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Abstract

There are two key issues that limit further improvements in
the performance of existing rotational detectors: 1) Periodic
sudden change of the parameters in the rotating bounding box
(RBBox) definition causes a numerical discontinuity in the
loss (such as smoothL1 loss). 2) There is a gap of optimiza-
tion asynchrony between the loss in the RBBox regression
and evaluation metrics. In this paper, we define a new dis-
tance formulation between two convex polygons describing
the overlapping degree and non-overlapping degree. Based
on this smooth distance, we propose a loss called Polygon-
to-Polygon distance loss (P2P Loss). The distance is derived
from the area sum of triangles specified by the vertexes of
one polygon and the edges of the other. Therefore, the P2P
Loss is continuous, differentiable, and inherently free from
any RBBox definition. Our P2P Loss is not only consistent
with the detection metrics but also able to measure how far, as
well as how similar, a RBBox is from another one even when
they are completely non-overlapping. These features allow
the RetinaNet using the P2P Loss to achieve 79.15% mAP on
the DOTA dataset, which is quite competitive compared with
many state-of-the-art rotated object detectors.

Introduction
Object detection is a hot topic in computer vision, and hor-
izontal object detectors have achieved promising results in
both academic research and industrial applications. How-
ever, they are still inadequate because there are oriented and
densely packed objects in many cases, such as object detec-
tion in aerial images and text recognition in natural scene
images. To address this problem, researchers usually incorpo-
rate angular parameters in the regression branch as a way to
develop rotated object detectors. They reported large improve-
ments in public datasets, such as aerial image datasets DOTA
(Xia et al. 2018), DIOR (Li et al. 2020b), HRSC2016 (Liu
et al. 2017), scene text datasets ICDAR2015 (Karatzas et al.
2015), ICDAR2017 (Gomez et al. 2017) and face dataset
FDDB (Jain and Learned-Miller 2010).

Compared to conventional horizontal object detectors,
there emerge at least two issues when including angular pa-
rameters. They can be summarized as follows. First, periodic
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(a) RetinaNet(smoothL1 ) (b) RetinaNet(P2P Loss)

Figure 1: Visualization comparison of smoothL1 and P2P
Loss under the same model. The red box indicates the detri-
mental effect of boundary discontinuity and gap between loss
and metrics on the detector.

sudden change of the parameters in the rotating bounding
box (RBBox) definition causes a numerical discontinuity in
the loss. Second, there is a gap of optimization asynchrony
between the loss in the RBBox regression and evaluation met-
rics. We propose a Polygon-to-Polygon distance loss, which
can solve the above problems without any cost to obtain
better performance of the rotated object detector.

The main contributions of this paper are as follows:

• We define a Polygon-to-Polygon distance that can be used
to describe the spatial distance and morphological simi-
larity of two convex polygons.

• We proposed a novel Polygon-to-Polygon distance loss
(P2P Loss) with differentiable, numerically continuous
properties. P2P Loss is free from the impact of periodic
sudden change of the RBBox parameters. It is accordingly
effective for any bounding box definition. When using our
P2P Loss, in other words, a model with different box
definitions yields almost the same performance.

• We executed extensive experiments on the commonly-
used DOTA and HRSC2016 dataset to demonstrate the
performance of P2P Loss and compared it with other key
detectors. RetinaNet with P2P Loss can achieve 79.155%
mAP on the DOTA dataset, which is preferable over the
state-of-the-art rotation detectors.
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Related Work
Horizontal Object Detectors
Horizontal object detectors can be classified into two types:
two-stage detectors represented by RCNN (Girshick et al.
2014), fast R-CNN (Girshick 2015), faster R-CNN (Ren et al.
2015), and single-stage detectors represented by YOLO se-
ries (Redmon et al. 2016; Redmon and Farhadi 2017; Farhadi
and Redmon 2018), SSD (Liu et al. 2016), RetinaNet (Lin
et al. 2017), FCOS (Tian et al. 2019), etc. In the field of
general object detection, the objects are by default consid-
ered to be horizontally axis-aligned. However, their perfor-
mance can be significantly reduced because of the existence
of dense adjacent objects in specific areas such as aerial im-
agery, text recognition, etc. Although some post-processing
works, such as soft-NMS (Bodla et al. 2017) and softer-NMS
(He et al. 2018), have attempted to address the dense dis-
tribution challenge, they are yet inadequate to cope with
arbitrarily-oriented objects.

