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There	is	growing	interest	in	the	potential	translational	applications	of	omics	data.	This	

applies	to,	e.g.,	metabolomics,	an	area	in	which	the	Journal	published	a	themed	issue	in	

2016	with	an	accompanying	editorial	titled	‘Metabolic	profiling–multitude	of	technologies	

with	great	research	potential,	but	(when)	will	translation	emerge?’.
1
	Despite	two	decades	of	

extensive	investigations	with	optimistic	statements	of	potential	translational	applications,	

there	is	no	metabolomics-derived	biomarker	(of	either	an	individual	metabolite	in	isolation	

or	multiple	metabolites	in	combination)	that	has	yet	to	mature	into	clinical	utility.	On	

appraising	the	recent	activity	in	polygenic	risk	scores	(PRSs)	and	disease	prediction,	we	

notice	parallel	themes	to	the	decades-old	search	for	conventional	(non-genetic)	predictive	

biomarkers.	An	overwhelming	sense	of	hype	and	a	rush	to	translate	dominates	the	field	of	

genetic	research	of	disease	prediction	using	GRSs.		

	

A	PRS	is	a	combination	of	single	nucleotide	polymorphisms	(SNPs)	that	associate	with	the	

outcome	of	interest.
2
	There	are	multiple	approaches	to	constructing	PRSs,	ranging	from	

inclusion	of	SNPs	surpassing	stringent	genome-wide	significance	thresholds	(typically	called	

a	genetic	risk	score,	or	GRS)	to	use	of	millions	of	SNPs	including	those	that	individually	only	

very	weakly	associate	with	the	phenotype	of	interest	(a	PRS).	From	a	statistical	standpoint,	a	

GRS	or	PRS	can	be	considered	as	a	single	biomarker	similar	to	an	individual	(e.g.	metabolic)	

biomarker	(or	a	biomarker	score).	Thus,	we	can	evaluate	the	predictive	performance	of	a	

PRS	with	the	same	metrics	that	have	been	developed	and	applied	over	recent	decades.	A	

plethora	of	literature	on	the	statistical	basis	of	predictive	modelling	subverts	the	recent	

optimism	placed	in	PRSs	to	predict	common	complex	diseases,
3
	the	key	concepts	being	that	

moderate	relative	risks	(achievable	by	individual	SNPs	or	biomarkers,	or	their	combination	

into	a	polygenic	or	metabolic	risk	score)	struggle	to	translate	into	clinically	relevant	

prediction	models.
4
	These	epidemiological	principles	of	disease	prediction	are	robust	to	

‘genetic	exceptionalism’.	

	

Several	recent	high-profile	papers	have	presented	interpretations	that	PRSs	convey	potential	

for	remarkable	opportunities	of	improved	(clinically	relevant)	predictions	of	complex	

diseases,	for	example	coronary	heart	disease.
5-7
	Parallel	themes	are	well-recognised	in	

biomarker-focused	omics	research	where	(as	with	genome-wide	data)	technological	

advances	have	facilitated	the	discovery	of	multiple	biomarkers	independently	associated	
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with	disease.
8
	However,	while	such	discoveries	may	provide	important	aetiological	insights	

into	disease,	such	associations	may	not	necessarily	reflect	utility	in	disease	prediction.
1,3,4,9

		

	

This	is	particularly	the	case	for	common	(polygenic	complex)	diseases,	in	other	words,	for	

quantitative	traits	or	as	put	even	more	succinctly	by	Plomin	and	co-workers:	‘what	we	call	

common	disorders	are,	in	fact,	the	quantitative	extremes	of	continuous	distributions	of	

genetic	risk’.
10
	This	continuity	of	polygenic	traits	for	common	complex	diseases	is	

superimposed	on	non-static	environmental	contributions
11
	and	stochastic	

(patho)physiological	processes.
12
	The	oversight	in	considering	these	issues,	together	with	

unrealistic	expectations	for	‘precision	medicine’,	are	likely	drivers	for	the	predictive	

