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ABSTRACT

In this paper we present a simple new algorithm to off-

set multiple, non-overlapping polygons with arbitrary holes that

makes use of winding numbers. Our algorithm constructs an in-

termediate “raw offset curve” as input to the tessellator routines

in the OpenGL Utility library (GLU), which calculates the wind-

ing number for each connected region. By construction, the in-

valid loops of our raw offset curve bound areas with non-positive

winding numbers and thus can be removed by using the positive

winding rule implemented in the GLU tessellator. The proposed

algorithm takes O((n+k) logn) time and O(n+k) space, where n

is the number of vertices in the input polygon and k is the number

of self-intersections in the raw offset curve. The implementation

is extremely simple and reliably produces correct and logically

consistent results.
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1 Introduction

Offsetting is a fundamental problem in CAD/CAM. Beyond

the use of offsets as design primitives, for manufacturing they

are a critical tool for analysis and process planning. In order to

generate tool paths for 2 1
2
D pocket machining, for example, the

boundary of each pocket must first be offset inward by a distance

equal to the radius of the cutting tool to avoid gouging [1–5]. For

direction parallel tool path generation (see Figure 1(a)), the tool

path includes the line segments inside the pocket generated by

intersecting the offset boundaries with equidistant parallel lines;

for contour-parallel tool path generation (see Figure 1(b)), the

original boundaries are offset successively and the offset curves

are chained together into the tool path [2, 3, 6].

(a) Direction parallel one-

way cutting

(b) Contour parallel spiral

Figure 1. Tool path generation in pocket machining

We can also use offsetting to find the accessible area for a

given tool radius [7], a substep in finding an optimal set of cutter

radii for pocket machining [8]. The boundary of the pocket is

first offset inward by the tool radius to get the tool path boundary.

We then offset the result outward by the same offset distance to

find the accessible area and subtract the result from the original

boundary of the pocket using a Boolean difference. If the area
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of the difference is zero, we don’t need a smaller tool to remove

the excess material. Otherwise, a smaller tool is necessary to

clean up the corners. An example is shown in Figure 2. The

shaded area is the inaccessible area for a tool of radius equal to

the offset distance.

Figure 2. Difference between the original polygon and the poly-

gon after offsetting back

Rough machining of molds or dies also uses offsetting. The

die/mold cavity can be sliced into a set of 2D contours by a set of

parallel planes perpendicular to the draw direction (see Figure 3).

Then we can offset these contours inward by a distance slightly

larger than the radius of the end mill to accommodate the uncut-

allowance. The unwanted material in the interior of the offset

polygon is removed by machining each layer from top to bottom

[9].

(a) Die/Mold (b) Slice by plane 4

Figure 3. Rough machining of dies/molds

Offsetting is also used in rapid prototyping. For generat-

ing deposition-nozzle or laser scanning paths, a tessellated STL

model is first sliced to get the external contours. For each layer,

the contours are offset to construct tool paths similar to those

used in pocket machining. 2D offsets of the layers, in combina-

tion with Boolean constructive solid geometry (CSG) operations,

can also be used to approximate 3D offsets that hollow out ob-

jects in order to save build time and material consumption [10].

Robot motion planning is yet another area that uses offset-

ting [11]. For an autonomous robot moving on the ground, its

work space can be modeled as a 2D polygon with arbitrary holes,

where the outer polygon boundary represents the extent of the

floor plan and the holes represent the obstacles to be avoided.

Offsetting this general polygon inward by the dimension of the

robot gives the boundary of the space in which the robot can

move freely.

Our algorithm is related to the conventional offsetting ap-

proaches that offset each edge segment of the polygon and insert

circular arcs to close the gaps between the offset segments (see

Figure 4). The resulting curve is called a raw offset curve. A

raw offset curve usually contains invalid loops, which must be

removed to produce the offset polygon [2, 12–15].

