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Abstract
Study Objectives:  We aimed to detect cross-sectional phenotype and polygenic risk score (PRS) associations between sleep duration and prevalent diseases using the 

Partners Biobank, a hospital-based cohort study linking electronic medical records (EMR) with genetic information.

Methods:  Disease prevalence was determined from EMR, and sleep duration was self-reported. A PRS for sleep duration was derived using 78 previously associated 

SNPs from genome-wide association studies (GWAS) for self-reported sleep duration. We tested for associations between (1) self-reported sleep duration and 22 

prevalent diseases (n = 30 251), (2) the PRS and self-reported sleep duration (n = 6903), and (3) the PRS and the 22 prevalent diseases (n = 16 033). For observed PRS-

disease associations, we tested causality using two-sample Mendelian randomization (MR).

Results:  In the age-, sex-, and race-adjusted model, U-shaped associations were observed for sleep duration and asthma, depression, hypertension, insomnia, 

obesity, obstructive sleep apnea, and type 2 diabetes, where both short and long sleepers had higher odds for these diseases than normal sleepers (p < 2.27 × 10−3). 

Next, we confirmed associations between the PRS and longer sleep duration (0.65 ± 0.19 SD minutes per effect allele; p = 7.32 × 10−04). The PRS collectively explained 

1.4% of the phenotypic variance in sleep duration. After adjusting for age, sex, genotyping array, and principal components of ancestry, we observed that the PRS 

was also associated with congestive heart failure (CHF; p = 0.015), obesity (p = 0.019), hypertension (p = 0.039), restless legs syndrome (RLS; p = 0.041), and insomnia 

(p = 0.049). Associations were maintained following additional adjustment for obesity status, except for hypertension and insomnia. For all diseases, except RLS, 

carrying a higher genetic burden of the 78 sleep duration-increasing alleles (i.e. higher sleep duration PRS) associated with lower odds for prevalent disease. In MR, 

we estimated causal associations between genetically defined longer sleep duration with decreased risk of CHF (inverse variance weighted [IVW] OR per minute of 

sleep [95% CI] = 0.978 [0.961–0.996]; p = 0.019) and hypertension (IVW OR [95% CI] = 0.993 [0.986–1.000]; p = 0.049), and increased risk of RLS (IVW OR [95% CI] = 1.018 

[1.000–1.036]; p = 0.045).

Conclusions:  By validating the PRS for sleep duration and identifying cross-phenotype associations, we lay the groundwork for future investigations on the 

intersection between sleep, genetics, clinical measures, and diseases using large EMR datasets.
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Statement of Significance

Recent implementations of electronic medical records (EMR) with genetic data across the healthcare sector have enabled advancement 
of clinical research. However, these approaches remain underutilized in sleep research likely due to the paucity of sleep information. We 
tested polygenic risk score (PRS) for sleep duration using 78 signals identified for self-reported sleep duration. We verified associations 
between the PRS and self-reported sleep duration in a hospital-based population and observed associations of higher PRS with lower 
odds of EMR-derived congestive heart failure, obesity, hypertension, and insomnia and higher odds of restless legs syndrome. This study 
demonstrates the feasibility and power of using genetic markers of sleep in clinical cohorts, laying the groundwork for future investigations 
on sleep, genetics, clinical measures, and diseases using large EMR datasets.
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Introduction

Sleep duration is a complex phenotype driven by genetic and 
lifestyle factors [1]. Prospective epidemiologic studies have 
indicated that deviating from the recommended sleep duration 
of 7–8 hours is associated with increased risk for various diseases 
[2]. Indeed, U-shaped relationships have been observed between 
habitual self-reported short (<6, 7 hours per night) and long (>8, 
9 hours per night) sleep duration and cognitive and psychiatric, 
metabolic, cardiovascular, and immunological dysfunction as 
well as all-cause mortality, compared to sleeping 7–8 hours per 
night [3–9]. These observations have been made predominantly 
in population-based cohort studies relying on a single estimate 
of sleep duration at baseline via questionnaires [9–12].

Recent implementations of electronic medical/health records 
(EMR) across the healthcare sector have enabled significant 
advancement of clinical research through linkage of large and 
diverse medical data enriched for disease states with DNA bio-
repositories and lifestyle surveys, as has been implemented 
in the Partners Biobank [13] and eMERGE Network [14]. Robust 
algorithms using a combination of codified and narrative EMR 
data are applied to define disease states, enabling systematic 
comparisons with clinical measures and genetic variants [15, 
16]. Although a promising resource for health services and cost-
effectiveness research, EMR are currently underutilized in sleep 
research, likely as a result of a paucity of sleep assessment or 
polysomnography information associated with EMR data.

As EMR are increasingly linked to genetic data collected 
on patients within health care systems, the genetic data can 
be used to derive genetic instruments, such as polygenic risk 
scores (PRSs) [17], to approximate the genetic architecture of a 
trait and dissect lifestyle from genetic exposures. PRS provide 
a quantitative measure of an aggregated genetic burden of 
disease in each person and are powerful tools to validate genetic 
links to disease and to dissect pleiotropic or causal associations 
across traits [17–19]. For example, in coronary artery disease, a 
trait with a sizable genetic component, PRSs comprised of top 
genetic signals identified from genome-wide association studies 
(GWAS) or aggregating variants spanning the entire genome 
have been shown to be valuable in disease risk prediction [20, 
21]. Sleep duration is also a heritable trait, and twin- and family-
based studies have estimated that 9% to 45% of variability in 
self-reported sleep duration is influenced by genetic factors 
[22, 23]. Recent GWAS in up to 446 118 participants from the UK 
Biobank identified 78 signals for habitual self-reported sleep 
duration [23]. Here, we postulated that the PRS comprised of 
these signals could serve as a viable marker for sleep duration, 
providing estimates of the likelihood of a sleep phenotype that 
is not limited by sampling biases related to surveys and possibly 
also reflecting long-term sleep duration exposure.

