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Abstract� We propose a simple approach to evolution of polygonal
curves that is specially designed to 	t discrete nature of curves in digi

tal images� It leads to simpli	cation of shape complexity with no blur

ring �i�e�� shape rounding� eects and no dislocation of relevant features�
Moreover� in our approach the problem to determine the size of discrete
steps for numerical implementations does not occur� since our evolution
method leads in a natural way to a 	nite number of discrete evolution
steps which are just the iterations of a basic procedure of vertex deletion�
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� Introduction

We assume that a closed polygon P is given �that does not need to be simple�� In
particular� any boundary curve in a digital image can be regarded as a polygon
without loss of information� with possibly a large number of vertices�

The main motivation for the presented discrete curve evolution is the fact that
the boundary of a segmented object in a digital image contains misinformation
but misses no information� Clearly� there is digitization and segmentation noise
on the boundary of a segmented object� that results in displacement of the
boundary points� However� as long as it is possible to recognize the overall shape
of the object� the shape information is contained in the given contour�

Most of the standard approaches in computer vision try to compute the
original position of the displaced boundary points� This is only possible if the
class of shapes to which the analyzed shape belongs is explicitly known and is
su�ciently restrictive� e�g�� �tting ellipses�

On the other hand� it is not necessary to recover the original position of the
boundary points in order to recognize the shape� A pointwise interpretation of
this fact is that there exists a subset A of the set of the boundary points B
that is su�cient to represent the shape of the object� The other points in B nA
either are redundant for the shape or had been in�uenced by noise� Clearly� the
points in the set A may also be displaced due to noise� but nevertheless they
are su�cient to recognize the shape� if the amount of displacement is such that
people can still recognize the shape� For example� this is the case for the contour



of the building obtained from an aerial image in Figure � �cf� Brunn et al� 	
��
Fig� ��� where it is still possible to recognize the overall shape� although the
amount of displacement of boundary points is relatively large�

            

Fig� �� It is possible to recognize the overall shape of the building� although the amount
of displacement of boundary points is relatively large�

The presented discrete curve evolution allows us for a given object bound
ary to �nd a subset A of the set of the boundary points B that is su�cient to
represent the shape of the object� i�e�� points important for the object shape
remain after the application of the discrete curve evolution� For example� com
pare the contour �a� with �c� in Figure �� where the contours �b� and �c� are
obtained from �a� by our discrete curve evolution� Observe also an enormous
data reduction� contour �c� in Figure � contains only 
� of points of contour
�a��

The fact that the discrete curve evolution allows us to �nd a subset A of
the set of the boundary points B that is su�cient to represent the shape of the
object is not only justi�ed by experimental results� some of which we present in
this paper� but also by the continuity theorem in 	��� This theorem states that
if polygon B is su�ciently close to a polygon A� then the evolved version of
polygon B will remain close to polygon A�

In scale�space theory a curve �or surface� � is embedded into a continuous
family f�t � t � �g of gradually simpli�ed versions� The main idea of scale�
spaces is that the original curve �or surface� � � �� should get more and more
simpli�ed and noise and small structures should vanish as parameter t increases�
Thus� due to di�erent scales �values of t�� it is possible to separate small details
from relevant shape properties� The ordered sequence f�t � t � �g is referred
to as evolution of � � Scalespaces �nd wide application in computer vision� in
particular� due to smoothing �� noise in�uence is reduced� and elimination of
small details �� relevant shape features remain�� Some of the main applications
are quality enhancement of images� noise removal� and shape description and
recognition �e�g�� see Sethian 	�����



            

Fig� �� �a� � �b�� noise elimination� �b� � �c�� extraction of relevant line segments�

The scalespace evolution is mostly based on parabolic partial di�erential
equations� The oldest and beststudied are scalespaces based on a linear di�u
sion equation �also called geometric heat equation�� e�g�� see Weickert 	���� The
solutions of di�usion equations can be obtained by convolution of the original
curve �or surface� with a Gaussian function with parameter t �Kimia and Siddiqi
	���� Hence the solutions correspond to Gaussian smoothing of the original curve
�or surfaces� with support size t� This leads to a multiscale� curvaturebased
shape representation�

Along with the advantages of evolution based on the linear di�usion equation�
there are also some serious problems �Weickert 	���� p� ���

�a� �Gaussian smoothing does not only reduce noise� but also blurs important
features such as edges and� thus� makes them harder to identify� Since Gaus�
sian scale�space is designed to be completely uncommitted� it cannot take
into account any a�priori information on structures which are worth being
preserved �or even enhanced��

�b� Di�usion dislocates features when moving from �ner to coarser scales� So
features identi�ed at a coarse scale do not give the right location and have
to be traced back to the original image �	
�� In practice� relating dislocated
information obtained at di�erent scales is di�cult and bifurcations may give
rise to instabilities� These coarse�to��ne tracking di�culties are generally
denoted as the correspondence problem�

To reduce these problems� many anisotropic and nonlinear di�usion processes
have been proposed for scalespaces �for an overview see� Weickert 	����� Also
reactiondi�usion equations� which lead to reactiondi�usion scale spaces� have
been considered �Kimia� et al 	����

We propose a di�erent approach to scalespace evolution in which both prob
lems simply do not occur� Our departing point is a discrete nature of curves and
surfaces in digital images� In opposite to standard approaches in scalespaces�
our evolution is guided neither by di�erential equations nor Gaussian smoothing�
and it is not a discrete version of an evolution by di�erential equations� as it is
the case in Bruckstein� et al� 	��� The main properties of the proposed evolution
are �see Figure 
��



� Although it leads to noise elimination� it does not introduce any blurring
e�ects�

� Although irrelevant features vanish during our evolution� there is no dislo
cation of relevant features�

            

Fig� �� A few stages of our curve evolution� The 	rst contour is a distorted version of
the contour on www
site �����

In comparison to scalespace methods� the main di�erences are

�� By numerical implementations of di�usion equations� every vertex of the
polygon is translated at a single evolution step� whereas in our approach the
remaining vertices do not change their positions�

�� The translation vector of each point in a di�usion process is locally deter
mined� whereas our polygonal evolution is guided by a relevance measure
that is not a local property with respect to the original polygon�


� The process of the polygonal evolution is parameterfree�

Although there exist di�usion process that are parameterfree in the sense
that constant values for parameters are known that apply to large classes of
curves� for most numerical implementations of parabolic di�erential equations
several parameters are necessary and it is theoretically unknown how to relate
and determine the parameters� This is due to

�c� problems with stability and computation time of discrete� numeric realiza
tions of di�usion processes�

An example problem is to specify the discrete time steps t necessary for a stable
numeric computation� Since the scalespace theories are continuous theories� i�e��
scale �or time� parameter t varies over positive real numbers� the determination
of discrete steps is a nontrivial problem� if the steps are too large� it can happen
that too many relevant features vanish� and on the other hand� too small discrete
steps lead to an ine�cient computation� Additionally� a given digital curve �or
surface� has some �xed grid resolution that cannot be made in�nitely small�



and this resolution not always satis�es the requirements for stabile numerical
solutions of partial di�erential equations� A di�erent but related problem is the
following�

�d� �Di�usion �lters with a constant steady�state require to specify a stopping
time if one wants to get nontrivial results� �Weickert 	���� p����

Clearly� if the stopping time �i�e�� stopping parameter t� is too large� it can
happen that all relevant features do not any more exist at scale t�

The proposed evolution method leads in a natural way to a �nite number
of discrete evolution steps which are just the iterations of a basic procedure of
vertex removal� Thus� the problem to determine the size of discrete steps does
not occur� This also drastically simpli�es the problem of stopping time�

� Discrete Curve Evolution

Let P be a closed polygon �that does not need to be simple�� We will denote
the vertices of P with V ertices�P �� A discrete curve evolution produces a se
quence of polygons P � P �� ���� Pm such that jV ertices�Pm�j � 
� where j � j
is the cardinality function� Each vertex v in P i is assigned a relevance mea
sure K�v� P i� � IR��� The relevance measure K�v� P i� that we used for our
experiments is de�ned below� The process of the discrete curve evolution is very
simple�
For every evolution step i � �� ����m � �� a polygon P i�� is obtained after the
vertices whose relevance measure is minimal have been deleted from P i�

In order to give a precise de�nition of the discrete curve evolution� we �rst
de�ne

De�nition� Kmin�P
i� to be the smallest value of the relevance measures for

vertices of P i�

Kmin�P
i� � minfK�u� P i� � u � V ertices�P i�g

and the set Vmin�P
i� to contain the vertices whose relevance measure is minimal

in P i�
Vmin�P

i� � fu � V ertices�P i� � K�u� P i� � Kmin�P
i�g

for i � �� ����m� ��

De�nition� For a given polygon P and a relevance measure K� we call a
discrete curve evolution a process that produces a sequence of polygons
P � P �� ���� Pm such that

