”. 

 

Summary statistics from published GWAS  

We used summary statistics from published GWAS to select SNPs and their weights to 

construct PRS, as well as to select SNPs to include in the ML models. The GWAS used for each 

of the five phenotypes are described in Table 1. When possible, we used multi-ethnic GWAS. 

We lifted over the coordinates to our genome build GRCh38/hg38 using the LiftOver tool from 

the UCSC genome browser (31).  

 

 

Phenotype GWAS Study Population Participants 
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Height Meta-analysis of 

genome-wide 

association studies for 

height and body mass 

index in ∼700000 

individuals of European 

ancestry (32) 

UK Biobank and the 

GIANT consortium  

693,529 (European 

ancestry) 

Total Cholesterol Genetics of Blood Lipids 

Among ~300,000 Multi-

Ethnic Participants of 

the Million Veteran 

Program (33) 

Million Veteran Program  297,626 (72.4% non-

Hispanic Whites, 19.3% 

non-Hispanic Blacks, 

8.3% Hispanics) 

Triglycerides Genetics of Blood Lipids 

Among ~300,000 Multi-

Ethnic Participants of 

the Million Veteran 

Program (33) 

Million Veteran Program 

 

291,933 (72.4% non-

Hispanic Whites, 19.3% 

non-Hispanic Blacks, 

8.2% Hispanics) 

Systolic Blood Pressure Trans-ethnic association 

study of blood pressure 

determinants in over 

750,000 individuals (34) 

Million Veteran Program 318,891 (69.1% non-

Hispanic Whites, 18.8% 

non-Hispanic Blacks, 

6.7% Hispanics, 0.77% 

non-Hispanic Asians and 

0.85% non-Hispanic 

Native Americans) 

 

Sleep Duration Genome-wide 

association study 

identifies genetic loci for 

self-reported habitual 

sleep duration 

supported by 

accelerometer-derived 

estimates (35) 

UK Biobank  446,118 (European 

ancestry) 

Table 1. Description of published GWAS used to identify summary statistics. GWAS source, study 

population as reported by the manuscript reporting the GWAS, and number of participants used to generate 

summary statistics for a given phenotype. 

 

Polygenic Risk Score 

We calculated the standard PRS using the classic clump-and-threshold methodology 

(C+T PRS) (3). We used PRSice 2 software version 2.3.1 (36) to calculate the genetic score with 

a clumping region of 250 kb on each side of the index SNP and a clumping R2 of 0.1. We 

considered p-value thresholds of 0.5 through 1e-10. For each adjusted phenotype we fit a 

linear model including covariates, the PRS, and genetic PCs to account for population 

structure (37) and selected the PRS in which the PRS model minimized the mean squared 

error in the training dataset. We assessed the percentage of variance explained (PVE) by the 

PRS models using the methodology described below. 
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LASSO and Gradient Boosted Trees (XGBoost) ensemble 

Figure 1 describes the construction of an ensemble ML model for polygenic risk 

prediction. We considered for inclusion in the models all SNPs having p-value<1x10-4 in the 

corresponding GWAS and used them to develop an ensemble prediction model. In brief, the 

ensemble model included two steps: (1) a LASSO penalized regression for filtering candidate 

SNPs; and (2) an XGBoost prediction model allowing for non-linear interactions. In detail, 

gradient boosted trees are a widely used machine learning technique that creates an 

ensemble of “weak” decision trees (i.e., limited in depth or interactions) by iteratively 

optimizing an objective function at each boosting step in which new trees are optimized based 

on the residuals of the previous boosting step. XGBoost is an optimized implementation of 

gradient boosted trees that is highly efficient in distributed computing environments (12). 

However, the set of candidate SNPs is very large for most of the GWAS listed in Table 1, and 

boosting is prone to overfitting with high dimensionality (38). LASSO (39) is a commonly used 

model for feature selection that can mitigate overfitting by encouraging parsimony through 

L1 regularization. We trained an ensemble model, jointly training LASSO and XGBoost models 

in order to prevent overfitting due to the high dimensionality of genetic data (through LASSO) 

while simultaneously exploiting the non-linear relationships and interaction effects (through 

XGBoost).  

The ensemble model was trained as follows. For each given regularization 

hyperparameter X ∈ {0…1} we fit LASSO on the training dataset using a 10-fold cross 

validation scheme (and the MSE loss) and filtered to SNPs with non-zero coefficients from the 

LASSO model. The LASSO model included only linear SNP effects and unpenalized covariates. 

Using the selected SNPs, we fit the XGBoost model via 3-fold cross-validation applied on the 

training dataset, allowing up to 10,000 boosted trees with early stopping after 10 rounds of 
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boosting without improvement in the 3-fold cross-validation loss (see Table 3 for details). 

Based on this 3-fold cross validation, we selected the number of trees ^*  that minimized the 

mean squared prediction error (MSE), resulting in a set of parameters (X, ^*). We selected 

the optimal (X, ^*) pair that minimized the MSE of the 3-fold cross validation step across all 

values of X. For XGBoost, we always used a learning rate of 0.01, maximum depth of 5, column 

sample by tree of 90%, minimum child weight of 10, and subsample of 50%. Finally, we 

performed LASSO regression using the same variants that were selected in this process, to 

explicitly compare the results of a non-linear model allowing for interactions to a linear model 

without interactions. Separately, we performed 3-fold cross-validation to select the optimal 

regularization hyperparameter with respect to the LASSO model in a separate process (Table 

S4). 

We performed this process individually for each of our five adjusted phenotypes using 

a distributed cluster computing environment. All models included the ancestral PCs, and some 

models used the C+T PRS as a variable. We assessed the PVE of the genetic machine learning 

models using the methodology described below and compared the results with the standard 

PRS model. Analysis was conducted using Python 3 and the scikit-learn (40) and xgboost 

packages (12). 
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SNP selection via joint LASSO/XGBoost hyperparameter tuning scheme 

 
Figure 1: Flow chart of ensemble model structure. The model relies on jointly training the LASSO and XGBoost 

model to identify the optimal value for the L1 regularization parameter and the number of boosting steps. 

“CV” indicates cross-validation, " refers to the regularization parameter, and Ɵ is the number of boosted trees 

for XGBoost. The optimal values for these hyperparameters were selected using 3-fold CV for the mean 

squared error of the XGBoost model. 
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Race/Ethnicity Analysis 

We first trained the models using the combined, multi-ethnic dataset (“multi-ethnic 

model”). We then trained the models on the subset of the sample containing only White, 

Black, and Hispanic/Latino participants. This resulted in four models that were each  trained 

on different race/ethnicity groups: Multi-Ethnic, White, Black, and Hispanic/Latino. For each 

of these four models, we assessed the PVE among the participants of each race/ethnicity in 

the held-out test set.  

 

Model evaluation in the held-out test set 

We quantify model performance as the variance explained. Let C!+, _ = 1,… , A denote 

the adjusted phenotype. Var(C+) estimates the total baseline model variance. For a given 

model a, let C,b- denote the predicted (adjusted) phenotype value for the _th person. We 

estimate the percent variance explained by model a as:  

cde = f1 −	var(C+ − CV-)var(C+) h × 100%. 

