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Abstract. We address the problem of recognizing a configuration of a
piece of garment fairly spread out on a flat surface. We suppose that the
background surface is invariant and that its color is sufficiently dissimilar
from the color of a piece of garment. This assumption enables quite
reliable segmentation followed by extraction of the garment contour. The
contour is approximated by a polygon which is then fitted to a polygonal
garment model. The model is specific for each category of garment (e.g.
towel, pants, shirt) and its parameters are learned from training data.
The fitting procedure is based on minimization of the energy function
expressing dissimilarities between observed and expected data. The fitted
model provides reliable estimation of garment landmark points which can
be utilized for an automated folding using a pair of robotic arms. The
proposed method was experimentally verified on a dataset of images. It
was also deployed to a robot and tested in a real-time automated folding.
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1 Introduction

We present a solution for identifying an arrangement of a piece of garment
spread out on a flat surface. Our research is motivated by the needs of the
European Commission funded project Clothes Perception and Manipulation
(CloPeMa) [16]. This project focuses on a garments manipulation (sorting, fold-
ing, etc.) by a two armed industrial robot which is shown in Fig. 1. The general
aim is to advance the state of the art in the autonomous perception and manipu-
lation of limp materials like fabrics, textiles and garments, placing the emphasis
on universality and robustness of the methods.

The task of clothes state recognition has already been approached by Miller
et al. [9]. They consider a garment fairly spread on a green surface, which allows
to segment images using simple color thresholding. The obtained garment con-
tour is fitted to a parametric polygonal model specific for a particular category
of clothing. The fitting procedure is based on iterative estimation of numeric pa-
rameters of the given model. The authors report quite accurate results. However,
the main drawback is a slow performance. It takes 30–150 seconds for a single
contour and a single model. This makes the algorithm practically unusable for a
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Fig. 1: Our robotic test platform utilizes two industrial hollow-wrist welding
manipulators Motoman MA1400 with mounted cameras, Kinect-like rangefinders
and dedicated grippers. We use it as the experimental platform for folding of
various types of clothes.

real-time operations. The authors also use the parametric model for recognition
and fitting of pairs of socks [15]. Information about texture of socks was utilized
here as well. Another successful application is an automated folding of towels
based on a robust visual detection of their corner points [8]. The two-armed
robot starts with a towel randomly dropped on a table and folds it in a sequence
of manipulations performed both on the table and in the air.

Kita et al. use single-view image [5] and stereo image [6] to estimate state of
the hanging clothes being held by a gripper. Their approach is based on matching
a deformable model to the observed data. Hata et al. [3] solve the problem of
lifting a single towel from a pile of highly wrinkled towels and grasping it for
its corner. The solution is based on detection of the highest point of the pile
followed by corner detection in stereo data. Ramisa et al. [12] are also interested
in determination of the grasping point. They combine features computed from
both color and range images in order to locate highly wrinkled regions. The
research area of cloth modeling is explored mainly by the computer graphics
community. Hu et al. [4] give an overview of the known methods.

In this work, we propose a complete pipeline for clothes configuration recog-
nition by estimating positions of the most important landmark points (e.g. all
four corners of a towel). The identified landmarks can be used for automated
folding performed by robotic arms. We introduce our own polygonal models de-
scribing contours of various categories of clothing and develop a fast, dynamic
programming based methods for an efficient fitting of an unknown contour to the
models. Moreover, we have modified the grabcut image segmentation algorithm
to work automatically without being initialized by a user input, utilizing a back-
ground model learned in advance from training data. The recognition pipeline
can be summarized as follows:

1. Capturing input: The input is a single color image of a piece of garment
spread on a table. We assume that type of the clothing (e.g. towel, pants,
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shirt) is known in advance. The image is taken from a bird’s eye perspective
by a camera attached to the robot. Since the relative position of the table
and the camera is known, all pixels not displaying the table and the garment
lying on it can be cropped.

2. Segmentation: The goal is to segment the garment and its background which
is a wooden table in our case. We assume that the table and the garment
have statistically dissimilar colors. We also assume that the table is invariant
and thus its color properties can be learned from data. These assumptions
make it possible to modify the grabcut segmentation algorithm [13] in a way
that it does not require manual initialization.

3. Contour detection: The binary mask obtained from the segmentation is pro-
cessed by Moore’s algorithm [2] for tracing 8-connected boundary of a region.
This gives a bounding polygon of the garment. Vertices of the polygon are
formed by individual contour pixels.