Thus, in this study from the Partners Biobank, we used EMR 
and genetic data supplemented with a sleep habits questionnaire 
to (1) test cross-sectional associations between self-reported 
sleep duration and 22 prevalent diseases determined from EMR 
(19 from narrative data; three from codified data), (2) validate a 
PRS comprised of 78 signals associated with self-reported sleep 
duration from GWAS, and (3) systematically investigate whether 
the PRS associates with any of the 22 prevalent diseases. We 
further derive a genome-wide sleep duration PRS, and for 
observed PRS-disease associations, we test causality using two-
sample Mendelian randomization (MR).

Methods

Partners healthcare biobank

The Partners Biobank is a hospital-based cohort study from 
the Partners HealthCare hospitals with EMR and genetic data 
supplemented with electronic health and lifestyle surveys [13]. 
Recruitment for the Partners Biobank launched in 2010 and is 
active at participating clinics at Brigham and Women’s Hospital 
(BWH), Massachusetts General Hospital (MGH), Spaulding 
Rehabilitation Hospital (SRH), Faulkner Hospital (FH) and McLean 
Hospital (MCL), Newton-Wellesley Hospital (NWH), North Short 
Medical Center (NSMC). All patients provided consent upon 
enrollment. To date (February 2018), a total of 78 726 participants 
were consented. The current analysis was restricted to 43 058 
adults ≥18  years with either self-reported sleep and/or high-
quality genotyping with EMR data.

Disease status ascertainment

Disease prevalence was determined from EMR using both 
structured and unstructured data [13]. Natural Language 
Processing (NLP) was used to extract data from narrative text 
including coded diagnoses, medications, procedures, and 
vital signs, as previously described [24], to screen enrichment/
frequencies of predictive disease features, such as comorbidities 
or symptoms, identified from Wikipedia and Medscape articles 
using an automated feature extraction protocol (AFEP). The 
feature set is narrowed to those that are most relevant using 
the adaptive least absolute shrinkage and selection operator 
(LASSO) procedure, and a gold-standard set of patients is used 
to train the model to accurately predict the phenotype based on 
the refined definition. Thus, for each disease phenotype, algo-
rithm development included the following steps: (1) filtering 
Biobank participants by presence of the ICD9-CM billing code 
for each disease; (2) randomly selecting 100 participants with 
each code; (3) chart reviews by board-certified clinician to define 
disease status in a Training Set (Supplementary Methods); (4) 
automated feature extraction and feature selection to EMR 
narrative text; (5) LASSO penalized regression with features 
predicting disease status in Training Set; and (6) applying the 
algorithm to remaining participants to define disease phenotype 
set. The process produced robust phenotype algorithms that 
were evaluated using metrics such as positive predictive value 
(PPV), the proportion of individuals classified as cases by the 
algorithm, and True Positive Rates (TPR), which reflects the 
sensitivity or the proportion of true positives correctly identified 
as such. A  total of 19 disease phenotypes were determined 
from EMR using this approach: asthma (PPV = 90%; TPR = 0.761; 
n = 1886), bipolar disorder (PPV = 89%; TPR = 0.200; n = 178), breast 
cancer (PPV  =  90%; TPR  =  0.963; n  =  2302), chronic obstructive 
pulmonary disorder (PPV = 90%; TPR = 0.434; n = 400), congestive 
heart failure (CHF; PPV  =  90%; TPR  =  0.880; n  =  594), coronary 
artery disease (CAD; PPV = 99%; TPR = 0.970; n = 3618), Crohn’s 
disease (PPV = 90%; TPR = 0.960; n = 755), depression (PPV = 90%; 
TPR = 0.805; n = 4651), epilepsy (PPV = 90%; TPR = 0.932; n = 1167), 
gout (PPV = 90%; TPR = 0.931; n = 1886), hypertension (PPV = 90%; 
TPR  =  0.952; n  =  16 569), multiple sclerosis (MS; PPV  =  90%; 
TPR = 0.810; n = 368), obesity (PPV = 90%; TPR = 0.870; n = 13 102), 
rheumatoid arthritis (RA; PPV  =  90%; TPR  =  0.905; n  =  1161), 
schizophrenia (PPV = 90%; TPR = 0.832; n = 53), stroke (PPV = 90%; 
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TPR = 0.623; n = 511), type 1 diabetes (T1D; PPV = 90%; TPR = 0.784; 
n = 271), type 2 diabetes (T2D; PPV = 99%; TPR = 0.880; n = 3106), 
and ulcerative colitis (UC; PPV = 90%; TPR = 0.660; n = 561). In add-
ition, three sleep-related disease phenotypes were determined 
from codified data using physician diagnoses ICD-10 codes: 
insomnia (G47.0; n = 5091), restless legs syndrome (RLS; G25.81; 
n = 1016), and obstructive sleep apnea (G47.3; n = 6247); however, 
these diagnoses were not validated by chart review.

Sleep duration and covariate measures

Study participants were invited following enrollment to self-
report information regarding their lifestyle, environment, and 
family history via the Partners Biobank Health Information 
Survey, an optional online survey. Sleep was assessed by the 
questions “In considering your longest sleep period, what time 
do you usually go to bed on WEEKDAYS or WORK or SCHOOL 
days?” and “In considering your longest sleep period, what time 
do you usually wake up on WEEKDAYS or WORK or SCHOOL 
days?” Similar questions were asked for “WEEKENDS or DAYS 
OFF.” Responses were in half-hour increments. To date, a total of 
31 221 participants have completed the sleep survey. Weighted 
average weekly sleep duration was computed using self-
reported weekday and weekend bed and wake-up times with 5/7 
weighting for weekdays and 2/7 for weekends. Sleep duration 
was also categorized as short (<7 hours per night), normal (7 to 
<9 hours per night), and long (≥9 hours per night).

