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ABSTRACT Polygenic risk scores (PRS) use the results of genome-wide association studies (GWAS) to predict

quantitative phenotypes or disease risk at an individual level, and provide a potential route to the use of

genetic data in personalized medical care. However, a major barrier to the use of PRS is that the majority of

GWAS come from cohorts of European ancestry. The predictive power of PRS constructed from these studies

is substantially lower in non-European ancestry cohorts, although the reasons for this are unclear. To address

this question, we investigate the performance of PRS for height in cohorts with admixedAfrican and European

ancestry, allowing us to evaluate ancestry-related differences in PRS predictive accuracy while controlling for

environment and cohort differences. We first show that the predictive accuracy of height PRS increases

linearly with European ancestry and is partially explained by European ancestry segments of the admixed

genomes. We show that recombination rate, differences in allele frequencies, and differences in

marginal effect sizes across ancestries all contribute to the decrease in predictive power, but none

of these effects explain the decrease on its own. Finally, we demonstrate that prediction for admixed

individuals can be improved by using a linear combination of PRS that includes ancestry-specific effect

sizes, although this approach is at present limited by the small size of non-European ancestry discovery

cohorts.
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Genome-wide association studies (GWAS) have proved remarkably
successful at identifying the genomic basis of complex traits. For
example, 3,290 genome-wide significant loci explain approximately
25% of the phenotypic variation in height in European ancestry
individuals (Yengo et al. 2018). This polygenic architecture is a feature
of most common diseases (Watanabe et al. 2019). One approach to
incorporate this information into clinical care is to use polygenic risk
scores (PRS). PRS are simply sums of the risk alleles carried by an
individual weighted by their effect sizes (Purcell et al. 2009). For some
diseases (for example, coronary artery disease and breast cancer), PRS
can identify individuals with clinically actionable levels of risk
(Machiela et al. 2011; Mavaddat et al. 2015; Torkamani et al.

2018; Khera et al. 2018).

One major limitation is that the majority of participants in GWAS
used to derive PRS are of European ancestry (Popejoy and Fullerton
2016; Sirugo et al. 2019). Although many genome-wide significant
GWAS hits do replicate in non-European ancestry cohorts (N’Diaye
et al. 2011; Ng et al. 2013; Marigorta and Navarro 2013; Adeyemo
et al. 2015; Visscher et al. 2017), the predictive power of PRS is lower
and decreases with genetic distance from Europeans (Márquez-Luna
et al. 2017; Ware et al. 2017; Veturi et al. 2019; Martin et al. 2019;
Duncan et al. 2019; Marnetto et al. 2020). As a result, the clinical utility
of PRS has been explored mainly in European ancestry populations,
and little is known about the biological and methodological factors
influencing prediction in non-Europeans (Martin et al. 2017, 2019;
Torkamani et al. 2018; Curtis 2018). Such factors may include inter-
cohort differences in data collection, phenotype or environment, dif-
ferences in linkage disequilibrium (LD) structure or allele frequencies
across populations, differences in causal or marginal effect sizes, and
epistatic or gene-environment interactions (Novembre and Barton 2018).

Simulations have shown that some reduction in predictive power
is expected due to differences in allele frequencies and LD patterns
across populations (Martin et al. 2017; Wang et al. 2020). However,
there remains a gap between empirical observations, and theoretical
and simulation results in that the extent to which these factors explain
the observed decrease in real data are unknown.

Here, we address this gap in two ways. First, we describe the
reduction in the predictive power of height PRS as a function of
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ancestry in populations of recently admixed African and European
ancestry. Height is a well-studied model for understanding complex
polygenic traits, and admixed populations allow us to investigate
predictive power as ancestry varies continuously, while controlling
for environmental or methodological differences between cohorts
(Marnetto et al. 2020). Second, we explore the roles of different
biological and statistical factors in driving this reduction. Our results
suggest that there is no simple statistical solution to the PRS trans-
ferability problem and emphasize the importance of performing
GWAS in diverse populations.

METHODS

Data preparation, QC, and phasing

We obtained genotype and phenotype data from the UK Biobank
(Bycroft et al. 2018) (UKB), the Women’s Health Initiative (Hays
et al. 2003) (WHI), Jackson Heart Study (Taylor 2005) (JHS), and
Health and Retirement Study (Sonnega et al. 2014) (HRS) cohorts
through dbGaP. For HRS and UKB we also obtained imputed ge-
notype data, described elsewhere (Sonnega et al. 2014; Bycroft et al.
2018). For WHI and JHS we lifted over SNP positions to hg19 using
liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). For WHI,
JHS, and HRS, we flipped alleles to the positive strand using the
appropriate strand files from https://www.well.ox.ac.uk/�wrayner/
strand/. Because the different cohorts each contain different ancestry
groups, we initially identified individuals with admixed African
ancestry in each cohort using a combination of genetic clustering
and self-reported ancestry as described below. For these individuals,
we then inferred local ancestry, as described in the next section.