4. Polygonal approximation: The dense boundary is then approximated by a
polygon having fewer vertices. Their exact count depends on a model of
garment which we want to fit in the following step. Generally, the number of
vertices is higher than the number of landmark points for a specific model.

5. Model fitting: The polygonal approximation of the garment contour is mat-
ched to a polygonal model defined for the corresponding type of garment. The
matching procedure employs dynamic programming approach to find corre-
spondences between approximating vertices and landmark points defining
the specific polygonal model. The matching considers mainly local features
of the approximating polygon. As there are more vertices than landmarks,
some of the contour vertices remain unmatched.

2 Contour extraction

2.1 Learning the background color model

The background color model is a conditional probabilistic distribution of RGB
values of background pixels. The distribution is represented as a mixture of K
3D Gaussians (GMM):

p(z) =

K
∑

k=1

πk N (z;µk, Σk) =

K
∑

k=1

πk

exp
(

− 1
2 (z − µk)

TΣ−1
k (z − µk)

)

√

(2π)3|Σk|
(1)

Here πk is a prior probability of k-th component and N (z;µk, Σk) denotes 3D
normal distribution having a mean vector µk and a covariance matrix Σk.

The mixture is learned from training data, i.e. from a set Z = {zn =
(zRn , z

G
n , zBn )T ∈ [0, 1]3} of vectors representing RGB intensities of |Z| back-

ground pixels. The number of GMM components K is determined empirically
based on the number of visible clusters in RGB cube with visualized training
data. E.g. for a nearly uniform green background one component should be suf-
ficient, for the table in our experiments we choose three components.
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To train the GMM probabilistic distribution, we split the training data to K
clusters C1 . . . CK at first, employing the binary tree algorithm for the palette
design [10]. The algorithm starts with all training data Z assigned to a single
cluster and it iteratively constructs a binary tree like hierarchy of clusters in a
top-bottom manner. In each iteration, the cluster having the greatest variance
is split to two new clusters. The separating plane passes through the center of
the cluster and its normal vector is parallel with the principal eigenvector of the
cluster. The algorithm stops after K − 1 iterations with K clusters.

Prior probability πk, mean vector µk and covariance matrix Σk for the k-th
GMM component is computed using the maximum likelihood principle [1] from
data vectors contained in the corresponding cluster Ck:

πk =
|Ck|

|Z|
, µk =

1

|Ck|

∑

zn∈Ck

zn, Σk =
1

|Ck|

∑

zn∈Ck

(zn − µk)(zn − µk)
T (2)

2.2 Unsupervised segmentation

The segmentation is based on the grabcut algorithm [13] which is originally a
supervised method. It expects an RGB image Z = {zn ∈ [0, 1]3 : n = 1 . . .W×H}
of size W × H. Moreover, the user is expected to determine a trimap T =
{tn ∈ {F,B,U} : n = 1 . . .W ×H}. The value tn determines for the n-th pixel
whether the user considers it being a part of the foreground (tn = F ), background
(tn = B) or whether the pixel should be classified automatically (tn = U). The
trimap T is usually defined via some interactive tool enabling to draw a stroke
over foreground pixels, another stroke over background pixels and leave the other
pixels undecided.

In the proposed method, the input trimap is created automatically using the
learned background GMM probabilistic model from Eq. 1 and two predetermined
probability thresholds PB and PF :

tn =











F, p(zn) < PF

U, PF ≤ p(zn) ≤ PB

B, PB < p(zn)

(3)

The thresholds PB and PF are set based on the training data so that 3%
training pixels have the probability lower than PF and 80% training pixels have
probability higher than PB in the learned background model. The foreground
component of the trimap is thus initialized by lowly probable pixels while the
background component by highly probable pixels.

The core part of the grabcut [13] algorithm is an iterative energy minimiza-
tion. It repeatedly goes through two phases. First, GMM models for the fore-
ground and the background color are reestimated. And second, the individual
pixels are relabeled based on finding the minimum cut in a special graph. To
estimate the GMM color models we utilize the binary tree algorithm [10] de-
scribed in Sec. 2.1 followed by the maximum likelihood estimation introduced
in Eq. 2. We use three components both for background and foreground GMM
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(a) Input image (b) Segmentation (c) Approximation

Fig. 2: (a) Input is formed by a single RGB image. (b) The input trimap for
grabcut algorithm is automatically initialized with foreground (plotted in yel-
low), background (blue) and unknown (red) pixels. The resulting segmentation
gives a garment contour (green). (c) The contour is simplified by approximating
it by a polygon (magenta).

which is sufficient in our case of not so varying table and garment. The grabcut
algorithm iterates until convergence which usually takes 5–15 cycles. However,
the segmentation mask is being changed only slightly in the later cycles. Since
we need to get the segmentation as fast as possible, we stop the optimization
after three cycles.