Results 

 We used a multi-ethnic dataset from TOPMed containing 29,063 genotyped 

individuals from eight distinct cohorts (JHS, FHS, HCHS/SOL, ARIC, CHS, MESA, CFS and 

CARDIA) to train non-linear polygenic risk prediction models in diverse populations for five 

complex phenotypes: triglycerides, total cholesterol, systolic blood pressure, sleep duration, 

and height. Table 2 characterizes these phenotypes and covariates across the pooled and 

race/ethnicity-stratified training dataset based on unrelated individuals. We evaluate the 

models on an independent test dataset of 5,009 individuals (Supplementary Table S3). Results 

based on a training dataset that included related individuals (and still being unrelated to the 

test dataset were similar and are provided in the Supplementary Materials. 
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Black Hispanic/Latino White Overall 

(N=7601) (N=7320) (N=14142) (N=29063) 

Sex         

Male 3066 (40.3%) 3088 (42.2%) 6432 (45.5%) 12586 (43.3%) 

Female 4535 (59.7%) 4232 (57.8%) 7710 (54.5%) 16477 (56.7%) 

Age         

Mean (SD) 50.6 (16.9) 48.2 (14.3) 50.2 (16.4) 49.8 (16.1) 

Median [Min, Max] 52.0 [2.00, 93.0] 49.0 [5.00, 86.0] 51.0 [3.00, 98.0] 51.0 [2.00, 98.0] 

Triglycerides         

Mean (SD) 106 (69.1) 135 (96.0) 125 (82.2) 124 (84.2) 

Median [Min, Max] 90.0 [16.0, 1930] 113 [20.0, 1670] 106 [17.0, 1600] 103 [16.0, 1930] 

Missing 2598 (34.2%) 1316 (18.0%) 3073 (21.7%) 6987 (24.0%) 

Total Cholesterol         

Mean (SD) 198 (41.8) 200 (43.2) 205 (39.2) 202 (41.0) 

Median [Min, Max] 196 [74.0, 450] 197 [62.0, 526] 202 [77.8, 594] 199 [62.0, 594] 

Missing 2598 (34.2%) 1316 (18.0%) 3073 (21.7%) 6987 (24.0%) 

Systolic Blood Pressure         

Mean (SD) 127 (20.9) 121 (17.2) 118 (17.1) 121 (18.5) 

Median [Min, Max] 123 [73.0, 246] 119 [77.0, 218] 116 [67.0, 227] 118 [67.0, 246] 

Missing 1944 (25.6%) 1589 (21.7%) 2972 (21.0%) 6505 (22.4%) 

Sleep Duration         

Mean (SD) 6.50 (1.51) 7.73 (1.52) 7.09 (1.16) 7.15 (1.44) 

Median [Min, Max] 6.00 [1.00, 16.5] 7.79 [2.00, 13.4] 7.00 [1.00, 16.0] 7.00 [1.00, 16.5] 

Missing 2352 (30.9%) 411 (5.6%) 4468 (31.6%) 7231 (24.9%) 

Height         

Mean (SD) 168 (10.4) 163 (9.24) 168 (10.3) 167 (10.3) 

Median [Min, Max] 168 [85.7, 207] 162 [116, 194] 168 [94.0, 203] 166 [85.7, 207] 

Table 2. Summary statistics of phenotypes used in the training dataset. Mean, Median and percent of missing 

data for the phenotypes (Triglycerides, Total Cholesterol, Systolic Blood Pressure, Sleep Duration and Height) 

and covariates (sex and age) used in this study. All the phenotypes are presented for the whole database as well 

as stratified by race/ethnicity (Black, White, and Hispanic/Latino). Summary statistics for the test dataset are 

provided in Supplementary Table S3.  

 

XGBoost outperforms linear models for the prediction of complex phenotypes 

We constructed three models of increasing complexity for each of the five phenotypes 

(Figure 1). Each phenotype was adjusted for the covariates and the residuals were rank-
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normalized and standardized. Each model was then fine-tuned to predict the residuals from 

genetic SNP data. The three models employed in this study were C+T PRS, LASSO, and 

XGBoost, with the number of SNPs selected for each algorithm for each phenotype listed in 

Table 3. The hyperparameters selected for each model through cross-validation are listed in 

Table S8.  

Phenotype C+T PRS  XGBoost alone  Lasso  XGBoost with PRS 

Triglycerides 7500 432 432 304 

Total Cholesterol 6960 455 455 455 

Systolic Blood 

Pressure 

8066 72 72 346 

Sleep Duration 4876 91 91 666 

Height 22461 2193 2193 916 

Table 3. Number of SNPs selected through cross-validation. Displayed are number of SNPs selected for each of 

the phenotypes in the four models in this study: C+T PRS, XGBoost alone, LASSO (which has the same number 

of variants as in the “XGBoost alone” model, because the LASSO selected the variants used by XGBoost), and 

XGBoost with C+T PRS (for this model we do not additionally report results from a model based on LASSO alone 

using the same variants). 

 

 
Figure 2: Non-linear model consistently outperforms linear ones for prediction of multiple complex phenotypes 

in multi-ethnic dataset. Linear (C+T PRS-pink), linear-regularized (LASSO – teal), and non-linear (XGBoost – grey, 

purple) models were employed to predict the harmonized triglycerides, total cholesterol, systolic blood 

pressure, sleep duration and height phenotypes from SNP data from TOPMed following adjustment for 

covariates. Two versions of the XGBoost algorithm are shown with the first model employing only the SNPs as 

features (grey; “XGBoost alone”) and a second model which had the C+T PRS as one of the features as well 

(“XGBoost with PRS”). The LASSO algorithm (teal) was trained on the same set of SNPs as the XGBoost. The inset 

depicts estimated heritabilities for same phenotypes in the same database using the REML approach. 
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Figure 2 depicts the PVE across different prediction models and phenotypes. The C+T PRS 

outperformed the LASSO model, except for total cholesterol, even though the LASSO model 

used only 6.5% of the SNPs used by the C+T PRS. The XGBoost algorithm trained directly on 

SNPs (“XGBoost alone”), outperforms linear models for both total cholesterol and 

triglycerides. For height, it significantly  underperformed the C+T PRS model.  

 

Modeling of non-linearities and interactions among SNPs improves the prediction of 

complex human phenotypes 

 The non-linear XGBoost algorithm outperforms the linear LASSO when trained on the 

same SNP set (Figure 2 grey vs teal) for all phenotypes. The improved performance may stem 

either from modelling non-linear genetic effects or interactions between SNPs, or both, since 

both of these are addressed by the algorithm (12). However, both XGBoost and the LASSO 

PRS sometimes underperformed the C+T PRS, likely because the C+T PRS was able to combine 

information from multiple SNPs. Notably, for height, the XGBoost model had only 7.2 PVE 

while the C+T PRS had 17.2 PVE. This could also be due to overfitting to the training dataset. 

To combine the advantages of a genome-wide PRS and of the XGBoost accounting for non-

linearities and interactions, we constructed an additional, “XGBoost with PRS”, model that 

included both the individual SNPs as described in Figure 1, and also the C+T PRS score. Indeed, 

we see that this model substantially outperforms the linear C+T and LASSO models, as well as 

XGBoost alone, for all phenotypes, providing a strong indication for non-linear effects and/or 

genotype by genotype interactions. Substantial improvement is observed for all phenotypes. 

Specifically, compared to the C+T PRS baseline, the XGBoost with C+T PRS improved the PVE 

by 64% for triglycerides, 85% for total cholesterol, 44% for systolic blood pressure, 25% for 

sleep duration, and 26% for height.  
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Notably, even our best model falls short compared to the estimated heritability obtained 

from a linear mixed model that considers all SNPs via the kinship matrix (Figure 2 inset). For 

example, we achieved ~2.5-fold better results for height (21.7% vs 56.6%) and ~10-fold better 

results for systolic blood pressure (2.6% vs 25.9%) with linear mixed models. These results 

indicate that much of the effect is distributed among a large number of weakly-correlated 

SNPs. 

 

Race/Ethnicity associates with  model performance for multiple phenotypes 

Our dataset included participants with self-reported race/ethnicity (7601 Black, 14142 

White, and 7320 Hispanic/Latino), with phenotype characteristics provided in Table 2. We 

compared the performance of the simple C+T PRS model with the best-performing XGBoost 

model that includes the C+T PRS as a feature, trained on the combined dataset, for the 

prediction of the different phenotypes on the ethnicity-specific datasets (Figure 3).  