Rotated Object Detectors
Due to the shortage of horizontal detectors, researchers use
RBBox to fit objects with arbitrary orientations. Compared
with the natural-scene text detection, it is more difficult to
deal with aerial images for the sake of the wide distribution of
categories, spatial scales, compactness, rotational and transla-
tional positions of object instances. To obtain a better rotation
detector, according to our investigation, the contributions of
the published works so far are focused on the following three
aspects.

Novel Feature Extraction Module Feature alignment
modules, which are used for feature reconstruction and
feature-object alignment, are frequently used in such work,
prominently RRPN (Ma et al. 2018), ROI Transformer (Ding
et al. 2019), S2A-Net (Han et al. 2021a), and SCRDet (Yang
et al. 2019). Background noise suppression and feature en-
hancement is also an important research direction, which
is implemented in FADet (Li et al. 2019), SCRDet (Yang
et al. 2019) and CASCADE-FF (Hou et al. 2020) using
the attention mechanism. In SCRDet++ (Yang et al. 2020a),
high-performance image-level and instance-level denoising
modules are innovatively used. They all report significant
performance improvements. Meanwhile, multi-level context
information and multi-scale features, which are the key points
to challenge the problem of wide distribution in spatial scales,
are fully exploited in F3-Net (Ye et al. 2020) and FFA (Fu
et al. 2020).

Novel Regression Branch P-RSDet (Zhou et al. 2020),
PolarDet (Zhao et al. 2021) and HRPNet (He et al. 2020)
defined the RBBox in polar coordinate instead of in Carte-
sian coordinate system. CSL (Yang and Yan 2020) and DCL
(Yang et al. 2021a) transforms angular prediction from a re-
gression problem to a classification task. Nevertheless, this
results in an increase in computational complexity, which
requires further trade-offs. Mask OBB (Wang et al. 2019a)
and CenterMap (Wang et al. 2020) use a rough instance mask
branch to accomplish the fetching of rotating boxes, but bring
complicated post-processing.

(a) Doc (b) Dle

Figure 2: Bounding box definition. According to the Doc, the
parameter θ ∈ [−90◦, 0) represents the acute angle between
the positive half of x-axis and one side of the RBBox. This
side is defined as width and the side perpendicular to the
width as height. In the Dle, the longer side of the RBBox
is defined as width and the shorter one as height. The angle
between the width and the positive half of x-axis is θ.

Novel Loss Functions Such methods hope to find solutions
to the problems posed by the Ln-norm loss in the training
of rotation detectors. RSDet (Qian et al. 2021) proposed a
modulated loss to smooth the periodic sudden change of the
parameters in the Ln-norm loss, but ignoring the gap between
the loss and metrics. Other ideas try to use an approximate
Intersection over Union (IoU) loss as a way of avoiding the
case where the rotating IoU is not differentiable. PIoU (Chen
et al. 2020) estimates Pixels-IoU by counting the number of
pixels inside the RBBox. The work of Yang Xue et al. (Yang
et al. 2019, 2020a) combines IoU and smoothL1

loss, but
smoothL1

contributes the main gradient direction. In addition,
GWD (Yang et al. 2021c) approximated the RBBox as a
two-dimensional Gaussian distribution and settled the non-
differentiable behavior by the Gaussian Wasserstein Distance.
They all offer some improvements over traditional methods,
but further improvements can still be made.

This paper focuses on the perspective of the loss function
to improve detectors for rotated objects. In this case, we can
transfer the outstanding algorithm for horizontal object de-
tection to the rotational object detection task without making
major changes in the network structure and without extra
computational cost.

Problem of Loss Function
The defects of loss function used in rotated object detection
are discussed in this section.