2.3 Contour simplification

The segmentation algorithm proposed in the previous section is followed by
Moore’s algorithm [2] for contour tracing. The result is a closed contour in the
image plane, i.e. a list (q1 . . . qL) of 2D coordinates qi = (xi, yi). The number
of distinct points L depends on the image resolution as well as on the piece of
garment size. Typically, L has an order of hundreds or thousands.

To be able to fit out polygonal model to the contour effectively, we need
to simplify the contour by approximating it with a polygon having N vertices
where N ≪ L. More precisely, we want to select a subsequence of N points
(p1 . . . pN ) ⊆ (q1 . . . qL). Additionally, we want to minimize the sum of Euclidean
distances of the original points (q1 . . . qL) to edges of the approximating polygon
(p1 . . . pN ) as seen in Fig. 3a.

The simplification procedure is based on the dynamic programming algo-
rithm for the optimal approximation of an open curve by a polyline [11], [7]. It
iteratively constructs the optimal approximation of points (q1 . . . qi) by n vertices
from previously found approximations of (q1 . . . qj) where j ∈ {n − 1 . . . i − 1}
by n− 1 points. The construction is demonstrated in Fig. 3b.

Time complexity of the algorithm is O(L2N). Since the algorithm works
with an open curve, it would have to be called L times for every possible cycle
breaking point qi to obtain optimal approximation of the closed curve. However,
we only call it constantly many times to get a suboptimal approximation which
is sufficient for our purpose.
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Fig. 3: (a) The original contour (q1 . . . qL) (plotted in red) is simplified by ap-
proximating it with a polygon (p1 . . . pN ) (blue) while minimizing distances of
the original points qi to polygon edges. (b) Dynamic programming algorithm
for polygonal approximation utilizes previously constructed approximations of
points (q1 . . . q4, q5, q6) by n − 1 vertices (plotted in various colors) to obtain
approximation of points (q1 . . . q7) by n vertices.

3 Polygonal models

3.1 Models definition and learning

To be able to recognize the configuration of a piece of garment, we describe
contours of various types of clothing by simple polygonal models. The models
are determined by their vertices. Inner angles incident to the vertices are learned
from training data. Additional conditions are defined in some cases to deal with
inner symmetries or similarities of distinct models. We use the following models:

1. Towel is determined by 4 corner vertices as shown in Fig. 4. All inner angles
incident to the vertices share the same probability distribution. There is an
additional condition that the height of the towel (distance between the top
edge and the bottom edge) is required to be longer that its width (distance
between the left edge and the right edge).

2. Pants are determined by 7 vertices. There are 3 various shared distributions
of inner angles as shown in Fig. 4.

3. Short-sleeved shirt is determined by 10 vertices and 4 shared distributions
of inner angles as shown in Fig. 4. There is an additional condition that the
distance between the armpit and the inner corner of the sleeve is required
to be maximally 50% of the distance between the armpit and the bottom
corner of the shirt.

4. Long-sleeved shirt is similar to the short-sleeved model. The distance between
the armpit and the inner corner of the sleeve should be minimally 50% of
the distance between the armpit and the bottom corner of the shirt.

The probability distributions for inner angles incident to vertices of polygonal
models are learned from manually annotated data. We assume that the angles
have normal distributions. This seems as a reasonable assumption, since e.g.
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Fig. 4: Polygonal model for towel, short-sleeved shirt and pants. Angles sharing
one distribution are denoted by the same letter and plotted with the same color.
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Fig. 5: Angle distributions learned for various types of clothes models. Colors of
the plotted distributions correspond to angles in Fig. 4.

a corner angle of a towel should be approximately 90◦ with a certain variance
caused by deformations of the contour. The mean and the variance of each normal
distribution is estimated using a maximum-likelihood principle similarly to Eq. 2.
Various vertices in a model can share the same angles distribution because of
obvious symmetries, e.g. all 4 corners of a towel should be statistically identical.