misconceptions.
4,9,13

	The	ability	to	reliably	categorise	individuals	into	‘healthy’	and	‘diseased’	

using	biomarkers	that	are	normally	distributed	under	typical	physiological	settings	in	the	

general	population	–	which	includes	variation	in	common	genetic	polymorphisms	combined	

into	a	PRS,	and	phenotypic	traits,	such	as	low-density	lipoprotein	(LDL)	cholesterol	and	

systolic	blood	pressure	–	is	likely	to	remain	an	unattainable	goal.
14
	For	example,	with	a	5%	

false-positive	rate,	the	recently	published	GRSs	by	Khera	et	al.
6
	and	Inouye	et	al.

7
	would	give	

a	disease	detection	rate	of	15%	and	13%.	In	both	these	cases,	the	vast	majority	(≥85%)	of	

individuals	that	eventually	develop	disease	would	be	missed	when	using	such	PRSs	for	

disease	prediction.
4
		

	

Complex	diseases	can	be	considered	as	the	end	product	of	the	dynamic	interplay	between	

multiple	genetic	and	environmental	risk	factors.	Notably,	some	of	the	PRS	associations	with	

a	disease	(or	trait)	are	very	likely	to	be	picking	up	environmental	contributions	–	which	may	

have	implications	on	the	temporal	performance	of	a	PRS.	Unlike	genetic	variants,	

environmental	risk	factors	change	over	the	lifespan	of	individuals	and	between	generations.	

For	example,	population	characteristics	have	changed	dramatically	since	the	early	days	of	

cholesterol	and	atherosclerosis	research.	In	modern	society,	individuals	have	spurious	and	

energy-dense	eating	patterns,	with	most	individuals	living	in	a	non-fasting	state.	In	addition	

to	many	general	clinical	conditions	as	obesity,	hypertension,	insulin	resistance	and	type	2	

diabetes,	the	average	population	lipid	profiles	have	changed	substantially.	The	metabolic	

consequences	of	this	relate	to	the	‘contemporary’	risk	factors	of	CHD	and	up	to	a	certain	

extent	also	to	the	definition	and	estimation	of	PRSs.		
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An	individual’s	genome	is	inherited	randomly	and	not	generally	modifiable,	and	these	

characteristics	form	the	basis	for	the	role	of	human	genetics	in	elucidating	causality	through	

Mendelian	randomization.	The	fact	that	SNPs	are	not	able	to	dynamically	reflect	the	extent	

of	disease	(or	indeed	subclinical	disease)	through	reverse	causality	represents	a	further	

hindrance	for	the	use	of	PRS	in	disease	prediction.	If	a	hypothetical	biomarker	is	generated	

in	response	to	a	disease	(i.e.	through	the	process	of	reverse	causality),	this	may	be	where	

such	a	biomarker	might	have	a	role	for	prediction.	Such	a	biomarker	would	be	different	to	

those	that	are	routinely	measured	because,	unlike	LDL	cholesterol,	the	hypothetical	

biomarker	would	not	be	present	(or	measurable)	under	normal	physiological	conditions	in	

disease-free	individuals	(providing	near-perfect	discrimination).	For	example,	if	the	tunica	

intima	of	the	arterial	wall	produced	a	substance	in	response	to	subclinical	atherosclerosis	

that	‘leaked’	into	the	circulation	in	such	a	concentration	that	it	would	be	detectable	before	

the	manifestation	of	symptomatic	disease,	but	where	the	same	biomarker	was	not	

detectable	in	individuals	without	disease,	this	biomarker	might	be	able	to	discriminate	

between	those	that	go	onto	develop	disease	from	those	that	do	not.	While	a	GRS	may	be	

used	to	identify	a	biomarker	arising	from	reverse	causality,	the	GRS	itself	in	isolation	cannot	

reflect	reverse	causality.
15
		

	

In	contrast	to	reverse	causality,	where	such	a	feature	may	be	an	advantage	of	a	biomarker	

for	prediction,	the	causal	role	of	a	biomarker	is	not	a	requirement	for	predictive	modelling.
15
	