Figure 4. Conventional pair-wise offset approach

In this paper we present a simple new algorithm to offset

multiple, non-overlapping polygons with arbitrary holes using a

variation of the traditional raw offset curve and calculating the

winding numbers of its connected regions. Our algorithm con-

structs a raw offset curve as input to the tessellator routines in

the OpenGL Utility library (GLU), which calculates the wind-

ing number for each connected region. By construction, the in-

valid loops of our raw offset curve bound areas with non-positive

winding numbers and thus can be removed by using the positive

winding rule implemented in the GLU tessellator. The output is

the contour(s) of the offset polygon. Using a GLU tessellator

implementation that employs a sweep line algorithm, our algo-

rithm takes O((n + k) logn) time and O(n + k) space, where n is

the number of vertices in the input polygon and k is the number

of self-intersections in the raw offset curve. The implementa-

tion is extremely simple and reliably produces correct and logi-

cally consistent results, unlike the offset routine in the commer-

cial ACIS geometry kernel.

We next review related work, then present assumptions and

preliminary definitions, describe the algorithm, and prove its cor-

rectness. A discussion of the implementation and performance

follows.
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2 Related Work

One offsetting approach is to use Voronoi diagrams. Persson

was the first to apply Voronoi diagrams to generating cutter paths

for machining arbitrarily shaped pockets [1]. Chou and Cohen

use Voronoi diagrams to create contour-parallel paths [16]. Kim

gives a simple but efficient Voronoi diagram based algorithm to

compute a trimmed offset of a single simple polygon consisting

of line segments and arcs [17].

The computation of the Voronoi diagram is subject to nu-

merical robustness issues, a result of generating intermediate ge-

ometric entities during its construction. Smith describes a di-

vide and conquer algorithm, similar to that used by Held [3],

to build the Voronoi diagram. Smith, however, minimizes the

floating point round-off error and uses adaptive-precision arith-

metic to address numerical robustness issues [18]. Though off-

setting algorithms based on Voronoi diagrams are fast, creating

the Voronoi diagram itself can be slow, and a robust implemen-

tation is extremely complex to implement.

Another offsetting method is pairwise intersection.

Rossignac and Requicha describe a CSG-based algorithm

in which the pocket boundaries are first offset and then the

interfering sections are identified by calculating the distance

between the offset segments and the pre-offset boundary [19].

Hansen and Arbab use interference indices to detect and delete

the “gouging” sections of the offset boundaries [2]. Yang and

Huang develop two criteria for loop validation by examining

the geometry among the offset segments [13]. Barton calculates

the inflation/deflation of a 2D polygon by using a bounding

box hierarchy [12]. Choi and Park achieve a fast algorithm by

removing all local invalid loops before the raw offset curve is

constructed, but their method is applicable only to polygons

without holes [15].

3 Assumptions and Preliminary Definitions

The input to our algorithm is a set of non-overlapping 2D

polygons, each bounded by oriented straight line edges. Each

polygon consists of one peripheral contour and zero or more

inner contours, which form holes or “islands” in the polygon.

We preprocess the input to assure that each polygon is non-self-

intersecting (in other words, no edge contains a point in the in-

terior of another). The polygons can be non-manifold in the

sense that more than two edges can touch each other at some

endpoint(s). We will use the right-hand rule convention that the

edges of each contour are directed such that the interior of the

polygon lies to the left. That is, the peripheral contour is ori-

ented counterclockwise (CCW) and each inner contour is ori-

ented clockwise (CW). The normal of each edge is perpendic-

ular to the edge and points to the right, i.e., the exterior of the

polygon.

In our algorithm, which we will describe in Section 4.1 in

detail, we treat the vertices differently depending on whether the

vertex is convex or concave.

Definition 1. A vertex is convex if a left turn is made at this

vertex while marching along the contour. A vertex is concave

if a right turn is made at this vertex while marching along the

contour (see Figure 5).

Figure 5. Convex and concave vertices in a polygon with a hole

Another important concept we will use is the winding num-

ber. While there are different approaches to defining the term

[20–24], the winding numbers calculated using any of these def-

initions are identical. In this paper, we use the following defini-

tion:

Definition 2. Let P be a set of oriented polygons consisting of

one or more contours, q be any point of ℜ2\P, where ℜ2 is the

2D Euclidean space, and R be any ray from q to infinity that

intersects no vertex of P. The winding number ω(R,P) of R with

respect to P is:

ω(R,P) = ∑
ei∈P

ψ(R,ei)

where, for each edge ei, the index ψ(R,ei) is defined as follows:

ψ(R,ei)=







0 if R does not intersect ei;

1 if ei crosses R in CCW direction as viewed from q;

−1 if ei crosses R in CW direction as viewed from q.