Age, sex, and race data were obtained from EMR. Study 
participants further self-reported height, weight, alcohol intake, 
employment status, exercise, and smoking status. Smoking 
was assessed by the question, “Have you smoked at least 100 
cigarettes in your lifetime?” and categorized into “Yes, currently 
smoke,” “Yes, smoked in the past, but quit,” or “No.” Alcohol was 
assessed by the question, “During the past year, how many alco-
holic drinks (glass/bottle/can of beer; 4oz glass of wine; drink 
or shot of liquor) did you usually drink in a typical week?” and 
categorized as the following: None, or less than 1 per month; 
1–3 per month; 1 per week; 2–4 per week; 5–6 per week; 1–2 per 
day; 3–4 per day; 5–6 per day; More than 6 per day. Exercise was 
assessed by the question, “During the past year, what was your 
average time spent per week at each of the following recreational 
activity:” for eight activities, and total moderate to high-intensity 
exercise (excluding walking/hiking) was estimated in hours per 
week. Employment was assessed by the question, “Which of 
the following best describes your usual work schedule?” with 
the following response options: day shift, afternoon shift, night 
shift, split shift, irregular shift/on-call, rotating shifts or do not 
work. Responses were collapsed to day shift, do not work, or non-
day shift (all remaining options). Education was assessed by the 
question, “What is the highest grade in school that you finished?” 
with the following options: Grade school (1–4  years); Grade 
school (5–8  years); Some high school (9–11  years); High school 
diploma or GED (finished high school); Some college; 2-year 
college or vocational school; 4-year college; Masters, doctoral, or 
professional degree. Weight and height were self-reported and 
body mass index (BMI) was calculated as weight (kg) / height2 (m2). 
Missing covariates (all <5% missing) were imputed by using sex-
specific median values for continuous variables (i.e. BMI, alcohol 
intake, exercise, and Charlson Index), or using a missing indicator 
approach for categorical variables (i.e. smoking, employment).

Genetic data genotyping, imputation and quality 
control and generation of PRS

DNA from participants was genotyped using ~1.6 million 
SNPs on the Illumina Multi-Ethnic GWAS/Exome SNP Array. 
Imputation was performed using Minimac3 [25] using the HRC 
(Version r1.1 2016) reference panel [26] for imputation. This HRC 
panel consists of 64 940 haplotypes of predominantly European 
ancestry. Haplotype phasing was performed using SHAPEIT 
[27]. To date, 20 038 participants have been genotyped, of which 
7982 also completed the sleep survey. Participant ancestry was 
determined using TRACE [28] and the Human Genome Diversity 
Project (HGDP) [29] as a reference panel. To correct for population 
stratification, we further computed principal components (PCs) 
using the same software in the subset with genetically European 
ancestry. Next, we derived a PRS for self-reported sleep duration 
using 78 SNPs previously reported to be associated at the 
genome-wide significance level in the UK Biobank (p < 5 × 10−8) 
[23]. All SNPs had a minor allele frequency (MAF) > 1% and 
an imputation quality (minimac rsq) ≥ 0.70 (Supplementary 
Table S1). Individual participant scores were created by summing 
the number of risk alleles (allele associated with longer sleep 
duration) at each genetic variant, which were weighted by the 
respective allelic effect sizes on longer sleep duration in the 
UK Biobank. Additionally, we generated a genome-wide PRS for 
each individual by summing sleep increasing risk alleles across 
the genome, each weighted by the beta estimate for that allele 
from the sleep duration GWAS. We included 1 201 079 SNPs after 
excluding X chromosome variants and, at each site, clumped 
SNPs based on association p value (the variant with the smallest 
p value within a 250kb range was retained and all those in 
linkage disequilibrium, r2 > 0.1, were removed). LD clumping and 
genome-wide PRS generation were done using PRSice [30], and 
the best fit genome-wide sleep duration PRS encompassed 2096 
SNPs at p value threshold = 0.00015 (Supplementary Figure S1).

Statistical analysis

The relationship between sleep duration and prevalent diseases 
were examined using categorical logistic regression with adjust-
ments for age, sex, and  race (model 1); then further adjusted 
for BMI, other than obesity outcome (model 2); and then further 
adjusted for additional established risk factors: alcohol intake, 
Charlson comorbidity index, education, employment status, 
exercise, and smoking status (model 3). Consistent with previous 
reports, improbable sleep durations <3 or >14 hours [31] (n = 968; 
resulting primarily from am/pm coding errors by participants) 
and improbable BMI (>100 kg/m2; n =1) were excluded. Final total 
sample size for association analyses between estimated sleep 
duration and prevalent diseases was 30 251. Phenotypic associ-
ations were considered significant at the Bonferroni correction 
accounting for 22 diseases (p < 2.27 × 10−3 [=0.05/22]).

For genetic analyses, samples with high-quality genotyping 
and EMR data were included (n  =  20 038). Participants of non-
European ancestry based on genetic ancestry were excluded from 
all genetic analysis to minimize the influence of differences in 
population structure (n = 4005 removed). Independent SNP asso-
ciations with self-reported sleep duration were conducted in 
the genetic subset with self-reported sleep duration and tested 
using linear trends and an additive genetic model adjusted 
for age, sex, genotyping array, and 5 PCs of ancestry (n = 7155). 
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Independent SNP associations were considered significant 
at the Bonferroni-adjusted threshold accounting for 78 tests 
(p < 6.4 × 10−04). Post hoc power calculations for the independent 
SNP associations were conducted using Quanto version 1.2.4 
(http://biostats.usc.edu/Quanto.html). Validation of the PRS was 
conducted in the genetic subset with self-reported sleep duration 
(n = 6903) by estimating linear trends of the PRS adjusted for age, 
sex, genotyping array, and five PCs of ancestry, and separately 
for weekday (n  =  6805) and weekend (n  =  6481) self-reported 
sleep duration. Systematic PRS association analyses with all 22 
prevalent diseases were conducted in the full genetic dataset 
(n = 16 033), and further adjusted for obesity status determined 
from EMR. PRS associations were considered significant at 
p  <  0.05. For all significant PRS associations (p  <  0.05), we 
assessed for associations between quartiles of PRS and odds of 
disease prevalence. Similarly, validation of the genome-wide 
PRS was conducted with self-reported sleep duration and tested 
for associations with the five diseases significant in the 78 SNP 
PRS-disease association analyses.

Mendelian randomization

Two-sample MR [32] was carried out using MRCIEU/
TwoSampleMR package in R, using the inverse variance weighted 
(IVW) approach as our main analysis method [33], and MR-Egger 
[34] and weighted median estimation [35] as sensitivity ana-
lyses, as previously described [23] (Supplementary Figure  S2). 
For our two-sample MR analyses, for all 78 signals for habitual 
self-reported sleep duration [23], we looked for the per allele 
difference in disease outcomes (those showing associations 
with sleep duration PRS) from the Partners Biobank. Results 
are therefore a measure of genetically “longer sleep duration”. 
Sample 1 is UK Biobank and sample 2 the disease phenotype 
from Partners Biobank.