 
Figure 3: Model performance differ by group, with XGBoost consistently outperforming PRS. Performance of 

the C+T PRS (pink) and XGBoost+PRS (purple) models trained on the combined dataset when applied to the 

prediction of the 5 phenotypes in separate race/ethnicities. (A,B,C) White, Black and Hispanic/Latino groups 

accordingly.  

  

The XGBoost with PRS model usually improves PVEs over the C+T PRS in the White and 

Hispanic/Latino groups, but less so in the Black group. Surprisingly, for a few phenotypes 

(systolic blood pressure, triglycerides, and total cholesterol), the PVEs were better in 
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Hispanics/Latinos compared to Whites, even though the GWAS using from more data from 

Whites than Hispanic/Latino participants. However, it is important to note that many 

Hispanic/Latino individuals have substantial European genetic ancestry, and our study does 

not differentiate between Hispanic/Latinos with different levels of European genetic 

ancestry. Unfortunately, most models performed poorly in Blacks.   

 

Ethnic diversity is crucial for model training  

Figure 4 compares XBoost models trained within race/ethnic group to the multi-ethnic 

model. 

 

Figure 4: Multi-ethnic XGBoost model performs on par with the race/ethnic-specific models. XGBoost with PRS 

models (see Materials and Methods) were trained either on the combined dataset containing all participants, 

(pink) or on each race/ethnic group separately (teal, grey and purple). The models were then evaluated on each 

of the groups (left panel - Black, middle panel - Hispanic/Latino, and right panel - White).  

  

For the Black group, the multi-ethnic model performed best on the held-out test 

datasets, consistently outperforming the race/ethnic specific models – even those trained 

and tested on the same race/ethnic group. However, for the Hispanic/Latino group, the multi-

ethnic model was sometimes inferior to the race/ethnic matched model (for systolic blood 

pressure). For Whites, the race/ethnic matched model improves upon the multi-ethnic model 

for almost all phenotypes (except height and sleep duration). This may be due to the larger 
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sample size available in the multi-ethnic training dataset, compared to the Black and 

Hispanic/Latino datasets.   

Discussion 

The aim of this study was to investigate the application of machine learning algorithms to 

polygenic trait prediction, specifically algorithms that allow for non-linearities and interaction 

effects between SNPs, and to compare their performance to standard C+T PRS and LASSO 

methodologies that do not account for such effects. We chose five complex phenotypes with 

varying levels of heritability across a large, multi-ethnic dataset including White, Black, and 

Hispanic/Latino participants.  

Across all phenotypes in the validation dataset, we found the highest PVE by combining 

the XGBoost model with the C+T PRS. The increase in PVE varied across the phenotypes, with 

up to 85% for total cholesterol. The impressive increase in the performance of the XGBoost 

model relative to C+T PRS and LASSO points toward interactions between genetic alleles 

and/or non-linear contributions of SNPs to phenotypes. In almost all cases, the XGBoost 

algorithm alone (without including the C+T PRS score) out-performed the linear LASSO model 

that used exactly the same SNPs. In most cases, however, the C+T PRS performed better, likely 

because it could account for more weakly-associated SNPs. Combining the ML model with the 

C+T PRS (as a feature) achieved high prediction performance by both accounting for the large 

numbers of weakly associated SNPs (linearly through C+T PRS), in addition to some of the 

non-linearities and interactions (through XGBoost). 

We chose to employ the XGBoost implementation of gradient boosted trees due to its 

strong performance in prediction tasks, explicit handling of interactions, and ability to capture 

non-linear effects. The large number of potential SNPs precluded their direct inclusion into 
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the XGBoost model, as it is extremely computationally expensive and prone to overfitting with 

high dimensionality. Thus, we developed an ensemble model that used the LASSO algorithm 

as a feature selection tool to optimize the XGBoost performance while performing a cross-

validation for the hyperparameters of both LASSO and XGBoost. The inclusion of both C+T 

PRS scores as well as XGBoost allows for direct comparison between the models, with the C+T 

PRS representing the linear additive genetic contributions to the trait, allowing XGBoost to 

optimize the non-linear and interaction effects.  

Several studies that compared linear effects PRS models to ML models allowing for more 

complex genetic effects reported that standard PRS outperforms ML models. For example, 

one study suggested that a PRS for coronary artery disease outperformed a variety of ML 

models (16). Another study found that a linear Elastic Net model usually outperformed ML 

models that allow for non-linear and interaction effects for prediction of gene transcripts (41). 

And yet another study found that linear PRS models outperformed support vector machines 

for psychiatric phenotypes (42). Our study differs from these prior studies by use of very large 

and diverse training and testing datasets (prior studies were often limited to a few thousand 

individuals). Our datasets also had high quality deep sequencing and joint allele calling, as 

well as harmonized phenotypes across the combined dataset, which likely improved our 

ability to validate ML models across training and testing datasets. Also, our novel ensemble 

approach to guarding against overfitting, in addition to including the standard linear model 

PRS within the XGBoost model, us utilized the strengths of both the linear and the non-linear 

approaches in complementary ways. Specifically, this approach leveraged the ability of the 

PRS to capture the linear additive effects from a large number of SNPs, and the XGBoost to 

capture non-linear effects and SNP-SNP interactions. 
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We compared multi-ethnic and race/ethnicity-specific models and found that multi-

ethnic-trained models on large datasets had different performance across race/ethnic groups. 

In our analyses, the multi-ethnic models had better performance in Whites and the 

Hispanic/Latino group than in Blacks. Models trained using the same race/ethnic group and 

the multi-ethnic trained model had similar prediction performance, despite a substantial 

decrease in training sample size in the multi-ethnic model. Overall, we found that the PVE for 

the studied phenotypes was consistently lower for Black participants than for White or 

Hispanic/Latino participants. The difference in PVE varied by phenotype, from 1.3 to 3.5 times 

lower for Black participants compared to White. There are several possible explanations  for 

these findings. First it may be that the combined models predominately use European-

ancestry specific genetic effects. Both the White and the Hispanic/Latino groups have 

substantial European ancestry, while Black groups have lower European ancestry. Specifically,  

across Hispanic/Latino background groups reported in the Hispanic Community Health 

Study/Study of Latinos, on average 40-80% have European ancestry (43) while in the Jackson 

Heart Study, Blacks are estimated to have. 16% European ancestry on average (44). For three 

of the phenotypes we used multi-ethnic GWAS analyses to select candidate SNPs for analysis. 

However, most GWAS participants are still White (45). Therefore, the choice of SNPs is more 

optimal for groups with substantial amount of European ancestry, so that SNPs with small 

effects or low minor allele frequencies (MAF) in European ancestry populations and larger 

effects or higher MAF in African ancestry populations were not discovered in the GWAS and 

were therefore not selected to be used in the trained prediction models. This limitation has 

been shown to reduce PRS performance in African and African Americans populations in 

multiple studies (46–48).  
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There are some limitations to this study. First, while the TOPMed cohort is diverse, White 

participants are over-represented. Second, as noted above, although the GWAS analyses that 

we relied upon were multi-ethnic (other than sleep duration and height GWAS which were 

based European ancestry samples), it seems likely that important variants for these 

phenotypes among a Black population do not achieve the required p-value level (<10-4) to be 

included, given limited sample sizes for Black participants in these prior GWAS analyses. Third, 

much of our ensemble algorithm relies on feature selection. This may be overly restrictive 

and does not allow for variants with very small effect sizes to be included (as noted in the 

results for Height). Fourth, we used self-reported race/ethnicity. An alternative grouping 

would use genetically-determined ancestry groups. We chose self-reported grouping to 

better approximate clinical settings and to potentially account for gene-environment 

interactions, in which people who share self-reported race/ethnicity may have more similar 

environmental exposures, compared to individuals outside the group. Fifth, we use ML as a 

tool to model the interactions and non-linearities. However, this approach does not explicitly 

identify individual interactions or non-linearities nor quantifies the contributions of each.  