RBBox Definition
There are two popular RBBox definitions: the definition of
OpenCV (Doc) and Long-Edge (Dle). As shown in Figure 2,
both of them have the defect caused by angular periodicity. In
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(a) Case of Doc (b) Case of Dle

Figure 3: Boundary discontinuity. The green box and the
blue one represent the ground truth box and an anchor box
respectively, while the red box is the ideal predicted box and
the gray one is the actual predicted box.

particular, in the Doc, a width-height swap occurs when the
angle reaches the domain boundary. In the Dle, it is difficult
for the model to determine which side is the longer one when
the RBBox is close to a square. These introduce ambiguity
into model training. To use the Doc or the Dle, this is a
choice dilemma for the pipeline design of most of the existing
works. Doc is used in ROPDet (Yang et al. 2020b) and SARD
(Wang et al. 2019b) to prevent the problem of width-height
illegibility, while Dle is adopted for RoI Transformer (Ding
et al. 2019) and S2A-Net (Han et al. 2021a) to avoid width-
height swap.

Loss Discontinuity
In the early research on rotated object detection, researchers
directly used the loss function from horizontal object detec-
tors, such as smoothL1

. SmoothL1
suffers from numerical

discontinuities where the angle parameter crosses through
the domain boundary in both cases of using Doc and Dle.

For example, in Figure 3(b), the ground truth and anchor
box are set to (0, 0, 60, 10, 89◦) and (0, 0, 60, 10,−90◦). In
practice, the difference between the ground truth box and
the anchor box is small (this difference is enlarged in the
figure for demonstration purposes). But the optimization is
to rotate the anchor box clockwise to the gray predicted box.
This is because, when the anchor box is rotated by the same
angle ∆θ, the counterclockwise rotation yields predicted
box (0, 0, 60, 10,−90◦ −∆θ) and clockwise rotation yields
predicted box (0, 0, 60, 10,−90◦ + ∆θ). The latter has a
smaller loss for the ground truth box (0, 0, 60, 10, 89◦) than
the former. The model prefers to use the latter optimization
path increasing the difficulty of training.

In the Doc, this inconsistency becomes more prominent
because of the width-height swapping problem. For example,
the blue anchor box (0, 0, 60, 10,−90◦) and the green ground
truth box (0, 0, 10, 60,−1◦) are shown in Figure 3(a). The
optimization process is divided into two steps. In the first step,
the anchor box is rotated to the pose of the gray predicted one
that is perpendicular to the ground truth box. Then the gray

Figure 4: Comparison of different loss. (a) Relation between
box ratio and loss. (b) Relation between rotated angle and
loss while overlapping. (c) Relation between rotated angle
while non-overlapping. (d) Relation between center shifting
and loss.

predicted box decreases the width and increases the height to
approach the ground truth box.

The discontinuity problem of the loss function appears
only when the angle parameter θ moves across the domain
boundary, but for limits further performance improvement.
The change curve of the loss in Figure 4(b) and 4(c) clearly
demonstrates this problem. The failed sample in Figure 1 is
also difficult to optimize because of these ambiguities.

Gap Between Metrics and Loss
The head of all object detectors outputs scale-invariant param-
eterizations like Eq. 9. When using smoothL1

, it is required
that all output is properly regularized. However, parameters
in different spaces, such as position space, size space, and an-
gle space, are difficult to encode with a particular procedure.
The gap between the loss function and the evaluation metrics
is thus generated.

To eliminate the gap, in horizontal object detection, many
studies have used IoU-based losses and demonstrated that
they eliminate gaps and gain performance (Yu et al. 2016;
Rezatofighi et al. 2019). But the IoU loss of RBBox is such a
non-differentiable loss and cannot be backpropagated, lead-
ing to the widespread use of smoothL1

.
P2P Loss was proposed to solve these problems. It is sim-

ilar to IoU loss when two rotating rectangles intersect and
remains optimized when non-overlapping. At the same time,
the problem of loss discontinuity can be solved, and the per-
formance is similar regardless of the box definition we use.