V ertices�P i��� � V ertices�P i� n Vmin�P
i��

where jV ertices�Pm�j � 
�
The process of the discrete curve evolution is guaranteed to terminate� since

in every evolution step� the number of vertices decreases by at least one� It is also



obvious that this evolution converges to a convex polygon� since the evolution
will reach a state where there are exactly three� two� one� or no vertices in
Pm� Clearly� the only polygon with three vertices is a triangle� Of course� for
many curves� a convex polygon with more then three vertices can be obtained
in an earlier stage of the evolution� The only polygon with two vertices is a line
segment� A polygon with one vertex is also trivially convex� Only when the set
V ertices�Pm� is empty� we obtain a degenerated polygon equal to the empty
set� which is trivially convex� Thus� we obtain for every relevance measure

Proposition �� The discrete curve evolution converges to a convex polygon�
i�e�� there exists � � i � m such that P i is convex� and if � � i � m� all
polygons P i��� ���� Pm are convex�

This proposition demonstrates mathematical simplicity of the relation be
tween our evolution approach and the geometric properties of the evolved poly
gons� Observe that this proposition also holds for polygons that are not sim
ple �i�e�� have selfintersections�� An analog theorem for evolution of continuous
planar curves by di�usion equations is a deep and highly nontrivial result of
di�erential geometry� It holds only for simple closed smooth curves evolved by
the heat equation�

Theorem �Grayson 	��� An embedded planar curve converges to a simple
convex curve when evolving according to��

�C�s�t�
�t

� ��C�s�t�
�s�

� ��s� t�N�s� t�
C�s� �� � C��s��

���

where C � S� � 	�� T � � IR� is a family of smooth simple curves� s is the
Euclidean arclength� � the Euclidean curvature� andN the inward unit normal�
The di�usion equation ��� is called a geometric heat equation for a curve� The
�ow given by ��� is called the Euclidean shortening �ow�

Polygonal analogs of the evolution by di�usion equations are presented in
Bruckstein� et al� 	��� The experiments in 	�� indicate that an arbitrary initial
polygon converges to a convex polygon �polygonal circle�� However� the proof of
this fact in the Euclidean case is an open question� In 	�� as well as in evolu
tions by numerical solutions of di�erential equations� each vertex of the polygon
with nonzero curvature is displaced at a single evolution step� whereas in our
approach some vertices are removed and the remaining vertices do not change
their positions� This is an important di�erence which leads to several proper
ties of our approach �described in the next section� that are favorable for many
applications�

The convexity result �and some other properties of the discrete curve evo
lution� holds for any relevance measure� However� there are some important
properties like continuity that depend on the choice of the relevance measure
�see Section 
��

The key property of the evolution we used for our experiments is the order
of the deletion determined by the relevance measure� Our relevance measure



K�v� P i� depends on vertex v and its two neighbor vertices u�w in P i� i�e��
K�v� P i� � K�v� u� w�� It is given by the formula

K�v� u� w� � K��� l�� l�� �
�l�l�

l� � l�
� ���

where � is the turn angle at vertex v in P i� l� is the length of vu� and l� is the
length of vw� �Both lengths are normalized with respect to the total length of
polygon P i�� Intuitively it re�ects the shape contribution of vertex v in P i� The
main property is the following

� The higher the value ofK�v� u� w�� the larger is the contribution of arc vu�vw
to the shape of polygon P i�

Observe that this relevance measure is not a local property with respect to
the polygon P � although its computation is local in P i for every vertex v� A
motivation for this measure and its properties are discussed in 	���

An algorithmic de�nition of the discrete curve evolution is given in 	�� and
live examples can be found our wwwsite 	��� The curve evolution in 	�� di�ers
from the one de�ned here if two or more vertices in P i have the same relevance
measure� The evolution in 	�� removes in a single step only one vertex� If in the
course of the evolution no two vertices in P i have the same relevance measure�
then the algorithmic de�nition in 	�� and the above de�nitions are equivalent�

� Properties of the Discrete Curve Evolution

We will show in this section that our discrete curve evolution has the following
properties that do not depend on the choice of the relevance measure�

�P�� It leads to a simpli�cation of shape complexity�
�P�� It does not introduce any blurring �i�e�� shape rounding� e�ects and
�P�� there is no dislocation of relevant features�

due to the fact that the remaining vertices do not change their positions� Two
more important properties of our curve evolution are based on the relevance
measure de�ned in Section ��

�P�� It is stable with respect to noisy deformations and noise elimination takes
place in early stages of the evolution�

�P�� It allows to �nd line segments in noisy images� due to the relevance order of
the repeated process of linearization �e�g�� Figure ���

We begin with some examples to illustrate these properties� A few stages of
the proposed curve evolution in Figure 
 illustrate the shape complexity reduc
tion� Observe that our curve evolution does not introduce any blurring e�ects�
which result in shape rounding for curves� �for a comparison see the curve evo
lution on wwwsite 	���� based on 	����� There is no dislocation of the remaining
relevant shape features� since the planar position of the remaining points of the



            

Fig� �� Discrete curve evolution is stable with respect to distortions� The same planar
position of the points marked with the same symbols demonstrates that there is no
displacement of the remaining feature points�

digital polygon is unchanged� This is demonstrated by marking the correspond
ing points with the same symbols in Figure �� Observe also the stability of feature
points with respect to noise deformations shown in the second row in Figure ��

By comparison of the curves �a� and �b� in Figure �� it can be seen that our
evolution method allows us �rst to eliminate noise in�uence without changing
the shape of objects �P��� If we continue to evolve the curve �b�� the deletion
of vertices guided by our relevance measure results in a process of repeated lin
earization� This way the original line segments can be recovered in noisy images�
see Figure ��c� �cf� Brunn et al� 	
�� Fig� ���

Now we give a more formal justi�cation of the above properties� The reduc
tion of shape complexity of a polygonal curve during the evolution process �P��
is justi�ed by Proposition �� Additionally� the shape complexity of a polygonal
curve can be measured by the sum of the absolute values of the turn angles�
Let C be a closed polygonal curve with vertices v�� ���� vn��� Then the shape

complexity of C is given by

SC�C� �

n��X
i	�

jturn�vi�j�

where turn�vi� is the turn angle at vertex vi in C� Clearly� the shape complexity
of any closed convex curve is �� and the shape complexity of a closed nonconvex
curve is greater than ���

Proposition �� The shape complexity SC�C� of a closed polygonal curve C is
monotonically decreasing in the course of the discrete evolution� i�e�� if C �
C�� ���� Cm with jCmj � 
 is a sequence of simpli�ed curves obtained by the
evolution of C� then SC�Ck� � SC�Ck��� for � � k � m� ��

Proof� The curves Ck and Ck�� di�er by at least one vertex� say vd � CknCk���
Let vd�� and vd�� denote the neighbor vertices of vd in Ck� and let A be the



polygonal subarc of Ck composed of the four digital line segments whose end
points are vertices vd��� vd� vd��� If A is a convex arc� then SC�Ck� � SC�Ck���
�e�g� see Figure ��a��� If A is not a convex arc� then SC�Ck� � SC�Ck��� �e�g�
see cases �b�� �c�� and �d� in Figure ���
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Fig� �� The shape complexity remains the same �a� or decreases �b�� �c�� and �d� after
a single vertex has been deleted�

The following proposition is a direct consequence of the de�nition of the
evolution procedure�

Proposition �� Let C � C�� ���� Cm with jCmj � 
 be a sequence of simpli�ed
curves obtained by the discrete evolution� For every vertex v of digital polygonal
curve C that also belongs to Ck� the position of v on the plane as vertex of C is
the same as the position of v as a vertex of Ck� ut

From Proposition 
� it clearly follows that there is no dislocation of the
remaining features during the curve evolution� Thus� in our approach the corre
spondence problem of coarseto�ne tracking di�culties does not occur� In con
trary� in the course of curve evolution guided by di�usion equations� all points
with nonzero curvature change their positions during the evolution� Proposition

 also explains why our curve evolution does not introduce any blurring �i�e��
rounding� e�ects� In a single evolution step� all vertices remain at their Euclidean
positions with exception of the removed vertices� The two neighbor vertices of
a removed vertex are joined by a new line segment� which does not lead to any
rounding e�ects�

We proved that the discrete curve evolution with the relevance measure
K�v� u� w� is continuous �Theorem � in 	���� if polygon Q is close to polygon
P � then the polygons obtained by their evolution are close� Continuity guaran
tees us the stability of the discrete curve evolution with respect to noise �P���
which we observed in numerous experimental results�

The fact that noise elimination takes place in early stages of the evolution
is justi�ed by the relative small values of the relevance measure for vertices
resulting by noise�
Mostly� if two adjacent line segments result from noise distortions� then when
ever their turn angle is relatively large� their length is very small� and whenever
their length is relatively large� their turn angle is very small� This implies that



if arc vu � vw results from noise distortions� the value K�v� u� w� of the rele
vance measure at vertex v will be relatively low with high probability� Hence
noise elimination will take place in early stages of the evolution� This fact also
contributes to the stability of our curve evolution with respect to distortions
introduced by noise�

The justi�cation of property �P�� is based on the fact that the evolution
of polygon Q corresponds to the evolution of polygon P if Q approximates P
�Theorem � in 	���� If polygon Q is close to polygon P � then �rst all vertices of Q
are deleted that are not close to any vertex of P � and then� whenever a vertex of
P is deleted� then a vertex of Q that is close to it is deleted in the corresponding
evolution step of Q� Therefore� the linear parts of the original polygon will be
recovered during the discrete curve evolution�

� Topology�Preserving Discrete Evolutions

Our discrete curve evolution yields results consistent with our visual perception
even if the original polygonal curve P have selfintersections� However� it may
introduce selfintersections even if the original curve were simple �e�g�� see Figure
��� Now we present a simple modi�cation that does not introduce any self
intersections for a simple polygon P �

We say that a vertex vi � V ertices�P i� is blocked in P i if triangle vi��vivi��
contains a vertex of P i di�erent from vi��� vi� vi��� We will denote the set of all
blocked vertices in P i by Blocked�P i��

De�nition� For a given polygon P and a relevance measure K� the process of
the discrete curve evolution in which

Kmin�P
i� � minfK�u� P i� � u � V ertices�P i� nBlocked�P i�g

and

Vmin�P
i� � fu � V ertices�P i� nBlocked�P i� � K�u� P i� � Kmin�P

i�g

will be called a topology�preserving discrete curve evolution �e�g�� see
Figure ���

The question is whether this modi�ed curve evolution will not prematurely
terminate� This would be the case if V ertices�P i� � Blocked�P i�� It can be
shown that this is not the case� i�e�� it holds for i � �� ����m� �

V ertices�P i� nBlocked�P i� 	� 
�

� Conclusions and Future Work

We presented a discrete approach to curve evolution that is based on the obser
vation that in digital image processing and analysis� we deal only with digital
curves that can be interpreted as polygonal curves without loss of information�

The main properties of the proposed discrete evolution approach are the
following�



            

Fig� �� The discrete curve evolution may introduce self
intersections� but after a small
modi	cation it is guaranteed to be topology
preserving�

�P�� Analog to evolutions guided by di�usion equations� it leads to shape simpli
�cation but

�P�� no blurring �i�e�� shape rounding� e�ects occur and
�P�� there is no dislocation of feature points�
�P�� It is stable with respect to noisy deformations�
�P�� It allows to �nd line segments in noisy images�

These properties are not only justi�ed by theoretical considerations but also by
numerous experimental results� Additionally� the mathematical simplicity of the
proposed evolution process makes various modi�cations very simple� e�g�� by a
simple modi�cation� a set of chosen points can be kept �xed during the evolution�

Our evolution method can be also interpreted as hierarchical approximation
of the original curve by a polygonal curve whose vertices lie on the original curve�
Our approximation is �netocoarse and it does not require any error parameters�
in opposite to many standard approximations� where starting with some initial
coarse approximation to a curve� whereupon line segments that do not satisfy an
error criterion are split �e�g�� Ramer 	����� A newer and more sophisticated split
andmerge method for polygon approximation is presented in Bengtsson and
Eklundh 	��� where multiscale contour approximation is obtained by varying an
error parameter t� which de�nes a scale in a similar manner as it is the case
for di�usion scalespaces� This implies similar problems as for scalespaces� e�g��
How to determine the step size for the parameter t� Additionally� the scalespace
property of shape complexity simpli�cation does not result automatically from
the approach in 	��� but is enforced �	��� p� ���� �New breakpoints� not appearing
at �ner scales� can occur but are then inserted also at �ner levels�

There are numerous application possibilities of our method for curve evo
lution in which scalespace representations play an important role� e�g�� noise



elimination and quality enhancement� shape decomposition into visual parts�
salience measure of visual parts� and detection of critical or dominant points
�Teh and Chin 	�
�� Ueda and Suzuki 	����� The speci�c properties of our curve
evolution yield additional application possibilities like detection of straight line
segments in noisy images� which can be used for modelbased shape recovery
�Brunn� et al� 	
��� and polygonal approximation �cf� 	����

A paper on a discrete surface evolution that is analog to the presented polyg
onal evolution is in preparation�
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