Overall, this study uncovers strong evidence for contributions of non-linear genetic effects 

and interaction between alleles to complex phenotypes. Additionally, our findings re-iterate 

one of the largest hurdles for better performing, robust genetic prediction models across 

diverse individuals – namely the lack of well-powered GWAS for different race/ethnic groups 

and subpopulations (49). This work opens up promising avenues for future research, such as: 

creating a generalizable tool that would allow ML PRS to be deployed on other studies; 

estimating the individual contributions of interactions and non-linearities; and developing 

approaches to prioritize SNPs for inclusion in the ML model that would increase predictive 

ability in Black and other non-White populations. 
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Description of Supplemental Data 
The Supplemental Data provides description of all TOPMed studies participating in the 

present analysis, including study-specific acknowledgements and ethics statements about 

informed consent and Institutional Review Boards approving each study. It also provides 

additional information on phenotypes used in the analyses, tables and figures. 
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selection in the cohort they represent, and designed best-practices for data analysis for the 

same cohorts.  

Consortia  
A complete list of TOPMed consortium authors is appears in 

https://www.nhlbiwgs.org/topmed-banner-authorship.  

References 

1.  Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic 

risk scores. Nat Rev Genet. 2018;19(9):581–90.  

2.  Choi SW, Mak TSH, O’Reilly P. A guide to performing Polygenic Risk Score analyses. 

BioRxiv. 2018 Sep 14;  

3.  Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score 

analyses. Nat Protoc. 2020 Jul 24;15(9):2759–72.  

4.  Hemani G, Shakhbazov K, Westra H-J, Esko T, Henders AK, McRae AF, et al. 

Detection and replication of epistasis influencing transcription in humans. Nature. 2014 

Apr 10;508(7495):249–53.  

5.  Jiang Y, Schmidt RH, Reif JC. Haplotype-based genome-wide prediction models 

exploit local epistatic interactions among markers. G3: Genes.  

6.  Miller AK, Chen A, Bartlett J, Wang L. A novel mapping strategy utilizing mouse 

chromosome substitution strains identifies multiple epistatic interactions that regulate 

complex traits. G3: Genes. 2020;  

7.  Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, et al. Genetic 

analysis of case/control data using estimated haplotype frequencies: application to 

APOE locus variation and Alzheimer’s disease. Genome Res. 2001 Jan;11(1):143–51.  

8.  Limou S, Nelson GW, Kopp JB, Winkler CA. APOL1 kidney risk alleles: population 

genetics and disease associations. Adv Chronic Kidney Dis. 2014 Sep;21(5):426–33.  

9.  Grinde KE, Qi Q, Thornton TA, Liu S, Shadyab AH, Chan KHK, et al. Generalizing 

polygenic risk scores from Europeans to Hispanics/Latinos. Genet Epidemiol. 

2019;43(1):50–62.  

10.  Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis of 

polygenic risk score usage and performance in diverse human populations. Nat 

Commun. 2019 Jul 25;10(1):3328.  

11.  Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human 

Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am 

J Hum Genet. 2017 Apr 6;100(4):635–49.  

12.  Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining - KDD ’16. New York, New York, USA: ACM Press; 2016. p. 785–94.  

13.  Ho DSW, Schierding W, Wake M, Saffery R, O’Sullivan J. Machine learning SNP 

based prediction for precision medicine. Front Genet. 2019 Mar 27;10:267.  

14.  López B, Torrent F. Single Nucleotide Polymorphism relevance learning with Random 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.09.21260288doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.09.21260288
http://creativecommons.org/licenses/by-nd/4.0/


Forests for Type 2 diabetes risk prediction. Fontbona.  

15.  Behravan H, Hartikainen JM, Tengström M, Pylkäs K, Winqvist R, Kosma V-M, et al. 

Machine learning identifies interacting genetic variants contributing to breast cancer 

risk: A case study in Finnish cases and controls. Sci Rep. 2018 Sep 3;8(1):13149.  

16.  Gola D, Erdmann J, Müller-Myhsok B, Schunkert H, König IR. Polygenic risk scores 

outperform machine learning methods in predicting coronary artery disease status. 

Genet Epidemiol. 2020 Jan 10;44(2):125–38.  

17.  Castelli WP, Anderson K, Wilson PW, Levy D. Lipids and risk of coronary heart 

disease. The Framingham Study. Ann Epidemiol. 1992 Mar;2(1–2):23–8.  

18.  Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. 

Triglycerides and cardiovascular disease: a scientific statement from the American 

Heart Association. Circulation. 2011 May 24;123(20):2292–333.  

19.  Atherosclerosis, Hypertension, and Obesity in the Young Committee of the American 

Heart Association Council on Cardiovascular Disease in the Young, Alpert B, 

McCrindle B, Daniels S, Dennison B, Hayman L, et al. Recommendations for blood 

pressure measurement in human and experimental animals; part 1: blood pressure 

measurement in humans. Hypertension. 2006 Jul;48(1):e3; author reply e5.  

20.  Nagai M, Hoshide S, Kario K. Sleep duration as a risk factor for cardiovascular 

disease- a review of the recent literature. Curr Cardiol Rev. 2010 Feb;6(1):54–61.  

21.  Sofer T, Goodman MO, Bertisch SM, Redline S. Longer sleep improves cardiovascular 

outcomes: time to make sleep a priority. Eur Heart J. 2021 May 16;  

22.  Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, et al. Use of >100,000 

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome 

sequences improves imputation quality and detection of rare variant associations in 

admixed African and Hispanic/Latino populations. PLoS Genet. 2019 Dec 

23;15(12):e1008500.  

23.  Stilp AM, Emery LS, Broome JG, Buth EJ, Khan AT, Laurie CA, et al. A System for 

Phenotype Harmonization in the NHLBI Trans-Omics for Precision Medicine 

(TOPMed) Program. Am J Epidemiol. 2021 Apr 16;  

24.  Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al. Sequencing 

of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 

2021;590(7845):290–9.  

25.  Conomos MP, Reiner AP, Weir BS, Thornton TA. Model-free Estimation of Recent 

Genetic Relatedness. Am J Hum Genet. 2016 Jan 7;98(1):127–48.  

26.  Gogarten SM, Sofer T, Chen H, Yu C, Brody JA, Thornton TA, et al. Genetic 

association testing using the GENESIS R/Bioconductor package. Bioinformatics. 2019 

Dec 15;35(24):5346–8.  

27.  Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for 

ancestry prediction and correction of stratification in the presence of relatedness. Genet 

Epidemiol. 2015 May;39(4):276–93.  

28.  Zheng X, Gogarten SM, Lawrence M, Stilp A, Conomos MP, Weir BS, et al. SeqArray-

a storage-efficient high-performance data format for WGS variant calls. Bioinformatics. 

2017 Aug 1;33(15):2251–7.  

29.  Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex 

trait analysis. Am J Hum Genet. 2011 Jan 7;88(1):76–82.  

30.  Sofer T, Zheng X, Gogarten SM, Laurie CA, Grinde K, Shaffer JR, et al. A fully 

adjusted two-stage procedure for rank-normalization in genetic association studies. 

Genet Epidemiol. 2019 Jan 17;43(3):263–75.  

31.  Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, et al. The 

UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019 Jan 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.09.21260288doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.09.21260288
http://creativecommons.org/licenses/by-nd/4.0/


8;47(D1):D853–8.  

32.  Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-

analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018 Oct 

15;27(20):3641–9.  

33.  Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, et al. Genetics of 

blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. 

Nat Genet. 2018 Oct 1;50(11):1514–23.  

34.  Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, et al. Trans-ethnic 

association study of blood pressure determinants in over 750,000 individuals. Nat 

Genet. 2019;51(1):51–62.  

35.  Dashti HS, Jones SE, Wood AR, Lane JM, van Hees VT, Wang H, et al. Genome-wide 

association study identifies genetic loci for self-reported habitual sleep duration 

supported by accelerometer-derived estimates. Nat Commun. 2019 Mar 7;10(1):1100.  