From Definition 2, we have the following properties. First,

ω(R,P) takes the same value for all rays R with the same start

point provided that R does not intersect any vertex of P. Sec-

ond, the winding number for a point q, denoted by ω(q,P), has

the same value for all points in a single connected region (a con-

nected set of points bounded by the contours of the polygons,

not including its boundary). Third, the winding numbers of adja-

cent regions separated by a single edge will always differ by one.

Fourth, the individual winding numbers with respect to each con-

tour can be summed to get the winding number with respect to
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the polygon when there are multiple contours defining the poly-

gon.

An example of calculating the winding number for a point

q using two different choices of R is shown in Figure 6. Note

that winding numbers can be defined for overlapping and/or self-

intersecting polygons, but only for closed contours.

Figure 6. ω(q,P), winding number at point q, is equal to +1 with

respect to any ray from q. For the rays shown, the incremental

difference (+/− 1) to the winding number as it crosses each

polygon edge is indicated.

The winding rule defines a category, such as odd, nonzero,

positive, negative, or “absolute value greater than or equal to

2”, to classify a region as inside or outside. If the calculated

winding number of a region falls into the chosen category,

it is classified as inside. Other winding rules could also

be defined, but these five are the only ones implemented

in OpenGL, with the names GLU TESS WINDING ODD,

GLU TESS WINDING NONZERO,

GLU TESS WINDING POSITIVE,

GLU TESS WINDING NEGATIVE, and

GLU TESS WINDING ABS GEQ TWO, respectively (see

Figure 7). Winding rules GLU TESS WINDING ODD and

GLU TESS WINDING NONZERO are commonly used in

polygon fill procedures (only regions classified as inside

are filled). Winding rules can be used to implement CSG

Boolean operations such as union, difference and intersec-

tion of contours. For example, we can use the winding rule

GLU TESS WINDING ABS GEQ TWO to get the intersection

of two contours [20].

In this paper, we use the positive winding rule: only regions

with positive winding numbers are classified as in the interior of

the polygon. We first use the positive winding rule to clean up

any overlapping and/or self-intersecting polygons in a prepro-

cessing step (see Figure 8). We later use the same winding rule

to extract the offset from our raw offset curve, as we will describe

in Section 4.1.

The inner offset and the outer offset of a polygon are defined

as follows.

(a) Preprocessing overlapping polygons

(b) Preprocessing self-intersecting polygons

Figure 8. Preprocessing; the winding numbers of each connected

region are shown on the left and the interior of the polygon, by

the positive winding rule, is shown on the right.

Definition 3. The inner offset of the polygon P is the regular-

ized [25] boundary of the set of points each of which lies in the

interior of P and has a Euclidean distance greater than the offset

distance d from the boundary of P.

Definition 4. The outer offset of the polygon P is the regular-

ized boundary of the set of points each of which lies exterior to P

and has a Euclidean distance greater than the offset distance d

from the boundary of P.

Note that the distance of a point q from the boundary of a

polygon is the distance between q and the closest point on the

boundary, and that there may be multiple points on the boundary

that are closest to the given point. For instance, in Figure 9, the

distance from interior point a (respectively, exterior point c) to

the polygon is the distance from point a to point d (respectively,

from point c to point g). The distance of point b from the polygon

is the distance from point b to either point e or point f .

4 Winding Number Offset Algorithms

Conventional pair-wise offsetting approaches offset each

edge and insert counterclockwise (respectively, clockwise) cir-

cular arcs at convex (respectively, concave) vertices between the

nontangent offset segments to get the raw, self-intersecting offset

curve (see Figure 4). They then calculate the self-intersections

in the raw offset curve and identify and remove both local and

global invalid loops [2, 12, 13, 15]. Identifying the invalid loops,
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(a) Contours and winding

numbers for each region

(b) Odd (c) Nonzero (d) Positive (e) Negative (f) Abs. Val. ≥ 2

Figure 7. Winding Rules

Figure 9. Distance between a point and a polygon

particularly those caused by global interactions, while retaining

valid loops that are part of the offset boundary, lies at the heart

of these algorithms.