UKB: This dataset contains several ancestry groups. We selected
8,813 individuals with African or admixed African and European
ancestry-based on PCA (Figure S1). After ancestry inference, we
further filtered this set to contain individuals with at least 5%
genome-wide African ancestry proportion and phenotype avail-
ability, resulting in 8,700 individuals that we refer to as UKB_afr
(Table 1). We randomly selected 9,998 European ancestry individuals
from the “White British” subset to use as a comparison sample and
refer to them as “UKB_eur”.

WHI: This dataset contains African American and Hispanic par-
ticipants. We ran unsupervised ADMIXTURE (Alexander et al. 2009)
with k = 3 and identified 7,285 individuals with self-reported “African
American” ancestry with at most 0.8 of the first ADMIXTURE

component (interpreted as reflecting European ancestry), and at most
0.05 of the second (reflecting Native American ancestry; Figure S2).
We further filtered this set to contain individuals with at least 5%
genome-wide African ancestry, phenotype availability, and height
between 6 2 SD (sd) from the mean (Figure S3), resulting in 6,863
individuals (Table 1). We refer to them as “WHI_afr”. The final filter
was because the public release of the WHI dataset truncates the
extreme 1% of the phenotype distribution (approximately6 2 SD) to
reduce the chance of individual identifiability.

HRS: This dataset contains European American, African American,
and Hispanic participants. We ran unsupervised ADMIXTURE with
K = 3, and identified 2,322 individuals with self-reported “Black/African
American” ancestry with at least 0.05 of the first ADMIXTURE com-
ponent (interpreted as reflecting African ancestry), and at most 0.05 of
the second ADMIXTURE component (interpreted as reflecting Native
American ancestry, see the boxed area in Figure S4).We further filtered
this set to contain individuals with at least 5% genome-wide African
ancestry and sex-corrected height not less than 2 sd below the mean
(Figure S3, to remove individuals with anomalously low height values),
resulting in 2,270 individuals (referred to as “HRS_afr”). We also
identified 10,486 individuals who self-reported “White/Caucasian”
ancestry and had at most 0.05 of each of the first two ADMIXTURE
components, of which 10,159 had sex-specific height above the -2 sd
cutoff (“HRS_eur”, Figure S5, Table 1).

JHS: This dataset contains only African American participants, so
we did not filter the data based on PCA or ADMIXTURE. After
ancestry inference, we retained all 1,773 individuals with at least 5%
African ancestry (“JHS_afr”).

GWAS results: We obtained UK Biobank summary statistics for
height from the Neale Lab GWAS on 360,388 individuals of European
ancestry (round 2; https://www.nealelab.is/uk-biobank, accessed
April 2, 2019). We used a set of 13,586,591 autosomal SNPs that
passed QC filters of INFO score. 0.8 and MAF. 0.0001. For some
analyses, we used between-sibling effect sizes estimated at a subset of
1,284,881 SNPs (Cox et al. 2019). Table 1 shows the number of
individuals and SNPs per dataset.

Ancestry inference

For the admixed cohorts, we estimated local and genome-wide
ancestry. We merged each dataset with CEU (Utah residents with
Northern and Western European ancestry) and YRI (Yoruba from

n■ Table 1 Datasets used in this study. UKB, UK Biobank; WHI, Women’s Health Initiative; JHS, Jackson Heart Study; HRS, Health and

Retirement Study; CI, bootstrap 95% confidence intervals

Dataset Ancestry Na Total number of SNPSb
Number of
SNPs in PRSc

Partial-R2

(CI, %)
European

Ancestry (%)

UKB European subset
(UKB_eur)

European 9,998d 685,475 6,052 22.4 (20.8-24) 100

HRS European
(HRS_eur)

European American 10,159 (10,123) 1,515,431 (10,118,786) 7,117 (9,724) 15.6 (14.4-16.9) 100

UKB admixed African
(UKB_afr)

African + European 8,700 (8,696) 685,475 (13,279,553) 6,049 (10,577) 4.1 (3.2-4.9) 13.1

WHI (WHI_afr) African American 6,863 741,983 5,744 3.6 (2.8-4.5) 22.7
JHS (JHS_afr) African American 1,773 702,685 5,676 3.8 (2.2-5.7) 17.7
HRS admixed African

HRS_afr
African American 2,251 (2,241) 1,511,742 (10,118,786) 7,101 (9,724) 3.1 (1.9-4.6) 17.5

a
number of individuals;

b
number of SNPs in the intersection between genotyped (or imputed) SNPs and SNPs from the height GWAS that passed our filters;

c
SNPs clumped in 100 Kb windows and with P , 0.0005;

a,b,c
number of individuals and SNPs in imputed set in parentheses; d, randomly selected from the entire European component of the cohort.
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Ibadan, Nigeria) individuals from The 1000 Genomes Project (2015) and
phased each dataset separately usingHAPI-UR (Williams et al. 2012)with
a window size of 91. We then used RFMix (Maples et al. 2013) to infer
local ancestry, using the CEU and YRI individuals as references for
European and African ancestry, respectively. We used the most likely
ancestry path inferred by the Viterbi algorithm of RFMix to estimate
proportions and checked that they were consistent with those obtained
from unsupervised ADMIXTURE with K = 2 (Figure S5).