36.  Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale 

data. Gigascience. 2019 Jul 1;8(7).  

37.  Reich D, Price AL, Patterson N. Principal component analysis of genetic data. Nat 

Genet. 2008 May;40(5):491–2.  

38.  Dietterich TG. An Experimental Comparison of Three Methods for Constructing 

Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach Learn. 

2000;40:139–157.  

39.  Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society: Series B (Methodological). 1996 Jan;58(1):267–88.  

40.  Pedregosa F, Varoquaux G, Gramfort A. Scikit-learn: Machine learning in Python. the 

Journal of machine. 2011;  

41.  Okoro PC, Schubert R, Guo X, Johnson WC. Transcriptome prediction performance 

across machine learning models and diverse ancestries. Human Genetics and. 2021;  

42.  Vivian-Griffiths T, Baker E, Schmidt KM, Bracher-Smith M, Walters J, Artemiou A, et 

al. Predictive modeling of schizophrenia from genomic data: Comparison of polygenic 

risk score with kernel support vector machines approach. Am J Med Genet B, 

Neuropsychiatr Genet. 2019;180(1):80–5.  

43.  Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, et al. 

Genetic diversity and association studies in US hispanic/latino populations: applications 

in the hispanic community health study/study of latinos. Am J Hum Genet. 2016 Jan 

7;98(1):165–84.  

44.  Gebreab SY, Riestra P, Khan RJ, Xu R, Musani SK, Tekola-Ayele F, et al. Genetic 

ancestry is associated with measures of subclinical atherosclerosis in African 

Americans: the Jackson Heart Study. Arterioscler Thromb Vasc Biol. 2015 

May;35(5):1271–8.  

45.  Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature News. 2016;  

46.  Cavazos TB, Witte JS. Inclusion of variants discovered from diverse populations 

improves polygenic risk score transferability. Human Genetics and Genomics 

Advances. 2021;  

47.  Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. 

Genome Med. 2020 May 18;12(1):44.  

48.  Adam Y, Sadeeq S, Kumuthini J, Ajayi O. Polygenic Risk Score in Africa Population: 

Progress and challenges. arXiv preprint arXiv. 2021;  

49.  Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of 

current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019 Mar 

29;51(4):584–91.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.09.21260288doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.09.21260288
http://creativecommons.org/licenses/by-nd/4.0/


Polygenic Risk Prediction using Gradient Boosted Trees Captures Non-Linear 

Genetic Effects and Allele Interactions in Complex Phenotypes:  

Supplementary Materials 

 

Elgart and Lyons et al.  

 

Description of studies participating in the analysis and their Ethics Statements ........................... 2 

HCHS/SOL ................................................................................................................................... 2 

FHS .............................................................................................................................................. 4 

ARIC ............................................................................................................................................ 5 

CHS ............................................................................................................................................. 6 

MESA .......................................................................................................................................... 7 

CARDIA ....................................................................................................................................... 8 

JHS .............................................................................................................................................. 9 

CFS ............................................................................................................................................ 11 

Description of phenotypes used in the analysis ........................................................................... 13 

Table S1: Phenotypes used in the analyses and their codes ................................................... 13 

Table S2: Summary statistics of phenotypes used in a secondary analysis in which the 

training dataset included related individuals ......................................................................... 14 

Table S3: Summary statistics of phenotypes in the testing dataset. ...................................... 15 

Supplementary results ................................................................................................................. 16 

Figure S1. Heritability of Phenotypes by Race/Ethnicity. ....................................................... 16 

Table S4. Clumping the SNPs prior to performing the XGBoost ensemble model does not 

significantly change results. .................................................................................................... 16 

Table S5. Excluding relatives from the training and validation datasets does not 

significantly change results ..................................................................................................... 16 

Table S6. Results of the PRS model without including the genetic PCs as covariates. .......... 17 

Table S7. Results of the LASSO model when performing cross-validation for the optimal 

regularization term with respect to the LASSO loss function, rather than the joint-training 

scheme with XGBoost. ............................................................................................................. 17 

Table S8. Selected parameters in cross-validation in the main multi-ethnic analysis ........... 17 

Table S9. Number of SNPs selected through cross-validation in the race/ethnic-specific 

XGBoost models. ...................................................................................................................... 18 

Table S10. Support for Figure 2. .............................................................................................. 18 

Table S11. Support for Figure 3. .............................................................................................. 18 

https://doi.org/10.1101/2021.07.09.21260288
http://creativecommons.org/licenses/by-nd/4.0/


Table S12. Support for Figure 4. .............................................................................................. 19 

References .................................................................................................................................... 19 

 

 

Description of studies participating in the analysis and their Ethics 

Statements 
 

HCHS/SOL 

 The Hispanic Community Health Study/Study of Latinos (dbGaP accession phs000810) 

is a community-based longitudinal cohort study of 16,415 self-identified Hispanic/Latino 

persons aged 18–74 years and selected from households in predefined census-block 

groups across four US field centers (in Chicago, Miami, the Bronx, and San Diego). The 

census-block groups were chosen to provide diversity among cohort participants with 

regard to socioeconomic status and national origin or background (1,2). The HCHS/SOL 

cohort includes participants who self-identified as having a Hispanic/Latino background; 

the largest groups are Central American (n = 1,730), Cuban (n = 2,348), Dominican (n = 

1,460), Mexican (n = 6,471), Puerto Rican (n = 2,728), and South American (n = 1,068). 

The HCHS/SOL baseline clinical examination occurred between 2008 and 2011 and 

included comprehensive biological, behavioral, and sociodemographic assessments. 

Visit 2 took place between 2014 and 2017, which re-examined 11,623 participants from 

the baseline sample. Visit 3 has started in 2020 and will last 3 years. In addition to clinic 

visit, participants are contacted annually to assess clinical outcomes. The study was 

approved by the Institutional Review Boards at each participating institution and written 

informed consent was obtained from all participants.  
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Ethics statement: This study was approved by the institutional review boards (IRBs) at 

each field center, where all participants gave written informed consent, and by the Non-

Biomedical IRB at the University of North Carolina at Chapel Hill, to the HCHS/SOL 

Data Coordinating Center. All IRBs approving the study are: Non-Biomedical IRB at the 

University of North Carolina at Chapel Hill. Chapel Hill, NC; Einstein IRB at the Albert 

Einstein College of Medicine of Yeshiva University. Bronx, NY; IRB at Office for the 

Protection of Research Subjects (OPRS), University of Illinois at Chicago. Chicago, IL; 

Human Subject Research Office, University of Miami. Miami, FL; Institutional Review 

Board of San Diego State University. San Diego, CA. 

 

Acknowledgements: The Hispanic Community Health Study/Study of Latinos is a 

collaborative study supported by contracts from the National Heart, Lung, and Blood 

Institute (NHLBI) to the University of North Carolina (HHSN268201300001I / N01-HC-

65233), University of Miami (HHSN268201300004I / N01-HC- 65234), Albert Einstein 

College of Medicine (HHSN268201300002I / N01-HC-65235), University of Illinois at 

Chicago – HHSN268201300003I / N01- HC-65236 Northwestern Univ), and San Diego 

State University (HHSN268201300005I / N01-HC-65237). The following 

Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of 

funds to the NHLBI: National Institute on Minority Health and Health Disparities, 

National Institute on Deafness and Other Communication Disorders, National Institute of 

Dental and Craniofacial Research, National Institute of Diabetes and Digestive and 

Kidney Diseases, National Institute of Neurological Disorders and Stroke, NIH 

Institution-Office of Dietary Supplements.  
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FHS 

The Framingham Heart Study (dbGaP accession phs000007) began in 1948 with the 

recruitment of an original cohort of 5,209 men and women (mean age 44 years; 55 

percent women). In 1971 a second generation of study participants was enrolled; this 

cohort (mean age 37 years; 52% women) consisted of 5,124 children and spouses of 

children of the original cohort. A third-generation cohort of 4,095 children of offspring 

cohort participants (mean age 40 years; 53 percent women) was enrolled in 2002-2005 

and are seen every 4 to 8 years. Details of study designs for the three cohorts are 

summarized elsewhere (3–5). At each clinic visit, a medical history was obtained, and 

participants underwent a physical examination. Only study participants consented for 

genetic and non-genetic data are included. FHS has been approved by the Boston 

University IRB. 