Calculating the winding numbers of the raw offset curve ob-

tained by the conventional pair-wise offset approaches initially

appears to be a valid method for differentiating invalid loops. A

simple example is shown in Figure 10. For a relatively small

offset distance such as shown in Figure 10(a) and (b), the bound-

ary of the area with positive winding number is the inner offset

polygon. However, for a large offset distance such as the one

in Figure 10(c), the result is incorrect: the resulting inner off-

set polygon should be empty, but the area with positive winding

number is nonempty. Therefore, we instead construct a variation

on the traditional raw offset curve that allows us to use winding

numbers to efficiently determine the offset polygons.

4.1 Our Algorithm

To construct our raw offset curve for the inner offset poly-

gon, we first offset each edge opposite to its normal direction

(i.e., to the left of the edge) by the offset distance d (Fig-

ure 11(a)). The offset segments have the same orientation as

the original edges. If the vertex is a concave vertex, we con-

nect the endpoints of the offset edges whose original edges share

this vertex by a clockwise oriented arc centered on this shared

vertex. These segments and arcs are identical to those typically

used in other approaches that construct a raw offset curve. If

the vertex is a convex vertex, however, we connect it with the

endpoints of the offset segments whose original edges share this

convex vertex with straight line segments rather than inserting an

arc (Figure 11(b)). The inserted edges are oriented such that the

connectivity is maintained when you go around the raw offset

curve.

Then we consider the winding numbers of each region with

respect to the raw offset curve. Regions with positive wind-

ing numbers are in the interior of the inner offset polygon (Fig-

ure 11(c)). The boundary of their union is the inner offset poly-

gon (Figure 11(d)).

(a) Offset each edge (b) Connect offset edges

(c) Calculate the winding

number of each region

(d) Get the boundary of

areas with positive wind-

ing numbers

Figure 11. Constructing the inner offset polygon (original poly-

gon dashed)

To construct our raw offset curve for the outer offset poly-

gon, we follow the same steps as for an inner offset polygon with
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Figure 10. Winding number calculation using conventional pair-wise inner offset raw offset curve; the shaded area in each figure has

positive winding number and the original polygon is dashed.

minor modifications. In the first step, we offset each edge along

its normal direction (i.e., to the right of the edge) by the offset

distance. In the second step, for a convex vertex, we connect the

endpoints of the offset segments whose original edges share this

vertex by a counterclockwise oriented arc centered on this shared

vertex; for a concave vertex, we connect it to the endpoints of

the offset edges whose original edges share this concave vertex.

An example of constructing the outer offset polygon is shown in

Figure 12.

(a) Offset each edge (b) Connect offset edges

(c) Calculate the winding

number of each region

(d) Get the boundary of

areas with positive wind-

ing numbers

Figure 12. Constructing the outer offset polygon (original poly-

gon dashed)

4.2 Correctness of the algorithm

In this section, we first show that the offset polygons can be

constructed by Boolean operations, which can in turn be imple-

mented using winding numbers. After proving the correctness

of this method, we then show that our method is equivalent but

takes less time and space.

Definition 5. The rectangular area of an edge segment is the

area swept out when sweeping the edge segment along or oppo-

site to its normal direction until reaching its offset segment. (The

sweep direction is along the normal for an outer offset, opposite

to the normal for an inner offset.)

Definition 6. The fan-shaped area of a vertex is the fan-shaped

area formed by the vertex and the inserted arc centered at the

vertex and connecting its two offset points. The fan-shaped area

is only defined on concave vertices for an inner offset and on

convex vertices for an outer offset.

We illustrate Definition 5 and Definition 6 with the examples

shown in Figure 13.

Figure 13. Definitions of rectangular areas and fan-shaped areas

4.2.1 Inner Offset To construct the inner offset poly-

gon by Boolean subtraction, we need to subtract all points within
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distance d of the boundary, that are also inside the boundary,

from the original polygon. This is accomplished by subtracting

the rectangular area for each edge segment and the fan-shaped

area for each concave vertex. We orient the boundary clockwise

for each contour we wish to subtract. Combining these contours

with the contours defining the original oriented polygon P and

using the positive winding rule to evaluate the resulting polygon

set P′ corresponds to a Boolean subtraction [20]. The boundary

of the resulting set of regions with positive winding numbers is

the inner offset polygon of P.

To see why this gives the inner offset, consider calculating

the winding numbers first with respect to each contour of P′.