Results
In a sample of 43 058 adult participants (56.95 [16.84] years; 57.6% 
female) from the Partners Biobank, prevalent cases of diseases 
determined from EMR ranged from 0.12% for schizophrenia to 
38.5% for hypertension. Sleep data were available for a subset 
of 30 251 (70.3%) participants. Self-reported sleep duration was 
normally distributed with a mean of 8.24 hours (SD = 1.38 hours) 
per night (Table 1), and 11.9% (<7 hours per night; n = 3604), 63.1% 
(7 to <9 hours per night; n = 19 084), and 25.0% (≥9 hours per night; 
n  =  7563) were short, normal and long sleepers, respectively. 
Weekday self-reported sleep duration was shorter than aver-
age weekend self-reported sleep duration (weekday  =  7.93 
[1.30] hours per night vs. weekend = 9.05 [2.80] hours per night). 
Overall, short sleepers were more likely to be male and non-
White, had higher BMI, consumed less alcohol, more likely to be 
current smokers and night workers, and had less education (all 
p < 0.001). The genetic subset, which was limited to participants 
of European ancestry, included 16 033 participants and was 
significantly older (60.35 [16.51] years; p < 0.05) and consisted of 
more males (53.8% female; p < 0.05), compared to the subset who 
had self-reported sleep data.

In the age-, sex-, and race-adjusted model (model 1), 
U-shaped associations were observed for sleep duration 
and asthma, depression, hypertension, insomnia, obesity, 

obstructive sleep apnea, and type 2 diabetes, where both short 
and long sleepers had higher odds for these diseases than 
normal sleepers (Table  2). In addition, compared to normal 
sleepers, short sleepers had higher odds for chronic obstructive 
pulmonary disorder, gout, RLS, and type 1 diabetes, whereas 
long sleepers had higher odds for bipolar disorder and epilepsy. 
Overall, observed disease associations for short and long sleep 
were attenuated when further adjusted for BMI (model 2) and 
several additional established risk factors (model 3)  (Table  2, 
Supplementary Table  S2). In model 3, U-shaped associations 
remained significant for insomnia and obstructive sleep apnea, 
short sleep associations remained significant for obesity and 
type 1 diabetes, and long sleep associations remained significant 
for bipolar disorder and depression.

Among participants of European ancestry with genetic data 
(n = 16 033), we generated a combined weighted PRS of the 78 
self-reported sleep duration signals (Supplementary Table  S1). 
In participants with self-reported sleep data (n = 6903), the PRS 
was associated with a 0.65 (0.19) minutes longer sleep per effect 
allele (p = 7.32 × 10−04) (Table 3). The PRS showed stronger associ-
ations with weekday (p = 3.19 × 10−04) than weekend (p = 0.07) self-
reported sleep duration. The 5% of participants carrying most 
of the 78 sleep duration-increasing alleles had an estimated 
8.4 minutes longer sleep duration compared to the 5% carrying 
the fewest. The 78 independent variants collectively explained 
~1.4% of the phenotypic variance in estimated sleep duration. 
As expected, we did not observe association of the individual 
signals with sleep duration (all p > 6.4  × 10−04; Supplementary 
Table  S1) likely due to low statistical power (all p  <  0.80). 
Using genome-wide PRS, we also observed significant associ-
ations with sleep duration (p = 3.34 × 10−08), whereby the 5% of 
participants carrying most of the genome-wide sleep duration-
increasing alleles had an estimated 28.2 minutes longer sleep 
duration compared to the 5% carrying the fewest.

Using the PRS as a marker for sleep duration, we investigated 
whether sleep duration associated with 22 prevalent diseases 
curated from EMR among all 16 033 participants with genetic 
data. After adjusting for age, sex, genotyping array, and PCs of 
ancestry, we observed that the PRS was associated with CHF 
(p  =  0.015), obesity (p  =  0.019), hypertension (p  =  0.039), RLS 
(p  =  0.041), and insomnia (p  =  0.049; Table  4). For all diseases, 
except RLS, carrying more of the 78 sleep duration-increasing 
alleles (i.e. higher PRS), associated with lower odds for prevalent 
disease, whereas for RLS, carrying more of the 78 sleep duration-
increase alleles associated with higher odds for prevalence 
disease. Compared to the lowest quartile of PRS, the highest 
quartile of PRS was associated with a 29.7% lower odds for CHF 
(p  =  0.01), 11.3% lower odds for hypertension (p  =  0.02), 10.6% 
lower odds for insomnia (p = 0.09), 9.7% lower odds for obesity 
(p = 0.03), and 23.2% higher odds for RLS (p = 0.13; Table 4). When 
adjusted for obesity status, PRS associations remained significant 
and point estimates were consistent for CHF (p = 0.017) and RLS 
(p = 0.031; Table 3). In models unadjusted or adjusted for obesity, 
we observed that the genome-wide PRS associated with CHF 
(p = 2.86 × 10−04), but none of the other disease phenotypes (all 
p < 0.05). In MR analyses between sleep duration and PRS asso-
ciated diseases using the 78 SNP PRS as the genetic instrument, 
we estimated causal associations between genetically defined 
longer sleep duration with decreased risk of CHF (IVW OR per 
minute of sleep [95% CI]  =  0.978 [0.961–0.996]; p  =  0.019) and 
hypertension (IVW OR [95% CI] = 0.993 [0.986–1.000]; p = 0.049), 
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and increased risk of RLS (IVW OR [95% CI] = 1.018 [1.000–1.036]; 
p = 0.045), with consistent effect direction in sensitivity analyses 
across other MR methods (Table 5).