 

Ethics statement: The Framingham Heart Study was approved by the Institutional 

Review Board of the Boston University Medical Center. All study participants provided 

written informed consent. 

 

Acknowledgments: The Framingham Heart Study (FHS) acknowledges the support of 

contracts NO1-HC-25195, HHSN268201500001I and 75N92019D00031 from the 

National Heart, Lung and Blood Institute and grant supplement R01 HL092577-06S1 for 

this research. We also acknowledge the dedication of the FHS study participants 

without whom this research would not be possible. Dr. Vasan is supported in part by the 

Evans Medical Foundation and the Jay and Louis Coffman Endowment from the 

Department of Medicine, Boston University School of Medicine.  
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ARIC 

The Atherosclerosis Risk in Communities (ARIC) study (dbGaP accession 

phs000090) is a population-based prospective cohort study of cardiovascular disease 

sponsored by the NHLBI. ARIC included 15,792 individuals, predominantly European 

American and African American, aged 45-64 years at baseline (1987-89), chosen by 

probability sampling from four US communities. Cohort members completed three 

additional triennial follow-up examinations, a fifth exam in 2011-2013, a sixth exam in 

2016-2017, and a seventh exam in 2018-2019. The ARIC study has been described in 

detail previously (6).  

 

Ethics statement: The ARIC study has been approved by Institutional Review Boards 

(IRB) at all participating institutions: University of North Carolina at Chapel Hill IRB, 

Johns Hopkins University IRB, University of Minnesota IRB, and University of 

Mississippi Medical Center IRB. Study participants provided written informed consent at 

all study visits. 

 

Acknowledgements: The Atherosclerosis Risk in Communities study has been funded in 

whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, 

National Institutes of Health, Department of Health and Human Services (contract 

numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, 

HHSN268201700004I and HHSN268201700005I). The authors thank the staff and 

participants of the ARIC study for their important contributions.  
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CHS 

The Cardiovascular Health Study (dbGaP accession phs000287) is a population-based 

cohort study initiated by the NHLBI in 1987 to determine the risk factors for 

development and progression of cardiovascular disease (CVD) in older adults, with an 

emphasis on subclinical measures. The study recruited 5,888 adults aged 65 or older at 

entry in four U.S. communities and conducted extensive annual clinical exams between 

1989-1999 along with semi-annual phone calls, events adjudication, and subsequent 

data analyses and publications. Additional data are collected by studies ancillary to 

CHS. In June 1990, four Field Centers (Sacramento, CA; Hagerstown, MD; Winston-

Salem, NC; Pittsburgh, PA) completed the recruitment of 5201 participants. Between 

November 1992 and June 1993, an additional 687 African Americans were recruited 

using similar methods. Blood samples were drawn from all participants at their baseline 

examination and during follow-up clinic visits and DNA was subsequently extracted from 

available samples 

 

Ethics statement: All CHS participants provided informed consent, and the study was 

approved by the Institutional Review Board [or ethics review committee] of University 

Washington. 

 

Acknowledgements: The Cardiovascular Health Study was supported by contracts 

HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, 

N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, 

N01HC85086, 75N92021D00006, and grants U01HL080295 and U01HL130114 from 

the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from 
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the National Institute of Neurological Disorders and Stroke (NINDS). Additional support 

was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of 

principal CHS investigators and institutions can be found at CHS-NHLBI.org. The 

content is solely the responsibility of the authors and does not necessarily represent the 

official views of the National Institutes of Health. 

 

MESA 

The Multi-Ethnic Study of Atherosclerosis (dbGaP accession phs000209) is a study of 

the characteristics of subclinical cardiovascular disease (disease detected non-

invasively before it has produced clinical signs and symptoms) and the risk factors that 

predict progression to clinically overt cardiovascular disease or progression of the 

subclinical disease (7). MESA consisted of a diverse, population-based sample of an 

initial 6,814 asymptomatic men and women aged 45-84. 38 percent of the recruited 

participants were white, 28 percent African American, 22 percent Hispanic, and 12 

percent Asian, predominantly of Chinese descent. Participants were recruited from six 

field centers across the United States: Wake Forest University, Columbia University, 

Johns Hopkins University, University of Minnesota, Northwestern University and 

University of California - Los Angeles. Participants are being followed for identification 

and characterization of cardiovascular disease events, including acute myocardial 

infarction and other forms of coronary heart disease (CHD), stroke, and congestive 

heart failure; for cardiovascular disease interventions; and for mortality. The first 

examination took place over two years, from July 2000 - July 2002. It was followed by 

five examination periods that were 17-20 months in length. Participants have been 
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contacted every 9 to 12 months throughout the study to assess clinical morbidity and 

mortality.  

 

Ethics statement: All MESA participants provided written informed consent, and the 

study was approved by the Institutional Review Boards at The Lundquist Institute 

(formerly Los Angeles BioMedical Research Institute) at Harbor-UCLA Medical Center, 

University of Washington, Wake Forest School of Medicine, Northwestern University, 

University of Minnesota, Columbia University, and Johns Hopkins University. 

 

Acknowledgments: The MESA projects are conducted and supported by the National 

Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. 

Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, 

N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 

75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 

75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, 

N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, and 

UL1-TR-001420. Also supported in part by the National Center for Advancing 

Translational Sciences, CTSI grant UL1TR001881, and the National Institute of 

Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant 

DK063491 to the Southern California Diabetes Endocrinology Research Center.  

 

CARDIA  

The Coronary Artery Risk Development in Young Adults study (dbGaP accession 

phs000285) is a prospective multicenter study with 5,115 adults Caucasian and African 
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American participants of the age group 18-30 years at baseline, recruited from four 

centers at the baseline examination in 1985-1986 (8). The recruitment was done from 

the total community in Birmingham, AL, from selected census tracts in Chicago, IL and 

Minneapolis, MN; and from the Kaiser Permanente health plan membership in Oakland, 

CA. Nine examinations have been completed in the years 0, 2, 5, 7, 10, 15, 20, 25 and 

30, with high retention rates (91%, 86%, 81%, 79%, 74%, 72%, 72%, and 71%, 

respectively) and written informed consent was obtained in each visit.  

 

Ethics statement: All CARDIA participants provided informed consent, and the study 

was approved by the Institutional Review Boards of the University of Alabama at 

Birmingham and the University of Texas Health Science Center at Houston. 

 

Acknowledgements: The Coronary Artery Risk Development in Young Adults Study 

(CARDIA) is conducted and supported by the National Heart, Lung, and Blood Institute 

(NHLBI) in collaboration with the University of Alabama at Birmingham 

(HHSN268201800005I & HHSN268201800007I), Northwestern University 

(HHSN268201800003I), University of Minnesota (HHSN268201800006I), and Kaiser 

Foundation Research Institute (HHSN268201800004I). CARDIA was also partially 

supported by the Intramural Research Program of the National Institute on Aging (NIA) 

and an intra-agency agreement between NIA and NHLBI (AG0005). 