This	is	evident	from	LDL	cholesterol,	one	of	the	most	well-recognised	causal	biomarkers	with	

well	understood	molecular	pathways	and	specific	drug	treatments	available;	notably,	LDL	

cholesterol	is	a	poor	predictor	of	coronary	heart	disease.	However,	causality	of	a	biomarker	

makes	all	the	difference	in	terms	of	use	in	developing	population-level	interventions	for	

disease	prevention.
12,16

		

	

An	interesting	exception	from	the	predictive	perspective	are	oligogenic	medical	conditions	–	

that	lie	between	complex	and	Mendelian	diseases	–	that	are	likely	to	be	amenable	to	GRS-

based	predictions.
3,10

	For	example,	auto-immune	diseases	may	represent	one	such	category	

where	ROC	curve	values	of	around	0.9	from	a	GRS	may	be	feasible.
17,18

	Of	note,	while	the	

high	C-statistic	does	not	mean	that	such	a	GRS	can	automatically	translate	into	clinical	utility,	
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it	is	likely	a	prerequisite	for	population	screening.
3,9
	Regarding	the	potential	of	genetic	

prediction,	it	is	notable	that	studies	of	monozygotic	twins	can	provide	an	‘upper	limit’	of	

what	can	be	achieved;	this	information	may	guide	which	traits	and	diseases	have	sufficient	

genetic	attributes	that	a	GRS	could	be	of	potential	clinical	value.
19
	Finally,	a	GRS	captures	risk	

(arising	from	genetic	variants	and	gene-by-environment	interactions)	that	occurs	over	a	

lifetime,	and	thus	while	violating	conventional	prevention	paradoxes	that	would	argue	that	

the	focus	of	preventative	strategies	should	be	the	entire	population	rather	than	just	high	risk	

individuals,	the	identification	of	those	at	high	genetic	risk	may	facilitate	timely	prevention	

targeted	to	those	who	would	develop	early	onset	disease:	it	might	therefore	be	feasible	

that,	for	example,	a	population-wide	treatment	with	e.g.	a	polypill	given	to	everyone	at	say	

at	the	age	of	40	and	above	might	be	enhanced	with	earlier	targeted	treatment	in	those	at	

high	genetic	risk.		We	note	that	the	availability	of	genome-wide	genotyping	facilitated	by	

technological	advances	and	massive	reductions	in	cost	are	likely	to	make	genotype	a	readily	

available	trait	at	the	population-level	(thus	facilitating	translational	opportunities).	

Widespread	availability	of	genotyping	is	likely	to	occur	(at	least	initially)	in	high-	and	middle-

income	countries,	which,	together	with	the	predominance	of	genetic	studies	being	

conducted	in	European	populations,	may	have	the	net	effect	to	further	increase	global	

health	inequalities.		

	

In	conclusion,	we	recognise	and	celebrate	the	incontrovertible	role	that	genomics	research	

has,	and	will	continue	to	provide	in	our	understanding	of	the	molecular	basis	of	common	

diseases,	in	elucidating	the	mechanisms	by	which	diseases	occur,	and	in	identifying	new	

therapeutic	targets.
9-13,20

	Nonetheless,	the	inconvenient	truth	is	that	for	common	diseases,	

no	combination	of	normally-distributed	biomarkers,	each	modestly	associated	with	disease,	

is	likely	to	lead	to	clinically-relevant	improvements	in	risk	prediction.	Geoffrey	Rose	stated
16
	

that	for	common	diseases,	“a	large	number	of	people	at	a	small	risk	may	give	rise	to	more	

cases	of	disease	than	the	small	number	who	are	at	a	high	risk”,	which	notably	relates	to	

examining	the	upper	quantiles	of	a	GRS,	and	concluded	that	the	underlying	motivation	

“should	always	be	to	discover	and	control	the	causes	of	incidence”.	This	elegant	elaboration	

on	sick	individuals	and	sick	populations	by	Rose
16
	over	30	years	ago	was	prescient	to	the	

contemporary	era	of	big	data	and	genome-wide	analysis	studies.	
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