The Proposed Method
There are various ways to define the distance between two
polygons, such as Euclidean distance, Hausdorff distance
(Henrikson 1999) and so on. But these definitions can only
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(a) (b)

Figure 5: Definition of Vertex-to-Polygon Area. If viA is in-
side or on one side of polygon Bm, Bm can be divided into
m triangles and SV P

(
viA, EB

)
= SB , where SB is the area

of the convex polygon Bm. If viA is outside the polygon
Bm, on the contrary, SV P

(
viA, EB

)
> SB . The farther viA

is apart from Bm, the larger the SV P

(
viA, EB

)
is. What’s

more, SV P

(
viA, EB

)
varies continuously with the move-

ment of viA.

measure the distance of their spatial location but not their
morphological similarity.

We define an n-vertex convex polygon An = {VA, EA}
with vertex set VA = {v1A, v2A, v3A, · · · , vnA} and edge set
EA = {E1

A, E
2
A, E

3
A. . .E

n
A}. In addition, we denote by SA

the area of convex polygon An. We say that An = Bn if
the vertex set and the edge set are respectively equal in two
polygons An = {VA, EA} and Bn = {VB , EB}.

Polygon-to-Polygon Distance
Definition 1: Vertex-to-Polygon Area As shown in Figure
5, we define the area of a vertex viA ∈ VA of polygon An =
{VA, EA} to polygon Bm = {VB , EB} as

SV P

(
viA, EB

)
=

m∑
j=1

S∆

(
viA, E

j
B

)
, (1)

where S∆

(
viA, E

j
B

)
is the area of the triangle enclosed by

the vertex viA = (xa, ya) and the edge Ej
B , which can be

calculated by the cross product.

Definition 2: Polygon-to-Polygon Area We go one step
further and define the area of polygon An = {VA, EA} to
polygon Bm = {VB , EB} as the area sum of all vertices of
An to polygon Bm, i.e.,

SPP (An, Bm) =
n∑

i=1

SV P

(
viA, EB

)
=

n∑
i=1

m∑
j=1

S∆

(
viA, E

j
B

)
,

(2)

likewise for the area of the polygon Bm = {VB , EB} to
polygon An = {VA, EA}.

In general, SPP (An, Bm) ̸= SPP (Bm, An).
SPP (An, Bm) = nSB when all of the vertices in

VA lie inside Bm or on the sides of Bm, otherwise
SPP (An, Bm) > nSB . Likewise, SPP (Bm, An) = mSA

when the vertices in VB lie inside An or on the sides of An,
otherwise SPP (Bm, An) > mSA.

Definition 3: Polygon-to-Polygon Distance The distance
between polygon An = {VA, EA} and polygon Bm =
{VB , EB} is formulated as

d (An, Bm) =

(
1

n
SPP (An, Bm)− SB

)
+

(
1

m
SPP (Bm, An)− SA

)
.

(3)

Based on Definition 1 and 2, this distance is computed
from multiple Vertex-to-Polygon areas, which can capture
the spatial movement and shape variation of polygons in a
continuous manner. On the basis of the definitions above, we
have the following proposition.

Proposition Given two n-vertex convex polygons An and
Bn, d (An, Bn) is smallest and equal to 0 if and only if
Bn = An. In other words, the Bn that can minimize d (A,B)
is

B∗ = argmin
Bn

d (An, Bn) = An. (4)

Proof According to the analysis of definition 2, we know
SPP (An, Bn) ≥ nSB , and SPP (An, Bn) ≥ nSA, so the
Polygon-to-Polygon distance is non-negative symmetric, i.e.,
d (An, Bn) = d (Bn, An) ≥ 0. All possible relative posi-
tions between An, Bn are discussed as follows.

Case 1 Non-overlapping The intersection of two poly-
gons is empty, and each vertex of one polygon is out-
side the other polygon. In this case, SPP (An, Bn) >
nSB , SPP (Bn, An) > nSA, and d (An, Bn) =(
1
nSPP (An, Bn)− SB

)
+

(
1
nSPP (Bn, An)− SA

)
> 0.

Case 2 Partially-overlapping Two polygons partially in-
tersect, then SPP (An, Bn) > nSB , SPP (Bn, An) >
nSA. Finally, d (An, Bn) =

(
1
nSPP (An, Bn)− SB

)
+(

1
nSPP (Bn, An)− SA

)
> 0.