Clumping and thresholding (c+t) SNPs

We first intersected the �13.5 million SNPs from the UK Biobank
summary statistics and the genotyped SNPs in each dataset (Table 1).
Next, we defined sets of SNPs based on a variety of clumping
strategies. We clumped SNPs in physical and genetic windows using
a range of p-value thresholds. Physical window sizes (in Kb) were:
1,000, 500, 100, 75, 50, 25, 10, 5. Genetic window sizes (in cM) were: 1,
0.5, 0.3, 0.25, 0.2, 0.15, 0.1. We considered SNPs below the p-value
thresholds: 5·1027, 5·1026; 5·1025 5·1024, 5·1023. For each set of
parameters, we followed these steps: 1) retain only SNPs below the
p-value threshold, 2) select the lowest p-value SNP, 3) remove SNPs
within the window around that SNP, 4) repeat steps 2 and 3 until
there are no SNPs left. We also used a strategy of clumping based on
empirical LD structure. We used PLINK2 (Chang et al. 2015) to
estimate r2 between pairs of SNPs using UKB_eur (–clump-p1 0.01
–clump-r2 0.5–clump-kb 250|100| 50). Finally, we applied a strategy
where we clumped SNPs in approximately independent LD blocks
(Berisa and Pickrell 2016) (defined in either African or European
populations). In total, we evaluated 80 pruning strategies (Table S1).

We also calculated PRS using LDpred (Vilhjálmsson et al. 2015).
We used the UKB_eur imputed genotypes as an LD reference panel
and the UKB GWAS summary statistics for height. We estimated
weights separately for the SNPs present in each dataset using both the
Gibbs sampler and the infinitesimal model and evaluated the partial-
R2 as described above.

For the unweighted PRS, we tested prediction for the same 80 sets
of SNPs (Table S1). We repeated these steps for analyses using effect
sizes re-estimated from sibling pairs and imputed genotypes, except
restricting the initial set of SNPs (before pruning/clumping) to those
present in the sibling or imputed dataset. For imputed genotypes, we
performed the 40 c+t strategies using the physical windows described
above (Table S1).

Effect size estimates for African ancestry

We ran a GWAS using PLINK (Chang et al. 2015) on the Admixed
African individuals from theUKBiobank, including sex, age, age2, and the
first 10 principal components, computed using smartpca (Patterson et al.

2006), as co-variates. We then computed a chi-squared statistic for the
difference between the Admixed African effect size (b  afr , with standard
error safr) we obtained and the European effect sizes from the UK
Biobank (beurwith standard error seur):

x2diff ¼

2

6

4

beur2bafr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
eur þ   s2

afr

q

3

7

5

2

ðEquation  1Þ

PRS and odds-ratio calculation

We calculated PRS for each individual, j, as the weighted sum of effect
sizes:

PRSj ¼
X

M

i¼1

biGij ðEquation  2Þ

where the sum is over all M SNPs used in the PRS, Gij is the effect
allele dosage (0, 1 or 2) of individual j at SNP i, and bi is the estimated
effect size of the effect allele at SNP i. To calculate unweighted PRS, we set
bi to 61 depending on whether the original bi is positive or negative.

To evaluate predictive power, we fitted a linear model of height as a
function of sex, age, age2, genome-wide European ancestry proportion
(peur), and PRS (height � sex þ ageþ age2 þ peur þ PRS), and com-
pared it to a model without PRS (height � sex þ ageþ age2 þ peur).
The partial-R2 between the two models gives the proportion of the
phenotypic variation explained by the PRS, to which we refer as partial-
R2 or predictive power, throughout. To evaluate the effect of ancestry on
predictive power, we stratified each dataset into 2-4 equally sized bins
(2 for JHS_afr andHRS_afr, 4 forWHI_afr andUKB_afr) based on peur .
Next, we calculated the partial-R2 for each bin. To infer confidence
intervals, we used the R package “boot” (Davidson andHinkley 1997) to
perform a percentile bootstrap over samples with 1,000 replicates. For
HRS_eur we used the entire set of 10,159 individuals and calculated
confidence intervals for that set. Finally, we performed a weighted
regression – using the inverse of the bootstrap standard deviation as
weights— of the partial-R2 values on themedian proportion of European
ancestry in each bin. We repeated this analysis with imputed genotypes,
unweighted PRS and sibling-estimated effect sizes.

We also constructed linear combinations of PRS (Márquez-Luna
et al. 2017). Using Equation 2, we calculated PRSeur using effect sizes
from the UK Biobank, and PRSafr using the same SNPs as PRSeur , but
with effect sizes we re-estimated from the UKB_afr dataset (see
above). In PRS1C , we weight PRSafr in all individuals by a common
factor a ranging from 0-1, and in PRS2C , in addition to a, each
individual’s PRSafr is weighted by peur , the proportion of European
ancestry for the individual. So, for individual j:

PRS1C ¼ aPRSafr;j þ ð12aÞPRSeur;j ðEquation 3Þ;

  PRS2C ¼ a

�

12 peur;j

�

PRSafr;j

þ ð12aþ apeur;jÞPRSeur;j ðEquation 4Þ

We evaluated the predictive power of PRS1C and PRS2C in WHI_afr,
JHS_afr andHRS_afr.We also used Equation 2 to calculate PRS based only
on European ancestry segments of the genome (from the local ancestry
analysis) and repeated the analysis of partial-R2 as a function of peur .