Since the original polygon is not self-intersecting, the winding

number is +1 in its interior, and 0 in its exterior. The points in-

side each subtracted rectangular or fan-shaped clockwise contour

have a winding number of −1 relative to that contour since the

boundary of any rectangular or fan-shaped area will not be self-

intersecting. The points outside each subtracted contour have a

winding number of 0 relative to that contour.

Now we calculate the winding numbers with respect to P′.

Since the winding number of a point with respect to P′ equals the

sum of the winding numbers of this point with respect to each

contour of P′, we know a point o outside the original polygon P

will have a winding number of at most 0 with respect to P′. The

winding number with respect to P′ of o equals 0 when o does

not lie in any of the rectangular or fan-shaped area; the winding

number with respect to P′ of o is less than 0 if o lies in one

or more of the rectangular or fan-shaped areas. In either case

o will be classified as outside the evaluated polygon P′ using

the positive winding rule. For a point that lies in at least one

rectangular or fan-shaped area, it will have a winding number

of at most (−1) + (+1) = 0 (when the point lies both in one

of the rectangular or fan-shaped area and in the interior of the

polygon P). So these points will also be classified as outside the

evaluated polygon P′ using the positive winding rule. Now we

can express the process as a subtraction, from the interior of the

original polygon P, of the union of all the rectangular areas and

fan-shaped areas. The result is the set of points that lie in the

interior of P and have a distance of at least the offset distance

d from P. The boundary of this region is thus the inner offset

polygon.

4.2.2 Outer Offset The construction of the outer off-

set polygon by Boolean union (addition) and its proof are similar

to that for the inner offset polygon. To construct the outer off-

set polygon, we first construct the rectangular area for each edge

segment and the fan-shaped area for each convex vertex. Then we

orient the boundary counterclockwise for each rectangular or fan-

shaped area. Combining these contours with those defining the

original polygon P and again using the positive winding rule to

evaluate the new polygon P′ corresponds to a Boolean union (be-

cause this time the boundaries are counterclockwise) [20]. Since

the winding number of a point in the interior (respectively, exte-

rior) of the original polygon P is 1 (respectively, 0) with respect

to P and the winding number of a point inside (respectively, out-

side) a rectangular or fan-shaped area is 1 (respectively, 0) with

respect to that rectangular or fan-shaped area, the winding num-

ber of a point is at least 1 with respect to the polygon P′ after

the winding numbers with respect to each contour are summed

if and only if the point lies in the interior of the original poly-

gon P and/or in one or more rectangular or fan-shaped areas.

Therefore, the point is in the interior of the new polygon P′ using

positive winding rule if and only if it is in the interior of the orig-

inal polygon P and/or in one or more rectangular or fan-shaped

areas. This process is equivalent to adding the rectangular areas

and fan-shaped areas to the interior of the original polygon P.

The boundary of the resulting set of regions with positive wind-

ing numbers is thus the outer offset polygon.

4.2.3 Simplifying the Raw Offset Curve Using

straight Boolean operations to obtain the offset polygons as de-

tailed in Section 4.2.1 and Section 4.2.2, we need to construct a

new contour with four edges for each edge in the original poly-

gon, as well as a new contour with two straight edges and one

curved edge for each concave or convex vertex. We can reduce

the number of contours and edges, leaving only those used in our

algorithm’s raw offset curve, by eliminating the edges with the

same geometry but opposite directions by applying the following

theorem:

Theorem 1. If there are two edges in a polygon having the

same geometry and opposite directions, the winding number of

any point is invariant after we remove these two edges.

Proof. Suppose there are two edges e1 and e2 in a polygon P

with the above properties (see Figure 14). After removing the

two edges from the polygon P, we get a new polygon P′. The

polygons P and P′ have the same vertices. For any ray R with

an endpoint q that contains no vertex of P and hence contains no

vertex of P′, either it crosses both edges e1 and e2 or it crosses

neither. If it does not cross either edge, the winding number of

point q is equal with respect to the polygon P or the polygon P′

since the edges that contribute to the winding number of point q

are the same for both the polygons P and P′. If the ray crosses

both e1 and e2 in the polygon P, their contributions to the wind-

ing number of point q are +1 (or −1) and −1 (or +1) respec-
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tively. For any ray Rq from q, we have

ω(q,P) = ∑
ei∈P

ψ(Rq,ei)

= ∑
ei∈P\{e1,e2}

ψ(Rq,ei)+ ψ(Rq,e1)+ ψ(Rq,e2)

= ∑
ei∈P\{e1,e2}

ψ(Rq,ei)+ 1−1

= ∑
ei∈P\{e1,e2}

ψ(Rq,ei)

= ω(q,P′)

Therefore, the winding number for any point is invariant after e1

and e2 are removed.