Case 3 One Completely Enclosing the Other In this re-
gard, one polygon is completely enclosed in the other one
and Bn ̸= An. If Bn is enclosed in An, SPP (An, Bn) >
nSB , SPP (Bn, An) = nSA. If An is enclosed in Bn,
on the contrary, SPP (An, Bn) = nSB , SPP (Bn, An) >
nSA. Above all, d (An, Bn) =

(
1
nSPP (An, Bn)− SB

)
+(

1
nSPP (Bn, An)− SA

)
> 0.

Case 4 Enclosing Each Other If the vertices of Bn are
one-by-one moved to the those of An, then Bn = An. In
this respect, SPP (An, Bn) = nSB , SPP (Bn, An) = nSA.
Then d (An, Bn) = 0.

Above all, if and only if Bn = An, d (An, Bn) is mini-
mized to be zero.
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Polygon-to-Polygon Distance Loss
With the proposition above, we can declare that the regression
between two RBBoxes can be transformed into the optimiza-
tion of Polygon-to-Polygon distance. The basic P2P Loss
between RBBox and is defined as

L′
P2P = d

(
A4, B4

)
/(SA + SB). (5)

When used individually, in practice, L′
P2P is sensitive to

some outliers, which including box with error labeling and
error gradient caused by underflow during calculation. Thus
we have added two additional terms to refine it.

Additional Center Loss

Lc =
∑

i∈{x,y}

smoothL1 (ti, t
∗
i ) , (6)

where smoothL1
is defined in (Girshick 2015). t and t∗ can

be found in Eq. 9 for details.

Additional Semiperimeter Loss

Lsp = smoothL1
((wA + hA) / (wB + hB) , 1) , (7)

where wA and hA are the width and height of A4 (likewise
for wB and hB), respectively. Semiperimeter is not affected
by the width-height swap issue. That is, our box regression
loss is defined as

LP2P = αLc + βLsp + γL′
P2P , (8)

where α, β, γ are the trade-off hyperparameters, which are
set to {1,1,1} by default.

Box Coder and Overall Loss Function
Like in most of the other works, the regression branch of our
model finally outputs scale-invariant parameterizations tuple

t∗ = (t∗x, t
∗
y, t

∗
w, t

∗
h, t

∗
θ). (9)

We refer to the forward computation process of obtaining
the corresponding ground truth t as box encode and the in-
verse computation as box decode. They are together known
as the box coder. We tested two different box coders: the
coder used in RRPN (Ma et al. 2018) is called Normal Coder
and proposed along with RoI Transformer (Ding et al. 2019)
is called RTrans Coder.

In addition, The multi-task loss used in our model is de-
fined as

L =
1

Npos

N∑
i=1

Lcls(pi, p
∗
i ) +

λ

Npos

N∑
i=1

p∗iLreg(bi, gi),

(10)
where i is the index of RBBox, pi yielded by the sigmoid
function represents the predicted probability of the i-th box
being an object. The ground truth category p∗i is 0 if this box
is negative and 1 if positive. bi denotes the i-th predicted
box, and gi is the i-th box ground truth. Npos denotes the
normalizing hyper-parameters (positive sample size); and λ
represents the balancing hyper-parameter between the two
losses which is set to 1 in our experiments.

The Properties of P2P Loss
Free From Box Definition The five-parameter-defined RB-
Box is transformed into a vertex set before P2P Loss is com-
puted. This makes our P2P Loss compatible to any box defi-
nitions. In other words, P2P Loss is naturally free from the
choice of box definitions.

Continuous and Differentiable As shown in Figure 4, the
numerical curve of P2P Loss is always continuous regardless
of whether the RBBox varies from the ground truth with
respect to spatial or morphological distance. Also, P2P Loss
consists of simple arithmetic, but no indexing operations. So
it is differentiable and can be easily backpropagated during
training.