Finally, we constructed a combined PRS where Admixed African
effect sizes are used for SNPs falling in African ancestry regions of the
genome, and European effect sizes are used for SNPs falling in
European ancestry regions. For African ancestry segments, effect
sizes from admixed Africans are weighted by a constant, a. So, for
each haplotype in each individual, we have:

PRS3C ¼ a

"

X

i2AFR

bi;afrGi

#

þ ð12aÞ

"

X

i2AFR

bi;eurGi

#

þ

"

X

  i2EUR

bi;eurGi

#

ðEquation 5Þ;

whereGi is the genotype of the i-th SNP, and EUR andAFR are the
sets of European and African ancestry regions of the genome (specific
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to each individual). We then sum PRS3C for both haplotypes of each
individual, and refer to this sum as PRS3C for simplicity.

We estimated the odds ratio for being in the upper q-quantile of
height conditional on being in the upper q-quantile of PRS as:

OR ¼  
Pðheightq

�

�PRSqÞ

PðheightqÞ
ðEquation 6Þ

where PðheightqÞ is the proportion of individuals in the upper
q-quantile of height and PðheightqjPRSqÞ is the proportion of indi-
viduals in the upper q-quantile of PRS who are also in the upper
q-quantile of height. We used standardized residuals of height after
regressing out age, age2, sex for each dataset.

Recombination rate and LD score analyses

We used recombination maps estimated in African Americans
(AA_Map) (Hinch et al. 2011) to estimate genetic distance in
20 Kb windows using linear interpolation between genotyped
points. We stratified each dataset into four equally sized bins
according to recombination rate and calculated partial-R2, and
95% confidence intervals obtained by the percentile bootstrap on
3,000 replicates over samples for each bin, as described above. We
then divided the values for each bin by those obtained for the full
dataset, thus obtaining a relative partial-R2. In another approach,
we tested for correlation between x2

diff ðEquation 1Þ and LD scores
(Bulik-Sullivan et al. 2015). We also performed the same analysis
using a recombination map derived for CEU (European) individ-
uals from the 1000 Genomes Project (Spence and Song 2019).

Genetic and phenotypic variance analyses

We estimated the ratio of the additive genetic variance explained by
the PRS SNPs as:

GPRS ¼

P

M

i¼1
2fi;afrð12 fi;  afrÞb

2
i;eur

P

M

i¼1
2fi;eurð12 fi;  eurÞb

2
i;eur

(Equation 7)

where fi,eur, fi,afr, bi,eur and bi,afr are the allele frequencies and effect
sizes for each of theM PRS SNPs in the European or admixed African
ancestry cohorts, respectively. For HRS_afr, HRS_eur, UKB_afr, and
UKB_eur, allele frequencies were obtained directly from the datasets.
For WHI_afr and JHS_afr, the denominator was estimated from
frequencies of non-Finnish European individuals from gnomAD
(Lek et al. 2016).

Modeling height variance as a function of ancestry

We combined all 29,746 individuals (Table 1, UKB_eur excluded)
and computed the residuals yi of the regression of height on sex,
dataset, age, age2, sex�dataset, sex�age, sex�age2, dataset�age, data-
set�age2. We then fitted a linear model for residual height as a
function of the ancestry of individual j (p  j;  eur) and allowed the
variance to vary linearly with ancestry:

yj ¼ mþ bpj;  eur þ ej;       ej � Nð0;s2 þ gpj;  eurÞ (Equation 8)

for model coefficients m;b;s2 and g. We fit this model using
the GAMLSS package (Rigby and Stasinopoulos 2005) in R (R Core
Team 2017).

Local differences in allele frequency

We calculated allele frequencies for all variants in the HRS_afr and
HRS_eur subsets separately. We defined 10 Kb windows around each
PRS SNP and calculated the mean squared frequency difference
between subsets for all the SNPs contained in the window. We
explore the effect size difference for AFR and EUR (Equation 1)
for each PRS SNP as a function of the mean squared frequency
difference in the window surrounding each SNP. We then repeated
the analysis for 6kb windows.

Data availability

Scripts developed specifically to perform the data analyses reported in
this work are available at: https://github.com/mathilab/PRS_Height_
Admixed_Populations. Genotype and phenotype data were obtained
from UK Biobank or dbGaP. File S1 contains 14 supplementary
figures. Table S1 contains 20 sheets. Sheets 1-6: Different SNP sets
generated by clumping and their PRS values. Effect sizes from 360K
European ancestry individuals from the UK Biobank. Data from
genotype arrays. Sheets 6-12: Different SNP sets generated by clump-
ing and their PRS values. Effect sizes estimated from ‘White British’
sibling pairs from the UK Biobank. Data from genotype arrays. Sheet
13: Different SNP sets generated by clumping and their PRS values.
Data from imputed datasets. Sheets 14-19: Different SNP sets gen-
erated by clumping and their unweighted PRS values. Sheet 20:
Difference between PRS values for 1000G super-populations (Africa,
Europe) for different sets of SNPs. Supplemental material available at
figshare: https://doi.org/10.25387/g3.12795887.