Discussion
Leveraging an EMR dataset, the Partners Biobank emerged as 
a promising tool to detect underlying phenotypic and genetic 
relationships between sleep duration and prevalent diseases. In 
our analysis of up to 43 058 adult participants in the Partners 
Biobank with EMR, genetic data and/or self-reported sleep 
duration, we (1) showed that self-reported sleep duration associ-
ates with prevalent diseases identified using the EMR, in agree-
ment with earlier findings for sleep duration or sleep disorders 
[9–11, 36–40], and several of these associations remained 
significant even following adjustment for BMI and other 
established risk factors; (2) validated a sleep duration PRS of 78 
self-reported sleep duration genetic signals, and a genome-wide 
PRS, initially derived in the UK Biobank, by confirming asso-
ciations with self-reported sleep duration in an independent 
hospital-based cohort; and (3) observed novel associations 

between the PRS and five prevalent diseases determined from 
EMR indicating that sleep duration-increasing alleles associate 
with lower odds for CHF, obesity, hypertension, and insomnia, 
and higher odds for RLS, with obesity independent effects for 
associations with CHF and RLS, and causal evidence for CHF, 
hypertension, and RLS.

Validation of the PRS based on a focused set of SNPs or 
genome-wide data with self-reported sleep duration in the 
Partners Biobank supports the use of this score as an instrument 
to approximate sleep duration in further explorations. 
Confirmation was observed despite fundamental differences 
between the Partners Biobank and the discovery cohort (UK 
Biobank [23]), including differences in population demographics 
(hospital-based cohort vs. healthy population-based cohort) 
and ascertainment of self-reported sleep duration (based 
on weighted weekday/weekend sleep/wake times vs. single 
question on habitual sleep duration per 24 hours, including 
naps). The per allele effect of the association in the Partners 
Biobank of 0.65 (0.19) minutes longer sleep is similar to that 
estimated from the CHARGE consortium (0.66 minutes per 
allele), a meta-analysis of population-based studies [23], but 

Table 1.  General characteristics of Partners Biobank participants with self-reported sleep duration estimates (n = 30 251)

Characteristic

 
All

Sleep duration (hours/day)

 

<7 hours 7 to <9 hours ≥9 hours

30 251 3604 (11.9%) 19 084 (63.1%) 7563 (25.0%)

Age, years 56.23 (16.48) 56.49 (14.70) 55.77 (16.16) 57.28 (17.97) <0.001
Sex, female 18 061 (59.7) 1869 (51.9) 11 348 (59.5) 4844 (64.0) <0.001
Race, n (%)     <0.001
  Asian 713 (2.4) 106 (2.9) 470 (2.5) 137 (1.8)  
  Black  780 (2.6) 197 (5.5) 397 (2.1) 186 (2.5)  
  White 27 010 (89.3) 3031 (84.1) 17 190 (90.1) 6789 (89.8)  
  Other 296 (1.0) 53 (1.5) 165 (0.9) 78 (1.0)  
  Unknown 1452 (4.8) 217 (6.0) 862 (4.5) 373 (4.9)  
Sleep duration, hours
  Average 8.24 (1.38) 6.13 (0.80) 7.94 (0.52) 9.99 (1.08) <0.001
  Weekday 7.93 (1.30) 5.90 (0.93) 7.77 (0.62) 9.35 (1.19) <0.001
  Weekend 9.05 (2.80) 6.81 (1.49) 8.41 (0.98) 11.72 (4.17) <0.001
BMI, kg/m2 27.28 (6.01) 28.59 (6.36) 27.00 (5.80) 27.37 (6.25) <0.001
Charlson Index 4.83 (2.56) 4.95 (2.51) 4.70 (2.54) 5.11 (2.61) <0.001
Alcohol, g/day 3.21 (1.94) 2.95 (1.95) 3.31 (1.90) 3.07 (2.00) <0.001
Exercise, hours/week 2.64 (3.73) 2.43 (3.93) 2.83 (3.78) 2.25 (3.45) <0.001
Smoking status, n (%)     <0.001
  Never 17 600 (58.2) 1952 (54.2) 11 512 (60.3) 4136 (54.7)  
  Past 11 144 (36.8) 1358 (37.7) 6782 (35.5) 3004 (39.7)  
  Current 1410 (4.7) 285 (7.9) 736 (3.9) 389 (5.1)  
  Other 97 (0.3) 9 (0.2) 54 (0.3) 34 (0.4)  
Education, n (%)     <0.001
  Grade school, high school diploma, or GED 2692 (8.9) 460 (12.8) 1358 (7.1) 874 (11.6)  
  Some college, 2-year college, or vocational school 6129 (20.3) 881 (24.4) 3497 (18.3) 1751 (23.2)  
  Four-year college 9427 (31.2) 1045 (29.0) 6046 (31.7) 2336 (30.9)  
  Masters, doctoral, or other professional degrees 12 003 (39.7) 1218 (33.8) 8183 (42.9) 2602 (34.4)  
Work schedule, n (%)     <0.001
  Day worker 16 616 (54.9) 1975 (54.8) 11 555 (60.5) 3086 (40.8)  
  Irregular 1151 (3.8) 175 (4.9) 677 (3.5) 299 (4.0)  
  Rotating 659 (2.2) 99 (2.7) 385 (2.0) 175 (2.3)  
  Afternoon 555 (1.8) 64 (1.8) 284 (1.5) 208 (2.8)  
  Night 377 (1.2) 101 (2.8) 166 (0.9) 110 (1.5)  
  Split 197 (0.7) 34 (0.9) 114 (0.6) 49 (0.6)  
  Unemployed 9317 (30.8) 947 (26.3) 5050 (26.5) 3320 (43.9)  
  Other 1378 (4.6) 209 (5.8) 853 (4.5) 316 (4.2)  
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smaller than that reported from the UK Biobank (1.04 minutes 
per allele), which may possibly be due to consequences of higher 
disease prevalence and medication use in the Partners Biobank 
or to anticipated larger effects due to “winner’s curse” in the 
initial discovery sample. However, the ability to observe asso-
ciations despite population and methodological differences 
supports the use of this instrument in sleep clinical research 
applications. Interestingly, the PRS association was only evident 
for weekday, but not weekend self-reported sleep duration, and 
may be due to higher heritability estimates for weekday (23.6%) 
compared to weekend (12.3%) sleep duration [41]. As was the 

case for earlier genetic studies of limited sample sizes [41–43], 
there was insufficient power to detect associations between 
each individual locus of the PRS, including the PAX8 variant, and 
self-reported sleep duration. In addition to the 78 SNP PRS, we 
also show the promise of a PRS calculated using genome-wide 
data with robust associations with self-reported sleep duration.