Consistent with Metrics Before calculating the P2P Loss,
the output of the network must be transformed into a set of
vertices to form a uniform space with vertex coordinates. On
this basis, the P2P Loss actually obtained from the Polygon-
to-Polygon area, which is similar to the IoU Loss in both
value and definition, i.e., it has a high degree of consistency
with the evaluation metrics (as shown in Fig. 4 (a), 4 (b),
and 4 (d)). Furthermore, it can measure the spatial as well
as the morphological discrepancy of two RBBox when they
are non-overlapping, as shown in Figure 4 (c). This idea has
frequently appeared in the IoU family of loss functions, such
as GIoU (Rezatofighi et al. 2019), DIoU (Zheng et al. 2020),
and CIoU (Zheng et al. 2021).

Experiments
Dataset
Aerial image dataset DOTA (Xia et al. 2018) consists of
2806 images ranging in size from 800× 800 to 4000× 4000
pixels and contains 188282 objects. The ratios of training set,
validation set and test set are 1/2, 1/6, and 1/3 respectively.
We use the training set and validation set for training and
the test set for testing. To facilitate the training process, we
crop these images into small 1024× 1024 patch with a stride
of 824. Eventually, 21046 training images and 10833 testing
images are obtained.

HRSC2016 (Liu et al. 2017) is a high-resolution ship de-
tection data set with 436, 181 and 444 images for training,
verification and testing, respectively. In training, we maintain
the aspect ratio of the images in the training and validation
sets and scale them to 800× 512.

Baseline and Implementation Details
The RetinaNet (Lin et al. 2017) has a similar structure to most
advanced algorithms and is chosen as the baseline for experi-
ments by the vast majority of researchers. We use RetinaNet
with ResNet50-FPN as the baseline model for all experiments
to make the result comparison more reliable and to generalize
our method to other studies more easily. Lcls and Lreg are
Focal loss defined in (Lin et al. 2017) and smoothL1

, respec-
tively. We preset 3 anchors with aspect ratios of 0.5,1.0,2.0
and angle of 0◦ at each position of the pyramidal features at
each level by default, unless otherwise specified. We use 4
GeForce RTX 3090 GPUs with a total of 8 images per mini-
batch (2 images per GPU) for training and a single GeForce

3076



Box def. Box coder Loss mAP
Doc Normal smoothL1 69.416
Dle Normal smoothL1 69.916
Dle RTrans smoothL1 69.880

Table 1: Results of baesline on DOTA dataset with different
box definition and box coder.

Box def. Box coder P2P Loss mAP
α β γ

Doc Normal
1 0 1

∗
Dle Normal 70.496
Dle RTrans ∗
Doc Normal

0 1 1
70.717

Dle Normal 70.367
Dle RTrans 70.530
Doc Normal

1 1 1
70.897

Dle Normal 70.911
Dle RTrans 71.055

Table 2: The effect of different hyper-parameter on P2P Loss.
The results come from DOTA. ∗ indicates the possibility
of random oscillatory non-convergence when training is re-
peated several times.

RTX 3090 GPU for inference. All experiments are trained
using the Adam (Kingma and Ba 2014) optimizer with learn-
ing rate 0.0001. We use random flipping to avoid overfitting
during training, and no other tricks if not specified.

Ablation Study
Baseline As shown in Table 1, our RetinaNet reimplemen-
tation achieves a higher mAP of 69.916% on DOTA, indicat-
ing that it is a solid baseline. Even if the model and training
details are exactly the same, using different box definitions
can yield vastly different results. This result is as expected
(as described in Section Problem of Loss Function). When
using Doc, the smoothL1

loss is affected by two unfavorable
factors, the exchangeability of edges and the periodicity of
angles, so the performance is 0.5% lower than that of Dle.

The Effect of Different Hyper-parameter on P2P Loss
Comparison experimental results between different box defi-
nition, box coder and P2P Loss hyperparameters are shown
in Table 2. The performance improves when the center and
semiperimeter losses are added individually, and optimal per-
formance is achieved when both are added simultaneously.
Compared with the ordinary loss function, P2P Loss, which
is more complex in form and in computation, is sensitive
to outliers during training. Therefore, more constraints are
needed for stable convergence. With P2P Loss, the model has
an improvement of about 0.99% to 1.48% compared to the
baseline in Table 1. The model using Doc benefits the most,
with a boost of about 1.48%.