 

JHS 

The Jackson Heart Study (dbGaP accession phs000286) is a longitudinal investigation 

of genetic and environmental risk factors associated with the disproportionate burden of 
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cardiovascular disease in African Americans (9,10). JHS is funded by the NHLBI and 

the National Institute on Minority Health and Health Disparities (NIMHD) and is an 

expansion of the ARIC study in its Jackson Field Center. At baseline, the JHS recruited 

5306 African American residents of the Jackson Mississippi Metropolitan Statistical 

Area aged, approximately 6.6% of all African American adults aged 35-84 residing in 

the area. Participants were recruited via random sampling (17% of participants), 

volunteers (30%), prior participants in the Atherosclerosis Risk in Communities (ARIC) 

study (31%), and secondary family members (22%). Among these participants, 

approximately 3400 gave consent that allows genetic research. JHS has conducted 

three back-to-back clinical examinations (Exam 1, 2000-2004; Exam 2, 2005-2008; and 

Exam 3, 2009-2013), and a fourth clinical examination is underway. Participants are 

also contacted annually by telephone to update personal and health information 

including vital status, interim medical events, hospitalizations, functional status and 

sociocultural information. 

 

Ethics statement: The JHS study was approved by Jackson State University, Tougaloo 

College, and the University of Mississippi Medical Center IRBs, and all participants 

provided written informed consent. 
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CFS 

The Cleveland Family Study (CFS) was designed to examine the genetic basis of sleep 

apnea in 2,534 African-American and European-American individuals from 356 families. 

Index probands with confirmed sleep apnea were recruited from sleep centers in 

northern Ohio, supplemented with additional family members and neighborhood control 

families [{Redline1995}]. Four visits occurred between 1990 and 2006; in the first 3, 

data were collected in participants’ homes while the last occurred in a clinical research 

center (2000 - 2006). Measurements included sleep apnea monitoring, blood pressure, 

anthropometry, spirometry and other related phenotypes. Blood samples (overnight 

fasting, before bed and following an oral glucose tolerance test), nasal and oral 

ultrasound, and ECG were also obtained during the 4th exam. Institutional Review 

Board approval and signed informed consent was obtained for all participants. 

 

Ethics statement: Cleveland Family Study was approved by the Institutional Review 

Board (IRB) of Case Western Reserve University and Mass General Brigham (formerly 

Partners HealthCare). Written informed consent was obtained from all participants. 
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Description of phenotypes used in the analysis  
 

 

Phenotype Transformation if 

applied 

Role Code in the TOPMed phenotype 

database 

Sex  Adjusting covariate annotated_sex_1 

Age  Adjusting covariate age_at_height_baseline_1 

Race / Ethnicity 

Only kept samples 

where the two race 

phenotypes agree 

Adjusting covariate or 

stratification 

race_us_1 

Only kept samples 

where the two race 

phenotypes agree 

Adjusting covariate or 

stratification 

hispanic_or_latino_1 

Principal Components 1-5  Adjusting covariate EV1, EV2, EV3, EV4, EV5 

Height  Phenotype height_baseline_1 

Lipid Lowering medication 

usage 

 variable lipid_lowering_medication_1 

Total Cholesterol Log-transformed, only 

kept samples where 

no lipid medication 

was used 

Phenotype total_cholesterol_1 

Triglycerides Log-transformed, only 

kept samples where 

no lipid medication 

was used 

Phenotype triglycerides_1 

Blood Pressure medication 

usage 

 variable antihypertensive_meds_1 

Systolic Blood Pressure Add +15 to value if 

blood pressure 

lowering medications 

were used 

Phenotype bp_systolic_1 

Sleep Duration  Phenotype sleep_duration_1 

Table S1: Phenotypes used in the analyses and their codes. Phenotypes harmonized by TOPMed DCC used in this 

study either as target phenotypes, covariates, or variables required for removal criteria. 
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Black Hispanic/Latino White Overall 

(N=4264) (N=5915) (N=9878) (N=20057) 

Sex         

Male 1780 (41.7%) 2582 (43.7%) 4535 (45.9%) 8897 (44.4%) 

Female 2484 (58.3%) 3333 (56.3%) 5343 (54.1%) 11160 (55.6%) 

Age         

Mean (SD) 50.6 (17.9) 49.0 (13.8) 54.1 (15.7) 51.8 (15.8) 

Median [Min, Max] 53.0 [9.00, 92.0] 50.0 [18.0, 86.0] 55.0 [5.00, 98.0] 53.0 [5.00, 98.0] 

Triglycerides         

Mean (SD) 105 (63.2) 137 (98.1) 132 (83.3) 129 (86.3) 

Median [Min, Max] 90.0 [16.0, 873] 115 [20.0, 1670] 112 [17.0, 1600] 109 [16.0, 1670] 

Missing 1859 (43.6%) 1060 (17.9%) 2225 (22.5%) 5144 (25.6%) 

Total Cholesterol         

Mean (SD) 202 (41.5) 201 (43.3) 209 (39.1) 205 (41.1) 

Median [Min, Max] 198 [81.0, 450] 198 [62.0, 526] 207 [77.8, 594] 203 [62.0, 594] 

Missing 1859 (43.6%) 1060 (17.9%) 2225 (22.5%) 5144 (25.6%) 

Systolic Blood Pressure         

Mean (SD) 125 (20.7) 121 (17.3) 118 (17.8) 120 (18.5) 

Median [Min, Max] 121 [73.0, 246] 119 [77.0, 218] 115 [67.0, 227] 118 [67.0, 246] 

Missing 1073 (25.2%) 1321 (22.3%) 2285 (23.1%) 4679 (23.3%) 

Sleep Duration         

Mean (SD) 6.40 (1.44) 7.71 (1.50) 6.99 (1.15) 7.14 (1.45) 

Median [Min, Max] 6.00 [1.00, 16.5] 7.79 [2.00, 13.4] 7.00 [1.00, 15.0] 7.00 [1.00, 16.5] 

Missing 1196 (28.0%) 319 (5.4%) 3990 (40.4%) 5505 (27.4%) 

Height         

Mean (SD) 169 (9.47) 163 (9.25) 168 (9.75) 167 (9.89) 

Median [Min, Max] 168 [125, 207] 162 [134, 194] 168 [109, 203] 166 [109, 207] 

     

Table S2: Summary statistics of phenotypes used in a secondary analysis in which the training dataset included 

related individuals. Mean, Median and percent of missing data for the phenotypes (Triglycerides, Total Cholesterol, 

Systolic Blood Pressure, Sleep Duration and Height) and covariates (sex and age) used in this study. All the traits 

are presented for the whole database as well as broken down by race (Black, White, and Hispanic/Latino). This 

training set excludes any related individuals above 3rd degree. 
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Black Hispanic/Latino White Overall 

(N=1079) (N=1447) (N=2483) (N=5009) 

Sex         

Male 431 (39.9%) 644 (44.5%) 1129 (45.5%) 2204 (44.0%) 

Female 648 (60.1%) 803 (55.5%) 1354 (54.5%) 2805 (56.0%) 

Age         

Mean (SD) 49.4 (17.9) 48.4 (14.3) 54.5 (15.7) 51.6 (16.1) 

Median [Min, Max] 52.0 [6.00, 88.0] 49.0 [18.0, 81.0] 55.0 [18.0, 94.0] 53.0 [6.00, 94.0] 

Triglycerides         

Mean (SD) 114 (109) 132 (88.0) 133 (82.8) 130 (89.3) 

Median [Min, Max] 92.0 [21.0, 2040] 112 [24.0, 1510] 113 [18.0, 954] 109 [18.0, 2040] 

Missing 488 (45.2%) 257 (17.8%) 556 (22.4%) 1301 (26.0%) 

Total Cholesterol         

Mean (SD) 202 (38.6) 202 (43.1) 211 (39.2) 207 (40.6) 

Median [Min, Max] 199 [112, 360] 198 [83.0, 423] 207 [58.8, 415] 203 [58.8, 423] 

Missing 488 (45.2%) 257 (17.8%) 557 (22.4%) 1302 (26.0%) 

Systolic Blood Pressure         

Mean (SD) 131 (24.0) 127 (21.5) 125 (22.7) 127 (22.7) 

Median [Min, Max] 127 [80.5, 246] 123 [85.0, 223] 121 [77.0, 227] 122 [77.0, 246] 

Missing 14 (1.3%) 1 (0.1%) 20 (0.8%) 35 (0.7%) 