The pleiotropic nature of some genes implicated by the PRS 
suggests that the PRS may also associate with related diseases. 
Indeed, we observed associations between the PRS and lower 
odds for CHF, obesity, hypertension, and insomnia, and higher 
odds for RLS, and associations for CHF and RLS were maintained 

Table 2.  Phenotypic associations of average weekly self-reported sleep duration with 22 prevalent diseases curated from Electronic Medical 
Records in the Partners Biobank (n =30 251), with additional adjustment for BMI (model 2)

 

Age-, sex-, and race-adjusted (model 1) BMI-adjusted (model 2)a

Short (<7 hours)

n = 3604

Normal 

(7–9 

hours)

n = 19 084

Long (≥9 hours)

n = 7563

Short (<7 hours)

n = 3604

Normal 

(7–9 

hours)

n = 19 084

Long (≥9 hours)

n = 7563

OR [95% CI] P value  OR [95% CI] P value OR [95% CI] P value  OR [95% CI] P value

Asthma (n = 2780) 1.34 [1.19–1.50] 1.53 × 10−06 (ref) 1.17 [1.06–1.28] 9.67 × 10−04 1.23 [1.09–1.38] 8.36 × 10−04 (ref) 1.14 [1.04–1.25] 5.85 × 10−03

Breast cancer 

(n = 1853)

0.82 [0.69–0.97] 0.02 (ref) 0.94 [0.84–1.05] 0.25 0.84 [0.7–1.00] 0.05 (ref) 0.94 [0.84–1.05] 0.29

Bipolar disorder 

(n =74)

1.24 [0.54–2.81] 0.61 (ref) 2.80 [1.73–4.53] 2.70 × 10−05 1.20 [0.53–2.74] 0.66 (ref) 2.78 [1.72–4.50] 3.16 × 10−05

Chronic obstructive 

pulmonary 

disorder (n = 142)

2.08 [1.32–3.27] 1.55 × 10−03 (ref) 1.21 [0.82–1.76] 0.34 1.96 [1.24–3.09] 3.69 × 10−03 (ref) 1.19 [0.81–1.74] 0.37

Congestive heart 

failure (n = 127)

1.48 [0.89–2.46] 0.13 (ref) 1.50 [1.01–2.22] 0.04 1.38 [0.83–2.30] 0.21 (ref) 1.47 [0.99–2.18] 0.06

Coronary artery 

disease (n = 1267)

1.30 [1.09–1.55] 3.68 × 10−03 (ref) 1.23 [1.08–1.40] 2.30 × 10−03 1.23 [1.03–1.47] 0.02 (ref) 1.21 [1.06–1.39] 4.23 × 10−03

Crohn’s disease 

(n = 339)

1.05 [0.74–1.47] 0.79 (ref) 1.08 [0.84–1.38] 0.57 1.06 [0.75–1.50] 0.72 (ref) 1.08 [0.84–1.39] 0.55

Depression 

(n = 2837)

1.27 [1.13–1.44] 1.21 × 10−04 (ref) 1.64 [1.50–1.78] 2.40 × 10–29 1.21 [1.07–1.36] 3.11 × 10−03 (ref) 1.62 [1.48–1.76] 8.37 × 10–28

Epilepsy (n = 609) 1.04 [0.80–1.36] 0.76 (ref) 1.50 [1.26–1.80] 6.35 × 10−06 1.06 [0.81–1.38] 0.69 (ref) 1.51 [1.27–1.80] 5.20 × 10−06

Gout (n = 992) 1.35 [1.12–1.63] 1.54 × 10−03 (ref) 1.02 [0.87–1.19] 0.83 1.26 [1.04–1.52] 0.02 (ref) 1.00 [0.85–1.16] 0.97

Hypertension 

(n = 10 128)

1.29 [1.19–1.40] 7.48 × 10−10 (ref) 1.16 [1.09–1.24] 3.59 × 10−06 1.16 [1.06–1.26] 6.14 × 10−04 (ref) 1.13 [1.06–1.20] 2.73 × 10−04

Insomnia (n = 3310) 1.40 [1.26–1.56] 1.23 × 10−09 (ref) 1.23 [1.13–1.34] 1.81 × 10−06 1.40 [1.25–1.56] 1.96 × 10−09 (ref) 1.23 [1.13–1.34] 1.29 × 10−06

Multiple sclerosis 

(n = 267)

1.55 [1.10–2.19] 0.01 (ref) 1.11 [0.83–1.47] 0.48 1.53 [1.08–2.16] 0.02 (ref) 1.10 [0.83–1.47] 0.50

Obesity (n = 8187) 1.65 [1.53–1.78] 5.89 × 10–37 (ref) 1.11 [1.04–1.18] 9.32 × 10−04 N/A N/A N/A N/A N/A

Obstructive sleep 

apnea (n = 3953)

1.44 [1.30–1.59] 1.05 × 10–12 (ref) 1.30 [1.20–1.40] 8.89 × 10–11 1.23 [1.11–1.37] 8.87 × 10−05 (ref) 1.26 [1.16–1.36] 5.32 × 10−08

Rheumatoid 

arthritis (n = 640)

1.17 [0.92–1.49] 0.20 (ref) 1.08 [0.9–1.29] 0.44 1.13 [0.89–1.45] 0.32 (ref) 1.07 [0.89–1.28] 0.49

Restless legs 

syndrome 

(n = 681)

1.47 [1.17–1.84] 8.51 × 10−04 (ref) 1.27 [1.07–1.51] 7.31 × 10−03 1.36 [1.09–1.71] 7.04 × 10−03 (ref) 1.25 [1.05–1.48] 0.01

Schizophrenia 

(n = 13)

- - (ref) 4.43 [1.45–13.58] 9.13 × 10−03 - - (ref) 4.45 [1.45–13.63] 9.00 × 10−03