In subsequent experiments, the P2P Loss follows the hyper-
parameter settings of α = 1, β = 1, and γ = 1. In addition,
Dle and RTrans coder will be used.

Loss Epoch Box def. Box coder mAP
IoU-SmoothL1

(Yang et al. 2020a) 40 Doc Normal 68.65

GWD
(Yang et al. 2021c) 40 Doc Normal 69.92

P2P Loss 12
Doc Normal 70.90
Dle Normal 70.91
Dle RTrans 71.06

Table 3: Comparison using different loss functions on DOTA
dataset. The results are obtained with the RetinaNet using
ResNet50-FPN as the backbone.

RATSS QFL P2P Loss mAP
✓ 70.772

✓ 71.055
✓ ✓ 71.421
✓ ✓ ✓ 72.200

Table 4: Ablation experiment of P2P Loss# on DOTA. The
model and parameters of training are set as default.

Comparison with Other Loss Functions We compared
P2P Loss with IoU-SmoothL1

and GWD that tried to solve
the aforementioned problem. Table 3 shows that P2P Loss has
better consistency and stability for different box definitions
and different box coders when the performance exceeds them.

More Appropriate Lcls Many current rotation detectors
define positive and negative samples based on a fixed iou
threshold. However, after using P2P Loss, we cannot explic-
itly describe the optimal optimization process of the predicted
box. In this case, a softer way of assigning positive and nega-
tive examples is needed. Horizontal object detector can get
performance improvement by ATSS (Zhang et al. 2020). In
this work, we adapt the rotation case to the original ATSS by
limiting the positive samples’ center to the rotation ground-
truth box, called Rotation ATSS (RATSS). Finally, we then
set Lcls to Quality Focal Loss (QFL) (Li et al. 2020c). For
convenience, we later refer to the combination of RATSS,
QFL and P2P Loss as P2P Loss#. As shown in Table 4, P2P
Loss# was able to achieve 72.2% mAP in DOTA without
additional data augmentation.

Influence of Anchor Quantity For smoothL1 , it depends
on the number of anchors and the initial angle. More anchors
help to reduce the possibility of anchors at the boundary be-
ing selected as the corresponding positive case during the
assignment phase. In Table 6, when using smoothL1

, an inap-
propriate number of anchor results in a sharp drop in perfor-
mance. When using P2P Loss#, the approximate performance
can be achieved without pursuing an excessive number of
anchors.

Free from Box Definition As shown in Table 2 and 7, using
different box definitions and different box coders, all else
being equal, has a negligible impact on the final performance.
We can even consider them to be equal within the margin of
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Method Backb. Epoch PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
Two Stage

SCRDet
(Yang et al. 2019) R-101 − 90.0 80.7 52.1 68.4 68.4 60.3 72.4 90.9 87.9 86.9 65.0 66.7 66.3 68.2 65.2 72.6

GLS-Net
(Li et al. 2020a) R-101 − 88.7 77.4 51.2 71.0 73.3 72.2 84.7 90.9 80.4 85.4 58.3 62.3 67.6 70.7 60.4 73.0

R4Det
(Sun et al. 2020) R-152 12 89.0 85.4 52.9 73.8 74.9 81.5 80.3 90.8 87.0 85.3 64.1 60.9 69.0 70.6 67.8 75.8

CSL
(Yang and Yan 2020) R-152 20 90.3 85.5 54.6 75.3 70.4 73.5 77.6 90.8 86.2 86.7 69.6 68.0 73.8 71.1 68.9 76.2

RSDet-II
(Qian et al. 2021) R-152 30 89.9 84.5 53.8 74.4 71.5 78.3 78.1 91.1 87.4 86.9 65.6 65.2 75.4 79.7 63.3 76.3

SCRDeT++
(Yang et al. 2020a) R-101 40 90.1 84.4 55.4 74.0 77.5 71.1 86.1 90.7 87.3 87.1 69.6 68.9 73.7 71.3 65.1 76.8