3.2 Problem of model matching

We described in Sec. 2.3 how to approximate a contour by N points (p1 . . . pN ).
Each polygonal model defined in Sec. 3.1 is determined by M vertices (v1 . . . vM )
where M is specific for the particular model. See examples of models in Fig. 4.
We show how to match an unknown simplified contour onto a given model.

We assume that N ≥ M , i.e. the simplified contour contains more points
than is the number of vertices of the model to be matched. The problem of
matching can be then defined as a problem of finding a mapping of simplified
contour points to model vertices f : {p1 . . . pN} → {v1 . . . vM} ∪ {s}. Symbol s
represents a dummy vertex which corresponds to a segment of the polygonal
model. It makes it possible to leave some of the contour points unmapped to a
real vertex. Additionally, a proper mapping f has to satisfy several conditions:
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v3 v4

v1v2p7
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Fig. 6: Points of the simplified contour (p1 . . . p7) are matched (plotted in blue)
to vertices of the polygonal model (v1 . . . v4). Some of them remain unmatched
(green), i.e. they are mapped to a dummy vertex s representing a segment. The
energy of the particular matching is based on a similarity of corresponding inner
angles (red).

1. There exists a point pi mapped to it for each vertex vm. More formally,
∀vm∃pi : f(pi) = vm.

2. No two points pi and pj are mapped to the same vertex vm. However, many
points can be mapped to segments represented by a dummy vertex s. For-
mally, ∀pi 6= pj : f(pi) = f(pj) ⇒ f(pi) = f(pj) = s.

3. The mapping preserves the ordering of points on the polygonal contour and
the ordering of vertices of the polygonal model in the clockwise direction.
For example of such a proper mapping see Fig. 6.

The number of mappings f satisfying the aferementioned conditions for N
contour points and M model vertices is given by the combinatorial formula:

N

(

N − 1

M − 1

)

≥ N

(

N − 1

M − 1

)M−1

(4)

The interpretation is that we can choose 1 of N points to be mapped to the
first vertex v1. From the remaining N − 1 points, we select a subset of M − 1
points which are mapped to vertices v2 . . . vM . All other points are mapped to
the dummy vertex s representing all segments of the polygonal model.

We introduce an energy function E(f) associated with a matching f . Let us
denote φi the inner angle adjacent to the point pi of the simplified contour. Let
us also denote µm the mean value and σ2

m the variance of the normal distribution
of inner angles N (φ;µm, σ2

m) learned for the vertex vm of a particular polygonal
model. We recall that the same distribution can be shared by several vertices of
one polygonal model as seen in Fig. 4. The energy function is then given by:

E(f) = −
∑

f(pi)=vm

log N
(

φi;µm, σ2
m

)

−
∑

f(pi)=s

log N

(

φi;π,
π2

16

)

(5)

It can be seen that we force angles of unmatched points (pi such that f(pi) = s)
to be close to π, i.e. we want the unmatched parts of the contour to resemble
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straight segments. We set the variance π2/16 for unmatched points empirically.
Since the energy is inversely proportional to a probability, the optimal mapping
f∗ is obtained as f∗ = argminf E(f).

3.3 Matching algorithm

Eq. 4 shows that the count of all admissible mappings is exponential in the
number of verticesM . Thus it would be inefficient to evaluate the energy function
for each mapping. We have rather developed an algorithm employing a dynamic
programming approach which has a polynomial time complexity.

The dynamic programming optimization procedure seen in Alg. 1 is called
for every shifted simplified contour (p′1 . . . p

′

N ) = (pd . . . pN , p1 . . . pd−1), where
the shift is d ∈ {1 . . . N}. The reason is that Alg. 1 finds a mapping f such that
f(pim) = vm for m ∈ {1 . . .M} and 1 ≤ i1 ≤ i2 ≤ . . . ≤ iM ≤ N , i.e. one of the
first points is mapped to the vertex v1, some of its successors along the contour
to the vertex v2 and so on. Thus we have to try various shifts in order to be able
to map any point to vertex v1 as seen in Fig. 6.