Stroke (n = 159) 0.95 [0.56–1.63] 0.85 (ref) 1.65 [1.17–2.31] 3.89 × 10−03 0.91 [0.53–1.57] 0.75 (ref) 1.63 [1.16–2.29] 4.63 × 10−03

Type 1 diabetes (n 

=175)

1.99 [1.34–2.94] 6.45 × 10−04 (ref) 1.32 [0.93–1.88] 0.12 2.07 [1.39–3.07] 3.24 × 10−04 (ref) 1.34 [0.94–1.90] 0.11

Type 2 diabetes 

(n = 1385)

1.65 [1.41–1.92] 1.70 × 10−10 (ref) 1.28 [1.13–1.45] 1.34 × 10−04 1.44 [1.23–1.68] 6.30 × 10−06 (ref) 1.22 [1.07–1.39] 2.30 × 10−03

Ulcerative colitis 

(n = 269)

1.27 [0.88–1.84] 0.19 (ref) 1.24 [0.94–1.64] 0.12 1.33 [0.92–1.92] 0.13 (ref) 1.25 [0.95–1.65] 0.11

Bold denotes significant associations (p < 2.27 × 10−03). CI = 95% confidence interval, n = number of cases, OR = odds ratio.
aModel 2 covariates: model 1 covariates (age, sex, and race) + further adjustment for body mass index (except for obesity outcome).
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Table 3.  Association of the 78 sleep duration signals genetic risk score with self-reported sleep duration and 22 prevalent diseases curated from 
Electronic Medical Records in the Partners Biobank (n = 16 033), with additional adjustment for obesity status

 

Genetic risk scorea Genetic risk score—obesity-adjustedb

Beta (SE) per effect allele P value Beta (SE) per effect allele P value

Sleep duration (n = 7155)

0.65 (0.19) 7.32 × 10−04 0.58 (0.19) 2.74 × 10−03

OR [95% CI] per effect allele P value OR [95% CI] per effect allele P value

Asthma (n = 1451) 1.006 [0.995–1.017] 0.271 1.008 [0.997–1.019] 0.148
Breast cancer (n = 737) 1.003 [0.989–1.018] 0.666 1.003 [0.989–1.018] 0.661
Bipolar disorder (n = 126) 1.005 [0.971–1.040] 0.772 1.006 [0.972–1.041] 0.731
Chronic obstructive pulmonary disorder (n = 289) 0.993 [0.971–1.016] 0.570 0.994 [0.971–1.016] 0.577
Congestive heart failure (n = 435) 0.977 (0.959–0.995) 0.015 0.977 (0.959–0.996) 0.017
Coronary artery disease (n = 2683) 1.002 [0.993–1.011] 0.608 1.003 [0.994–1.012] 0.575
Crohn’s disease (n = 490) 1.006 [0.988–1.024] 0.499 1.006 [0.988–1.024] 0.529
Depression (n = 2017) 0.992 [0.983–1.001] 0.082 0.993 [0.984–1.003] 0.156
Epilepsy (n = 603) 0.993 [0.977–1.009] 0.374 0.992 [0.977–1.009] 0.356
Gout (n = 1008) 0.996 [0.983–1.009] 0.511 0.996 [0.984–1.009] 0.590
Hypertension (n cases = 7691) 0.993 [0.986–1.000] 0.039 0.995 (0.988–1.002) 0.168
Insomnia (n cases = 2123) 0.991 [0.982–1.000] 0.049 0.992 [0.983–1.001] 0.071
Multiple sclerosis (n = 160) 0.990 [0.960–1.021] 0.519 0.991 [0.961–1.021] 0.548
Obesity (n cases = 5631) 0.992 [0.986–0.999] 0.019 N/A N/A
Obstructive sleep apnea (n = 2763) 0.996 [0.988–1.004] 0.328 0.998 [0.990–1.007] 0.706
Rheumatoid arthritis (n = 703) 1.004 [0.990–1.019] 0.557 1.005 [0.990–1.020] 0.491
Restless legs syndrome (n = 451) 1.019 [1.001–1.038] 0.041 1.020 [1.002–1.039] 0.031
Schizophrenia (n = 28) 1.006 [0.935–1.082] 0.881 1.006 [0.935–1.082] 0.873
Stroke (n = 376) 1.005 [0.985–1.025] 0.657 1.004 [0.984–1.024] 0.686
Type 1 diabetes (n = 115) 0.971 [0.937–1.006] 0.107 0.971 [0.936–1.006] 0.104
Type 2 diabetes (n = 1563) 0.990 [0.980–1.001] 0.066 0.992 [0.981–1.002] 0.121
Ulcerative colitis (n = 331) 0.998 [0.977–1.019] 0.828 0.998 [0.976–1.019] 0.821

Threshold is P = 0.05.

CI = 95% confidence interval, OR = odds ratio, SE = standard error.
aAssociations adjusted for age, sex, genotyping array, and principal components of ancestry.
bAssociations further adjusted for obesity status derived from EMR.

Table 4.  Associations between genetic risk score quartiles and associated diseases in the Partners Biobank (n = 16 033)

 

Genetic risk score

 
Weighted trend

Weighted 
Q1 Weighted Q2 Weighted Q3 Weighted Q4

 OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Congestive heart 
failure (n = 435)

ref 0.800 (0.614–1.043) 0.10 0.800 (0.614–1.042) 0.10 0.703 (0.534–0.925) 0.01 0.899 (0.824–0.980) 0.02

Hypertension 
(n = 7691)

ref 0.973 (0.880–1.075) 0.59 0.976 (0.881–1.081) 0.64 0.887 (0.801–0.982) 0.02 0.966 (0.935–0.997) 0.03

Insomnia (n = 2123) ref 0.941 (0.827–1.071) 0.36 0.972 (0.854–1.105) 0.66 0.894 (0.785–1.019) 0.09 0.969 (0.930–1.010) 0.13
Obesity (n = 5631) ref 0.961 (0.876–1.054) 0.40 0.880 (0.802–0.966) 0.01 0.903 (0.823–0.992) 0.03 0.961 (0.934–0.990) 0.01
Restless legs 

syndrome 
(n = 451)

ref 1.007 (0.758–1.338) 0.96 1.401 (1.075–1.826) 0.01 1.232 (0.938–1.617) 0.13 1.098 (1.009–1.195) 0.03

CI = 95% confidence interval, OR = odds ratio, Q = quartile.