RESULTS

Constructing polygenic risk scores

We tested 81 approaches to PRS construction, including five different
p-value cutoffs and 15 window sizes, pairwise r2 and LD blocks
inferred for African and European populations, and the infinitesimal
model of LDpred. Among the clumping and thresholding (c+t)
strategies, increasing the p-value cutoff and window sizes improves
prediction (Figure S6 and Table S1). LD clumping yields higher
predictive power but depends on prior knowledge of the population-
specific LD structure and has the highest difference in PRS between
1000 Genomes European and African Populations (Table S1). Ap-
proximately independent LD blocks (Berisa and Pickrell 2016) yields
small sets of SNPs that explain almost as much variation as the larger
(23-37 times) LD clumping sets, but also rely on knowledge of the LD
structure, as does LDpred. Thus, we focused on strategies that are
independent of LD and chose a set of SNPs using a p-value threshold
of 0.0005 and a physical window of 100 Kb, which includes �5,600-
7,100 SNPs (Table 1) and obtains partial-R2 values close to the LD
clumping strategies while requiring about 10-fold fewer SNPs. In any
case, results for other strategies are qualitatively similar (Table S1,
Figure S6, Figure S7).

Predictive power increases linearly with proportion of
European ancestry

We estimated the predictive power of the PRS in each dataset. Partial-
R2 was 22.4% in UKB_eur, and 15.6% in HRS_eur (Table 1). Because
the 9,998 UKB_eur individuals analyzed here were also in the
discovery GWAS, we use the HRS_eur dataset throughout the paper
as representative of European ancestry. In the admixed cohorts
(WHI_afr, JHS_afr, HRS_afr, UKB_afr), partial-R2 was 3.1–4.1%,
or between 3.8- to 5-fold lower than in HRS_eur, consistent with
previous observations (Ware et al. 2017; Martin et al. 2019).
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Stratifying individuals in each cohort by their average genome-
wide ancestry, we find that partial-R2 increases linearly with Euro-
pean ancestry (by 1.3% for each 10% increase in European ancestry;
Figure 1A). We estimated the partial-R2 in individuals with no
European ancestry (i.e., the intercept of this regression) to be 1.5%
(S.E.=0.3%). This result is robust to the set of SNPs used in the PRS,
with intercepts ranging between -1% and 2.5%, depending on the
pruning strategy (Figure S6). We observe the same pattern when
using the LDpred infinitesimal model (Figure S7). Relevant for
clinical interpretation, the odds-ratio for ‘tallness’ in the tails of
the PRS distribution is also lower in the admixed populations than
in the European ancestry population, although only 2.3-fold on
average across populations between the highest and lowest 5% of
the European ancestry spectrum (95th quantile of PRS distribution),
compared to the 3.8- to 5-fold difference in partial-R2 (Figures S8, S9).

We next restricted the PRS SNPs to those found in segments of the
genome inferred to have European ancestry (Figure 1B). If the
predictive power of the PRS came entirely from these segments, then
we would expect the relationship between ancestry and partial-R2 to

be the same as when we used the whole genome (i.e., linear as in
Figure 1A). On the other hand, if the predictive power were uniformly
distributed across the genome, we would expect a quadratic relation-
ship: the partial-R2 of the whole genome (which scales linearly with
ancestry) would be multiplied by the proportion of the genome in
European ancestry segments (i.e., ancestry). Our observations are
intermediate to these extremes (Figure 1B). We conclude that the
predictive power of the PRS is enriched in, but does not entirely come
from, the European ancestry segments of the admixed genomes,
suggesting that the ancestry-specific interactions might play a role.

Next, we explored whether combining ancestry-specific PRS could
improve predictive power, as suggested by Márquez-Luna et al. (2017). A
simple linear combination of PRS improves partial-R2 in WHI_afr
(3.6–3.9%), JHS_afr (3.8–4.1%), and HRS_afr (3.1–3.2%) (Figure 2).
Weighting the combination by the ancestry proportion of each
individual produces a similar improvement: 3.9% for WHI_afr, 4%
for JHS_afr, and 3.2% for HRS_afr (Figure 2). Finally, we used local
ancestry information to construct a PRS using ancestry-specific effect
sizes at each SNP (Figure 2). This approach produces a similar
improvement to the global ancestry weighted PRS, with a partial-R2

increase between 0.1 and 0.3% across datasets. While these absolute
improvements are modest, this is likely due to GWAS sample size
discrepancy (N = 8,700 Admixed African and N = 361,194 European).
With larger African ancestry GWAS, we expect that we would be able
to improve the PRS performance in the admixed populations with this
approach.

Why does predictive power vary with ancestry?

Several explanations have been proposed to explain why the pre-
dictive power of PRS is lower in non-European ancestry populations.
These include differences in LD patterns, the allele frequency of PRS
variants, additive genetic variance, gene-gene (G·G) and gene-
environment (G·E) interactions in different populations, and biases
in the discovery cohort. In this section, we evaluate the impact of
some of these factors on PRS-based phenotypic prediction.