Figure 14. Winding number invariance. Edges e1 and e2 are co-

incident but we move them a little apart from each other for vi-

sualization purposes.

The reduction from the contours used for the full Boolean al-

gorithm to the contours used for our raw offset curve is shown in

Figure 15. Both the orientation of each rectangular or fan-shaped

contour and the winding numbers of each single connected re-

gion are shown in the figure. We do not use the contour defining

the original polygon in our raw offset curve so it is shown us-

ing dashed lines. Using our algorithm, the number of contours

in the raw offset curve P′ is equal to the number in the original

polygon. That is, for each contour in the original polygon P,

we construct only one contour in the raw offset curve. The total

number of the edges in P′ for our algorithm is between 28% and

75% of the number of the edges using the full Boolean subtrac-

tion/addition algorithm (both the greatest and least savings are

for a convex polygon — the greatest savings for an outer offset,

the least savings for an inner offset). Thus, our new algorithm

takes less time and less space, with results equivalent to the full

Boolean algorithm.

(a) Inner Offset Polygon

(b) Outer Offset Polygon

Figure 15. Reducing the Boolean subtraction/addition algorithm

to our winding number algorithm

5 Implementation, Analysis and Results

Our program uses GLU 1.3 implemented by SGI, a free

extension to OpenGL. The GLU tessellator takes as input the

vertices of each contour defining the input polygon. Af-

ter the GLU TESS WINDING POSITIVE winding rule and

the plane normal are set, it tessellates the polygon and cal-

culates the winding numbers of each connected region. We

set the GLU BOUNDARY ONLY property to GL TRUE in

order to extract the contours that separate the interior and

the exterior of the resulting output polygon. The call-

back functions GLU TESS COMBINE, GLU TESS VERTEX,

GLU TESS BEGIN and GLU TESS END are predefined and

called during the tessellation. The GLU TESS COMBINE

callback creates new vertices at self-intersections. The

GLU TESS VERTEX callback allows us to extract the ordered

vertices from the output polygons (the offsets). When the tes-

sellator begins or ends a loop in their contour outlines, the

GLU TESS BEGIN and GLU TESS END callback functions

are called, telling us when to start a new loop or end an exist-

ing one in our data structure for the offset polygon.

To assure robustness, we preprocess the input to clean up

any overlapping and/or self-intersecting polygons by running

the winding number calculation once using the positive winding

rule (see Figure 8). This clean up step is necessary with ma-

chine generated input because the round off errors that arise due
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to limited numerical precision often generate microscopic self-

intersections.

5.1 Space Complexity and Time Complexity

There are two main steps in our algorithm: the construction

of the raw offset curve and the calculation of the winding num-

bers. Since each vertex in the raw offset curve is inserted only

once, the first part takes O(n) time and O(n) space, where n is

the number of line segments and arc segments in the raw offset

curve. The second part depends on the GLU tessellator.

The GLU tessellator only takes polygons with straight line

edges as input. Therefore, we must approximate each arc in the

raw offset curve with short line segments, increasing the number

of vertices passed to the GLU tessellator to some number N > n.

We set the approximation error (the maximum distance between

any approximating line segment and the original arc) to be 1%

of the offset distance for the results reported here. Since the dif-

ference is bounded by the constant approximation percentage,

O(N) ∈ O(n), and the asymptotic complexity, in terms of N or n,

is the same. In our analysis, we will use n, that is, the number of

vertices in the raw offset curve, instead of N.

The source code for the GLU tessellator from the SGI Sam-

ple Implementation [26] reveals that they use a sweep line algo-

rithm to subdivide the polygon into monotone regions at intersec-

tion points and classify each region as inside or outside accord-

ing to the winding rule used. A sweep line intersection algorithm

that stores intersections has O((n+k) logn) time complexity and

O(n + k) space complexity, where n is the number of vertices in

the input, the raw offset curve in this instance, and k is the num-

ber of self-intersections; thus we assume that the GLU tessellator

we are using also runs in O((n+ k) logn) time and uses O(n+ k)
space.