Sleep Duration         

Mean (SD) 6.38 (1.46) 7.77 (1.51) 7.01 (1.18) 7.16 (1.48) 

Median [Min, Max] 6.00 [2.00, 14.0] 7.90 [3.00, 13.5] 7.00 [1.00, 12.0] 7.00 [1.00, 14.0] 

Missing 281 (26.0%) 79 (5.5%) 1003 (40.4%) 1363 (27.2%) 

Height         

Mean (SD) 169 (9.83) 163 (9.55) 168 (9.58) 167 (9.91) 

Median [Min, Max] 168 [121, 203] 162 [132, 198] 168 [124, 203] 166 [121, 203] 

 

Table S3: Summary statistics of phenotypes in the testing dataset. Mean, Median and percent of missing data for 

the phenotypes (Triglycerides, Total Cholesterol, Systolic Blood Pressure, Sleep Duration and Height) and 

covariates (sex and age) used in this study. All the traits are presented for the whole database as well as broken 

down by race (Black, White, and Hispanic/Latino). The test set excludes any related individuals above 3rd degree to 

itself or any of the training datasets. 
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Supplementary results 
 

 
Figure S1. Heritability of Phenotypes by Race/Ethnicity. The heritability of each phenotype for each race/ethnic 

group. 

 

 

Phenotype Held-Out Validation PVE for XGBoost Ensemble 

Model – Clumped SNPs 

Triglycerides 10.6% 

Total Cholesterol 14.6% 

Systolic Blood Pressure 2.7% 

Sleep Duration 0.46% 

Height 21.5% 

 

Table S4. Clumping the SNPs prior to performing the XGBoost ensemble model does not significantly change results. 

The percentage of variance explained in the validation set when the model is trained on the clumped SNPs rather 

than all SNPs.  

 

Phenotype Held-Out Validation PVE for XGBoost Ensemble 

Model –  Excluding Relatives 

Triglycerides 10.3% 

Total Cholesterol 14.7% 

Systolic Blood Pressure 2.4% 

Sleep Duration 0.27% 

Height 21.3% 

 

Table S5. Excluding relatives from the training and validation datasets does not significantly change results. The 

percentage of variance explained int eh validation set when the model is trained and validated on the subset of 

subjects that are not related (using the kinship coefficient to define related individuals). 
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Phenotype Held-Out Validation PVE for PRS Model –  Without 

PCs as Covariates 

Triglycerides 6.2% 

Total Cholesterol 8.5% 

Systolic Blood Pressure 1.2% 

Sleep Duration 0.06% 

Height 14.0% 

 

Table S6. Results of the PRS model without including the genetic PCs as covariates. The results are slightly lower 

than the results of the PRS model that does include the genetic PCs as covariates. 

 

 

Phenotype Held-Out Validation PVE for LASSO Model – Cross-

Validation for Optimal Regularization Term 

Triglycerides 6.8% 

Total Cholesterol 10.6% 

Systolic Blood Pressure 1.6% 

Sleep Duration 0.027% 

Height 10.5% 

 

Table S7. Results of the LASSO model when performing cross-validation for the optimal regularization term with 

respect to the LASSO loss function, rather than the joint-training scheme with XGBoost. Results are slightly higher for 

the LASSO model, but are not directly comparable to the XGBoost models as they include different variants. 

 

 

 

Phenotype 

XGBoost Alone (and 

LASSO with XGBoost 

variants) 

XGBoost with PRS LASSO with 

Cross-Validation 

PRS 

α  SNPs  θ α  SNPs  θ α  SNPs  P-

Value 

 SNPs  

Triglycerides 0.007 432 872 0.008 304 1000 0.018 14 0.001 7500 

Total 

Cholesterol 

0.003 455 842 0.003 455 1554 0.002 1162 0.001 6960 

Systolic Blood 

Pressure 

0.258 72 244 0.17 346 544 0.146 85 0.001 8066 

Sleep Duration 0.021 91 373 0.013 666 385 0.008 1708 0.001 4876 

Height 0.057 2193 985 0.083 916 995 0.017 14163 0.001 22461 

 

Table S8. Selected parameters in cross-validation in the main multi-ethnic analysis. Regularization parameters and 

number of SNPs selected through cross-validation. α refers to the regularization parameter in the LASSO. θ refers to 

the number of gradient boosted trees. 
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Phenotype Black  Hispanic/Latino  White 

Sleep Duration 271 309 341 

Systolic Blood Pressure 533 516 307 

Triglycerides 743 98 685 

Total Cholesterol 833 442 617 

Height 959 2433 725 

 

Table S9. Number of SNPs selected through cross-validation in the race/ethnic-specific XGBoost models. Number of 

SNPs selected through cross-validation in the Black, Hispanic/Latino, and White XGBoost models that included the 

C+T PRS. 

 

Phenotype PRS  LASSO XGBoost Alone XGBoost with 

PRS 

Heritability 

Sleep Duration 0.4% 0.0% 0.4% 0.5% 10.8% 

Systolic Blood 

Pressure 

1.8% 0.0% 1.5% 2.6% 25.9% 

Triglycerides 6.4% 5.9% 7.8% 10.5% 36.4% 

Total 

Cholesterol 

8.1% 10.1% 12.3% 15.0% 33.2% 

Height 17.2% 6.5% 7.2% 21.7% 56.6% 

 

Table S10. Support for Figure 2. Non-linear model consistently outperforms linear ones for prediction of multiple 

complex phenotypes in human cohort. 

 

 

 PRS XGBoost with PRS 

Phenotype White Black Hispanic / 

Latino 

White Black Hispanic / 

Latino 

Sleep Duration 0.7% 0.1% 0.2% 0.3% 0.0% 0.2% 

Systolic Blood 

Pressure 

1.8% 1.2% 2.6% 2.5% 1.8% 3.8% 

Triglycerides 5.6% 6.7% 8.4% 8.7% 5.5% 14.0% 

Total Cholesterol 7.4% 7.0% 9.6% 12.9% 8.1% 17.4% 

Height 25.8% 8.1% 17.0% 28.1% 8.1% 22.9% 

 

Table S11. Support for Figure 3. Model performance depends on the population with XGBoost consistently 

outperforming PRS. 
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  Assessed Ethnicity 

Phenotype Trained Ethnicity White Black Hispanic/Latino 

Sleep Duration Black 0.0% 0.0% 0.0% 

Systolic Blood 

Pressure 

Black 1.1% 0.6% 0.1% 

Triglycerides Black 5.1% 3.8% 7.6% 

Total Cholesterol Black 8.5% 6.7% 10.5% 

Height Black 15.4% 6.5% 15.0% 

Sleep Duration Hispanic/Latino 0.0% 0.0% 0.0% 

Systolic Blood 

Pressure 

Hispanic/Latino 3.9% 0.1% 6.1% 

Triglycerides Hispanic/Latino 4.5% 2.7% 13.2% 

Total Cholesterol Hispanic/Latino 8.1% 3.6% 16.7% 

Height Hispanic/Latino 21.3% 5.4% 22.4% 

Sleep Duration White 0.0% 0.0% 0.0% 

Systolic Blood 

Pressure 

White 4.3% 0.1% 4.0% 

Triglycerides White 9.5% 5.4% 9.3% 

Total Cholesterol White 13.8% 5.1% 13.6% 

Height White 27.6% 7.5% 15.7% 

Sleep Duration Multi-Ethnic Model 0.3% 0.0% 0.2% 

Systolic Blood 

Pressure 

Multi-Ethnic Model 2.5% 1.8% 3.8% 

Triglycerides Multi-Ethnic Model 8.7% 5.5% 14.0% 

Total Cholesterol Multi-Ethnic Model 12.9% 8.1% 17.4% 

Height Multi-Ethnic Model 28.1% 8.1% 22.9% 

 

Table S12. Support for Figure 4. Multi-ethnic XGBoost model performs on par with the race/ethnic-specific models. 
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