ReDet
(Han et al. 2021b) ReR-50 12 88.8 82.5 60.8 80.8 78.3 86.1 88.3 90.9 87.8 87.0 68.7 66.9 79.3 79.7 74.7 80.1

Single Stage
RetinaNet-GWD

(Yang et al. 2021c) R-152 60 87.0 83.9 54.4 77.5 74.4 68.5 80.3 86.6 83.4 85.6 73.5 67.8 72.6 75.8 73.4 76.3

R3Det
(Yang et al. 2021b) R-152 20 89.8 83.8 48.1 66.8 78.8 83.3 87.8 90.8 85.4 85.5 65.7 62.7 67.5 78.6 72.6 76.5

PolarDet
(Zhao et al. 2021) R-101 360 89.7 87.1 48.1 71.0 78.5 80.3 87.5 90.8 85.6 86.9 61.6 70.3 71.9 73.1 67.2 76.6

R3Det-GWD
(Yang et al. 2021c) R-152 60 89.3 83.7 59.3 79.9 76.4 83.9 86.5 89.1 85.5 86.5 73.0 67.6 76.9 77.1 71.6 79.1

S2A-Net
(Han et al. 2021a) R-101 12 89.3 84.1 57.0 79.2 80.2 82.9 89.2 90.9 84.7 87.6 71.7 68.2 78.6 78.2 65.6 79.2

RetinaNet-P2P Loss#† R-50 12 89.0 77.0 48.5 69.9 79.4 80.1 88.1 90.9 85.0 85.5 60.0 62.9 71.9 66.2 56.4 74.0
RetinaNet-P2P Loss# R-50 12 89.3 85.9 55.4 80.0 79.8 83.0 88.4 90.9 85.6 87.1 68.8 69.9 76.3 74.5 59.8 78.3
RetinaNet-P2P Loss# R-101D 12 89.2 86.1 55.2 81.4 80.3 83.5 88.3 90.9 86.6 87.1 71.7 69.9 77.3 76.0 59.6 79.2

Table 5: Comparisons with the State-of-the-Art methods on DOTA. The corresponding relationship between abbreviations and
full name: SBF-Soccer ball field, HC-Helicopter, SP-Swimming pool, RA-Roundabout, LV-Large vehicle, SV-Small vehicle,
BR-Bridge, HA-Harbor, GTF-Ground track field, BC-Basketball court, TC-Tennis court, BD-Baseball diamond, ST-Storage
tank, SP-Ship, PL-Plane. Data augmentation (random rotation, multi-scale) for training and testing of all models except those
with † markers. R-101D indicates ResNet101 with DCN (Dai et al. 2017) added, same for R-50 and R-152.

Loss Anchor⋆ mAP
smoothL1 3 73.512
smoothL1 6 83.532
smoothL1 9 82.696
P2P Loss# 3 89.177
P2P Loss# 6 88.675
P2P Loss# 9 89.188

Table 6: Comparison of smoothL1
with P2P Loss# for differ-

ent number of anchors in HRSC dataset. Anchor⋆ represents
the number of anchors. The RetinaNet-FPN-R-50 is used and
random rotation is applied to data augmentation.

error allowed. These experiments prove that P2P Loss is free
from box definition.

Comparison of State-of-the-Art Methods The results are
shown in Table 5, where the RetinaNet-P2P Loss# model with
ResNet50 and ResNet101-DCN can achieve mAP 78.308%
and 79.155% on DOTA dataset, respectively. This perfor-
mance is also quite competitive among a bunch of State-of-
the-Art models, and we only use RetinaNet as the base model

Box def. Box coder mAP
Doc Normal 72.380
Dle Normal 72.211
Dle RTrans 72.200

Table 7: Performance consistency of different box coder and
box definition after using P2P Loss# on DOTA.

without adding any parameters or operations.

Conclusion

In this paper, two important issues that impact the perfor-
mance of rotating object detectors were discussed in detail. It
is found that a continuous loss function that can measure the
spatial and morphological distance between two polygons is
significant to those issues. Therefore, P2P Loss is proposed
in this paper. Extensive experiments on DOTA and HRSC
datasets demonstrated the effectiveness of P2P Loss.
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