Figure 1 Partial-R2 as a function of European ancestry in admixed
populations. Each admixed dataset is split up into quantiles of Euro-
pean ancestry proportion. Each quantile has between 886 and 2,175
individuals, and plotted values represent the median of each bin.
Vertical bars represent 95% confidence intervals estimated from case
resampling bootstrap (1,000 replicates). The dashed line shows the
regression with standard errors shaded in light gray. A: Using all
segments of the genome. B: Using only European ancestry segments.
The orange lines represent the equation y ¼ 0:15pk

eur, for k={1,1.5,2}. k
= 1 and k = 2 represent the extreme cases where the predictive power
in admixed individuals comes entirely from European ancestry seg-
ments of the genomes (k = 1) or is uniformly distributed across the
whole genome (k = 2).

Figure 2 Predictive power of linear combinations of PRS. Relative
partial-R2 increase for HRS_afr (N = 2,251), JHS_afr (N = 1,773), and
WHI_afr (N = 6,863) from three linear combinations of PRSeur and PRSafr.
The dashed line represents no difference in performance between the
linear combinations and PRSeur. For PRS1

c and PRS2
c , a represents the

constant weight given to the African component across individuals.
PRS2

c ; in addition to a, weights the African component based on
individual African ancestry. PRS3

cuses European effect sizes for PRS
effect alleles falling in European ancestry segments, and a linear
combination of European and African effect sizes (weighted by a) for
PRS effect alleles falling in African ancestry segments (Equations 3-5).
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Differences in the site frequency spectrum

Differences in the frequencies of the tag variants could lead to
different partial-R2 values across ancestries. Because GWAS have
more power to detect more common variants, one hypothesis is that
the PRS will tend to contain variants that are more common in
European than African ancestry backgrounds–resulting in system-
atically lower predictive power in African ancestry populations. We
tested this by comparing the ratio of the additive genetic variance
contributed by the variants used in the PRS in the European and the
admixed datasets (Equation 7). This ratio is the relative difference
we would expect if the effect sizes and LD structure were the same
across ancestries, and only allelic frequencies differed. We estimate
this ratio to be: 0.78 (UKB), 0.92 (HRS), 1.04 (JHS), and 1.07 (WHI),
suggesting that at most 8% of the decrease in partial-R2 (in non-
UKB samples) can be explained by differences in the site frequency
spectrum (SFS). JHS and WHI have fewer SNPs genotyped than
HRS and UKB (Table 1). One possibility is that those arrays are
more biased toward SNPs that are common across ancestries.

Differences in the total genetic variance

A related possibility is that SFS differences might affect not just the
variance explained by the PRS SNPs, but also the total genetic
variance. Genome-wide heterozygosity in European ancestry popu-
lations is approximately 30% lower than in West African ancestry
populations (The 1000 Genomes Project Consortium 2015). If this
were true for SNPs that causally affect height, then the additive
genetic variance of those SNPs would also be 30% lower. Assuming
constant environmental variance and height heritability to be 80%, it
would follow that that the European phenotypic variance would be
about 24% lower (0.8�0.7+0.2). Furthermore, the phenotypic variance
in admixed populations would vary linearly with ancestry. In this
case, the PRS could capture the same absolute amount of phenotypic
variance, but the proportion of variance explained would be higher in
European ancestry populations. However, we find that phenotypic
variance does not vary significantly with genome-wide ancestry
proportion once we regress out sex, age, age2, dataset, and all their
interactions (P = 0.133, Figure S10).

Figure 3 Effect of recombination rates on predictive power. A and B: PRS SNPs from each dataset were binned into quartiles of African American
recombination rate. Absolute (A) and relative (B) partial-R2 for subsets of SNPs divided by the total partial-R2 for each dataset (Table 1). Vertical bars
show 95% bootstrap confidence intervals. C: correlation between PRS SNPs effect sizes from Europeans and Admixed Africans in the WHI_afr
dataset. The inset shows a qq-plot of x2diff for PRS SNPs. The dashed line shows the regression with standard errors shaded in light gray. D: X-axis,
recombination rate in cM/20Kb. Y-axis, statistic for the difference in betas between European and African ancestries (Equation 1) inWHI_afr. Cut-off
at 15 for display purposes excludes 10 data points. The dashed line shows regression with standard errors shaded in light gray. Red points represent
the median recombination rate for each of 20 quantiles of recombination rate.
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Population-specific linkage disequilibrium (LD) patterns

Variants identified by GWAS are not generally themselves causal but
rather are linked to the causal variant(s). Linkage disequilibrium
patterns are known to differ between populations, suggesting that tag
SNPs discovered in the original European ancestry GWAS may be less
efficient at tagging the causal variants on non-European ancestry
haplotypes. Using GWAS variants detected in an exclusively European
ancestry cohort would thus result in a reduced partial-R2 in admixed
African populations when compared to European ancestry populations.