We have experimently confirmed our implementation’s

space and time complexity for several examples, shown in Fig-

ure 16. Their curved surfaces were approximated to several dif-

ferent levels of precision for comparison. We ran the tests on a

dual-boot PC with an AMD Athlon(tm) XP 2500+ 1.8GHz pro-

cessor under Linux using single user mode for repeatability.

We experimently confirmed the space complexity by plot-

ting the memory usage of the program versus n + k (see Fig-

ure 17). We can see that the space usage is linear in n+ k, which

is consistent with the space complexity of the sweep line algo-

rithm used in the GLU tessellator.

Running times, taken as the average of 100 runs, are plotted

versus (n + k) logn in Figure 18. These plots are consistent with

the theoretical asymptotic time complexity of O((n + k) logn).

5.2 Comparison with ACIS
5.2.1 Running Time We compared the running time

of our offsetting algorithm to the running time of the offset rou-

tine provided in the ACIS kernel, the geometric kernel used by

(a) Fish

(272 × 186

bounding box)

(b) BigS

(117 × 134

bounding box)

(c) BigQ

(116 × 130

bounding box)

Figure 16. Examples, with the original polygons in (darker) blue

and the offset polygons in (lighter) red; the dimensions of the axis

aligned bounding box for each example are indicated in paren-

theses.

Figure 17. Space usage vs. (n + k)

many commercial CAD package such as AutoCAD, 3D Studio,

Autodesk Inventor, IronCAD, and CADkey. We ran the tests on

the same dual-boot 1.8GHz PC under Windows 2000 (see Fig-

ure 19). Our algorithm is 30 to 150 times faster than the ACIS

offsetting package on these examples.

5.2.2 Robustness One of our motivations for starting

this work was an observed lack of robustness in the ACIS routine

for input polygons with features of size exactly equal to twice the

inner offset distance. Therefore we also compared the robustness

of the ACIS offsetting routine and our algorithm. While ACIS

gives qualitatively incorrect results in some cases, our algorithm

always gave correct results for the hundreds of cases we tested.

A typical example is shown in Figure 20, in which the offset

polygon should consist of two contours that touch each other at

a point on the symmetric centerline. ACIS gives only one of
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Figure 18. Running time vs. (n + k) logn

Figure 19. Running time comparisons

these contours, while the other contour is missing entirely. Our

algorithm gives both contours correctly.

We also found out that the ACIS offsetting routine gives in-

consistent results corresponding to different mathematical defi-

nitions of the offset polygon, depending on the input. The is-

sue arises when two offset segments coincide with each other

(an example is shown in Figure 21). ACIS gives two different,

mathematically inconsistent results for the offsets of these two

polygons, one containing the coincident offset segments and the

other omitting them. Our algorithm does not display the coinci-

dent offset segments at any time, consistent with our definition of

offset as the boundary of a regularized set (r-set) [25]. Having an

offset algorithm that implements a consistent mathematical defi-

nition of offsetting is essential if we are to use it as a subroutine

for well-defined, provably correct geometric algorithms.

(a) ACIS result (b) Our result

Figure 20. Robustness comparison: ACIS inner offset and our

algorithm’s inner offset

(a) Polygon 1

by ACIS

(b) Polygon 2 by ACIS

(c) Polygon

1 by our

algorithm

(d) Polygon 2 by our algorithm

Figure 21. Consistency of the definition of the offset polygon

6 Conclusion

Our algorithm for calculating offset polygons using winding

numbers is fast, accurate, and extremely easy to implement. The

simple-to-construct raw offset curve is processed by the built-

in winding number capabilities of the robust, widely available

and free GLU tessellator. The algorithm’s scalability is excel-

lent, with space complexity of O(n + k) and running time of

O((n + k) logn), where n is the number of input vertices and k

is the number of self-intersections in the raw offset curve. The

algorithm gives mathematically well-defined and internally con-

sistent results, even for input that contains multiple, overlapping

10 Copyright c© 2005 by ASME



and/or self-intersecting polygons with arbitrary holes.
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