Table 5.  Causal links of longer sleep duration with disease outcomes using two-sample Mendelian Randomization

 

Inverse variance weighted Weighted median MR-Egger

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Congestive heart failure 0.978 (0.961–0.996) 0.019 0.978 (0.951–1.006) 0.12 0.991 (0.925–1.061) 0.80
Hypertension 0.993 (0.986–1.000) 0.049 0.994 (0.984–1.005) 0.28 0.989 (0.963–1.016) 0.42
Insomnia 0.992 (0.983–1.000) 0.053 0.994 (0.980–1.007) 0.34 0.985 (0.954–1.018) 0.38
Obesity 0.995 (0.987–1.003) 0.242 0.996 (0.986–1.007) 0.48 1.022 (0.992–1.052) 0.16
Restless legs syndrome 1.018 (1.000–1.036) 0.045 1.022 (0.996–1.049) 0.09 1.022 (0.957–1.091) 0.51

CI = 95% confidence interval, OR = odds ratio.
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following additional adjustment for obesity status. The PRS 
associations with insomnia and obesity are consistent with 
the self-reported phenotypic cross-sectional links seen in this 
study, and findings from previous studies [11, 44]. Findings for 
insomnia are in agreement with previously observed genome-
wide genetic correlations that suggest shared biological links 
between short sleep and insomnia, and with objective short 
sleep being a feature of an important insomnia subtype [44, 
45]. The finding of an association with CHF, however, is novel, 
and further supported by our use of a genome-wide PRS. Sleep 
duration and sleep disorders are recognized as risk factors for 
cardiovascular disease [4, 46], with multiple likely causal and 
bi-directional associations. Our data suggest that there may 
be underlying genetic risk factors for both sleep duration and 
CHF, possibly relating to pathways influencing sympathetic 
nervous system activity, which is common to short sleep 
duration, hypertension,[47] and heart failure [48]. Discordance 
between the self-reported sleep duration and PRS with CHF in 
this study may be attributed to differences in statistical power 
(n cases with self-reported sleep duration: 127; n cases with 
genetics: 435)  or differences in duration of exposure, where 
self-reported sleep reflects acute sleep status whereas PRS 
reflects chronic exposure. Dissecting this relationship is possible 
through comparing PRS findings with repeated self-reported 
sleep duration or repeated actigraphy measures. Additional 
differences may reflect sampling biases from differences in 
clinical and demographic characteristics between the Partners 
Biobank sub-groups that answered sleep questions and those 
with genetic data. Future validation of both phenotypic and 
PRS associations of sleep with diseases in other EMR studies 
will be important. Initial MR findings indicate causal effects of 
genetically determined longer sleep duration on lower disease 
prevalence, except for RLS; however, further analyses in larger 
samples with prospective sampling to assess associations with 
incident disease are needed to definitively establish causality.

Our study has several strengths worth noting. The Partners 
Biobank is a large study population linking EMR to genetics and 
sleep data, allowing for phenotypic and genetic investigation 
of sleep duration associations with diseases. In addition, case 
definitions are based on a narrative approach using natural 
language processing of EMR, and over 89% PPV for disease 
prevalence, limiting false positive cases resulting from relying 
on coded data that are prone to various errors [49], with the 
exception of sleep disorders, which were based on a codified 
approach using ICD-10 physician diagnoses without chart 
validation and thus need to be interpreted cautiously. The 
PRS allows approximation of sleep duration independent of 
questionnaire response rate, which is lower among severe (i.e. 
CHF) and rare diseases, enabling adequate number of cases (~200 
cases) to be considered in association studies [50]. Furthermore, 
unlike self-reported sleep duration, a score derived by genetics 
should act independently of confounders that may influence the 
relationships between sleep duration and diseases.

Weaknesses of our study include a modest response rate 
to the optional sleep survey (39.7% of entire Partners Biobank 
population), as has been observed in previous studies [51], 
and possible selection bias related to survey completion 
(subsample with responses were younger and more female) 
emphasizing the need for other markers of sleep duration 
independent of self-report. As our analyses are primarily based 
on self-reported sleep duration, which is susceptible to recall 

bias and other limitations [52], it is necessary to supplement 
biobanks with objective sleep measures and consider genetic 
instruments derived from objective sleep duration and quality 
[53]. Furthermore, residual confounding, particularly by obesity, 
and reverse causality are possible explanations for our cross-
sectional phenotype and PRS observational associations. Our 
genetic analyses are conducted in individuals of European 
ancestry, and further investigation in other ethnicities is 
necessary for generalizability of our findings. In addition, given 
the cross-sectional design, causality cannot be assessed using 
the observed nongenetic phenotypic relationships, and may 
reflect the effects of disease onset, medication use, or other 
confounders, on self-reported sleep duration. Enriching future 
EMR datasets with disease onset timestamps and longitudinal 
phenotypic data through repeat assessments of self-reported 
and objective sleep measures as well as biomarkers of disease 
may enable prospective investigations. Causality may also be 
extended to other phenotypes and diseases using a phenome-
wide Mendelian randomization (MR-PheWAS) approach to 
investigate causal relationships between sleep duration using 
genetics and a range of disease outcomes and clinical biomarkers 
from EMR [54]. In addition, while our PRS is estimated to capture 
only a modest amount of variability in sleep duration (~1.4%), 
the score may reflect long-term exposure. In addition, refining 
our PRS by delineating genetic variants associated with different 
aspects of sleep microarchitecture is needed to pinpoint 
pathways driving disease relationships.

The adoption of EMR is becoming widespread, and our 
results suggest the feasibility of leveraging EMR and biobank 
data to advance sleep clinical research. By validating the PRS 
for sleep duration and identifying cross-phenotype associ-
ations, we lay the groundwork for future investigations on the 
intersection between sleep genetics, clinical measures, and 
diseases, which may enable identification of robust biomarkers 
for sleep duration [55].
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Supplementary material is available at SLEEP online.
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