If LD differences between African and European haplotypes drive
the pattern seen in Figure 1, then a PRS constructed from SNPs in low
recombination regions should be more transferable than a PRS
constructed from SNPs in high recombination regions of the genome.
When we bin PRS SNPs into quartiles of recombination distance and
calculate PRS for SNPs in each bin, we see that partial-R2 for the
admixed cohorts tends to decrease between the first and fourth
quantiles of recombination (Figure 3B), suggesting that differences
in LD do play a role in reducing prediction in non-Europeans. On the
other hand, we note that, even for the quartile of lowest recombi-
nation, the reduction in partial-R2 for admixed individuals is sub-
stantial – 76% on average across datasets – compared to 84% for the
fourth quantile (Figure 3A). Thus, even if all PRS variants were from
low recombination regions, we would still observe a substantial
reduction in predictive power. We performed the same analysis using
a recombination map derived from the 1000 Genomes CEU pop-
ulation (Spence and Song 2019) and found consistent results (Figure
S11). One potential confounding factor in this analysis is that causal
variants in low recombination regions might be better tagged than
those in high recombination regions, which would reduce the relative
performance in high recombination regions. However, since we find
little evidence of difference, we conclude that this is unlikely to be a
major factor.

A second prediction is that the difference between effect sizes
estimated in European and African ancestry populations  should be larger
in regions of high recombination. To test this, we evaluated whether effect
sizes estimated directly from admixed individuals differ from the original
(European) effect sizes (Figure 3C) and whether these differences are
correlated with recombination in the regions in which they are located.
We find no significant correlation ðr ¼ 0:0005, P = 0.97) between
x2
diff   and local recombination rate (Figure 3D), and a small positive

correlation between x2
diff   and European LD scores (Bulik-Sullivan

et al. 2015) (r = 0.0292, P = 0.0379) (Figure S12).
A third prediction is that, if differences in partial-R2 are driven by

differences in ability to tag the causal variant, then PRS constructed
from imputed genotypes should see a smaller decrease in predictive
power than those constructed from genotype array data. Using
imputed genotypes for the HRS and UKB cohorts, we find that
the relationship between ancestry and partial-R2 is the same for
imputed and array data suggesting that this is not the case (Figure
4A). In fact, the absolute performance of imputed and genotyped data
are similar (Figure 4B), consistent with previous observations (Ware
et al. 2017). Moreover, the ratio of genetic variance explained by PRS
SNPs is similar for imputed and genotyped data (Figure 4C). These
results suggest that the genotyping arrays are efficient at capturing the
SNP heritability, at least for the c+t PRS strategies that we used. It is
important to note that different datasets use different arrays, and a
different pattern could be observed for other datasets. We conclude
that, while differences in LD do affect PRS transferability, they are not
the only factor affecting the relationship between ancestry and pre-
dictive power.

Differences in marginal effect size

Themarginal effect size at a PRS SNP depends on the cumulative effects
of the causal variants that it tags. Therefore, marginal effect sizes at PRS
variants across ancestries might differ for several reasons, including
local epistasis or allelic heterogeneity. When we ignore effect sizes and
calculate the unweighted PRS, we see a similar pattern to Figure 1A
(Figure 5A), suggesting that not only marginal effect sizes but even
directions differ between ancestries. That we can improve the predictive
power of PRS by including effect sizes re-estimated in African ancestry
populations (Figure 2) also indirectly supports the role of effect size
differences. Finally, we find that allele frequencies differ more between
African and European populations around SNPs with larger effect size
differences, although the effect is rather small (r = 0.0005; P = 0.0327;
Figure 5B, Figure S13). These results suggest that marginal effect sizes
differ across ancestries and that this is one of the factors underlying the
reduction in predictive power.

Residual population stratification in the discovery cohort

Despite statistical methods to control for population stratification, it
continues to be a confounding factor in the analysis of GWAS results
(Berg et al. 2019; Sohail et al. 2019) and could inflate predictive power
in European relative to non-European ancestry cohorts. To test this,
we used effect sizes at PRS SNPs re-estimated within sibling pairs

Figure 4 Imputed data. A: Partial-R2 as a function of European ances-
try, where each admixed dataset is split up into quantiles of European
ancestry proportion. Vertical bars show 95% bootstrap confidence
intervals estimated from case resampling bootstrap (1,000 replicates).
The dashed line shows the regression with standard errors shaded in
light gray. B: Partial-R2 for two clumping strategies (100 and 500Kb
windows with either P , 0.005 or P , 0.00005) for imputed and
genotyped sets of SNPs. C: additive genetic variance ratio for PRS
SNPs (Equation 7).
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from the UK Biobank (Cox et al. 2019). This approach should remove
much of the effect of population stratification. We find that the linear
relationship between ancestry and predictive power is similar to that
observed for the GWAS PRS (Figure S14), albeit absolute partial-R2

values are lower across all datasets (Figure S14, Table S1). We
conclude that residual population structure in the UK Biobank
GWAS results does not drive differences in predictive power across
ancestries.

DISCUSSION
Polygenic scores may become a useful tool in translational and
precision medicine, but are limited by their lack of applicability in
non-European ancestry populations (Ware et al. 2017; Martin et al.

2019; Marnetto et al. 2020). Consequently, much of the potential of
genomic disease risk profiling is restricted to European ancestry
populations. Here, we show that the predictive power of PRS is
approximately proportional to ancestry in populations of admixed
European and African ancestry. We focused on the clumping and
thresholding approach to PRS construction, although we saw con-
sistent results with LDpred’s infinitesimal model (Figure S7). More
sophisticated approaches provide limited improvement in predictive
power, require additional assumptions about LD structure or other
parameters, and do not necessarily lead to substantial improvements
in predictive power or transferability (Kulm et al. 2020).

We show that differences in LD structure and SFS affect the
transferability of PRS but do not explain the full magnitude of the
decrease. Our results are broadly consistent with simulation studies
showing that these two factors are expected to decrease variance
explained when the test cohort has different ancestry from the GWAS
cohort and, specifically, that together they explain up to 72% of the
loss of accuracy in prediction between European and African ancestry
(Wang et al. 2020). Moreover, our findings agree with estimates that
the trans-ancestry correlation in effect sizes for height is less than
1 (between 48 and 71%) (Veturi et al. 2019), and therefore that the
marginal effect sizes at PRS SNPs are systematically different across
ancestries. We interpret this as evidence that cis-epistasis or allelic

heterogeneity – which mimics epistasis (Wood et al. 2014) – con-
tribute to these differences. However, this may not, in general, be the
only contributing factor. Gene-by-environment (Veturi et al. 2019;
Mostafavi et al. 2020) and gene-by-ancestry interactions may also
contribute, and the relative importance of these mechanisms remains
to be quantified.

By incorporating effect sizes from admixed populations in a linear
combination of PRS, we are able to improve predictive power, in
agreement with previous findings (Márquez-Luna et al. 2017;
Marnetto et al. 2020). Although the inclusion of individual and local
ancestry information yielded only a modest increase in predictive
power, this is likely due to the low sample size of our African-ancestry
GWAS. With better-powered GWAS to estimate ancestry-specific
effect sizes, the improvement should be more extensive. In agreement
with this, a recent study showed relatively higher improvement in
height prediction when using ancestry specific effect sizes from a
moderately large GWAS (N = 160,000) for an East Asian ancestry
population (Marnetto et al. 2020). This suggests that large cohorts of
diverse ancestries and admixed populations are needed to make PRS
broadly applicable.

Our approach has several limitations. In order to disentangle the
factors affecting PRS generalizability across ancestries, we focused on
height – a model trait due to its high polygenicity and heritability – in
recently admixed cohorts of highly diverged European and African
ancestry in the US and the UK. We expect that our insights will
transfer to some extent to other traits, ancestries, and cohorts, but
there may be significant differences. For example, genetic architec-
ture, local adaptation, and environmental factors, to name a few,
might differ, and our results might not directly apply to the same
extent. A related issue is that there is variation across the African
ancestry samples used in this study, although we treated African
ancestry as derived from a single population. On the other hand, most
of the ancestry of the populations that our cohorts are drawn from is
West African, even other African ancestries are largely symmetrically
related to Europe, and in these cohorts, the admixture proportion is
the major component of variation (Zakharia et al. 2009; Tishkoff et al.

Figure 5 Unweighted PRS and the effect of local allele frequency differences on effect size differences. A: Partial-R2 for an unweighted PRS that uses
the sign but not the magnitude of each SNP effect (Methods). Each admixed population is split up into quantiles of European ancestry proportion.
Vertical bars represent 95% confidence intervals estimated from a case resampling bootstrap (1,000 replicates). The dashed line shows the
regression with standard errors shaded in light gray. B: X-axis, mean squared frequency difference for PRS SNPs for European and African ancestries
in a 6 Kb window around each PRS SNP (Methods). Frequencies were calculated per dataset (HRS_eur, HRS_afr) for the causal allele. Y-axis, statistic
for the difference in betas between European and Admixed African ancestries (Equation 1) in WHI_afr. Cut-off at 15 for display purposes excludes
15 data points. Dashed line shows the regression with standard errors shaded in light gray. Red points represent the median recombination rate for
each of 5 quantiles of mean squared difference.
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2009; Patin et al. 2017). Ideally, we would have enough individuals
and reference panels to properly integrate the different components
of African ancestry into our analyses, and this is an essential problem
for future research.

Another limitation of our approach is the difficulty of distinguish-
ing the effects of correlated variables. For example, the site frequency
spectrum, the recombination rate, the density and effect sizes of
GWAS hits, and the effectiveness of tag SNPs are all correlated. While
we can separate these effects in some cases, our results are likely still
confounded to some extent. In simulations, we can control and
quantify these effects. However, this requires realistic simulations
of complex traits in admixed populations. Developing such simula-
tions is another important future goal. A related issue is that there are
both biological and environmental factors that are correlated with
ancestry. Local ancestry analysis can control for many of these effects
(e.g., Figure 1B), but it remains a confounder for analyses based on
genome-wide ancestry. Overall, our results exclude some possibilities and
indicate what are likely the most relevant factors, but we are still a long
way from a quantitative understanding of their relative importance.

In summary, leveraging information about each associated var-
iant’s local ancestry background is a promising way to improve
transferability, albeit that, too, requires larger non-European cohorts
to estimate effect sizes. Though we focused on cohorts of recent
admixed European and African ancestry, additional work is required
to characterize the transferability of PRS both in populations with
more complex recent admixture, as well as in populations that are
more anciently admixed. While we showed that different factors each
play a modest role in PRS generalizability, there is much room for
advances in approaches such as ours as more diverse GWAS datasets
become available.
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