Alg. 1 does not work with points and vertices directly. It expects a precom-
puted matrix V ∈ R

N×M and a vector S ∈ R
N instead. The value Vi,m is a

cost of matching the inner angle φi associated with the point pi to the learned
angle distribution for vertex vm, i.e. Vi,m = − log N (φi;µm, σ2

m) as in Eq. 5.
The value Si is a cost of matching φi to the angle of a dummy vertex s, i.e.
Si = − log N (φi;π, π

2/16) as in Eq. 5.
Both minimizations in Alg. 1 can be performed incrementally in O(N) time

by remembering the summation value for previous j. The first minimization is
performed N times, the second one O(NM) times. Thus the time complexity of
Alg. 1 is O(N2M). The Alg. 1 is called N times for variously shifted contour, i.e.
for d ∈ {1 . . . N}. Thus the overall complexity of contour matching is O(N3M).

Algorithm 1 Contour matching algorithm

Input: Vi,m = cost of mapping point pi to vertex vm
Si = cost of mapping point pi to segment s

Output: Ti,m = cost of mapping sub-contour (p1 . . . pi) to vertices (v1 . . . vm)
for all i ∈ {1 . . . N} do

Ti,1 ← min
j∈{1...i}

(

j−1
∑

k=1

Sk + Vj,1 +
i
∑

k=j+1

Sk

)

end for

for all m ∈ {2 . . .M} do
for all i ∈ {m. . .N} do

Ti,m ← min
j∈{m...i}

(

Tj−1,m−1 + Vj,m +
i
∑

k=j+1

Sk

)

end for

end for

return TN,M
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4 Experiments

The proposed methods were tested on a dataset of spread garments collected
at the Czech Technical University [14]. The dataset contains color images (as in
Fig. 2) and depth maps taken by Kinect-like device from a bird’s eye perspective.
All images were manually annotated by specifying positions of landmark points
which correspond to vertices of the proposed polygonal models in Fig. 4. The
resolution of images is 1280×1024. The edge of 1 pixel approximately corresponds
to 0.09 cm in real world coordinates. We used 158 testing images (29 towels,
45 pants, 45 short-sleeved shirts and 39 long-sleeved shirts). The algorithms
were implemented mainly in Matlab. Some of the most time-critical functions
were reimplemented in C++. The performance was evaluated on a notebook with
2.5 GHz processor and 4 GB memory.

The input images were downsampled to the resolution 320× 256 for the pur-
pose of segmentation. The smaller resolution preserves all desired details and
significantly improves the time performance of the segmentation algorithm. To-
tally 153 of 158 input images were correctly segmented which gives 97% success
ratio. The incorrectly segmented images were excluded from the further evalua-
tion. The time spent by segmenting one image is on average 0.87 seconds.

The contour simplification algorithm is the most time consuming operation
of the proposed pipeline. The running times can be seen in Tab. 1. They highly
depend on the length of the contour which is induced mainly by the shape com-
plexity of the particular category of clothing. The subsequent model matching
procedure is working with the already simplified contour and thus it is very fast
as seen in Tab. 1. The whole pipeline including also segmentation and contour
simplification runs around 5 seconds in the worst case. This is a significant im-
provement compared to 30–150 seconds required just for model fitting which is
reported by Miller et al. [9].

Table 1: Time performance (in seconds) of contour simplification phase and
polygonal model matching phase for various categories of clothing.

Phase Towel Pants Short-sleeved Long-sleeved

Contour 1.33 3.95 0.64 1.88
Matching 0.01 0.01 0.03 0.03

Table 2: Displacements (in centimeters) of the identified vertices to ground-truth
vertices found by polygonal model matching for various categories of clothing.

Error Towel Pants Short-sleeved Long-sleeved

Median 0.41 0.52 0.53 0.59
Mean 0.43 0.69 1.07 1.26
Std. dev. 0.23 1.00 1.40 1.79
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Fig. 7: Displacements of the vertices found by model matching (plotted in green)
and the manually annotated landmarks (red). The displacements were com-
puted for various configurations of garments and then they were projected to
the canonical image.

Tab. 2 summarizes displacements of vertices found by the proposed algorithm
compared to the manually annotated landmark points. These errors are similar
to those reported by Miller et al. [9]. They are small enough to determine the
configuration of a piece of garment reliably and then use this information to
manipulate the garment with robotic arms. Fig. 7 visualizes the displacements
for the selected representatives of clothing. The errors were computed for various
configurations of the same piece of garment and then they were projected to a
canonical image. The biggest source of displacements are shoulders as seen in
Fig. 7 for the green long-sleeved sweater. However, estimation of their position
can be ambiguous even for a human. Moreover, their exact position is rather
unimportant for automated manipulation. A few other significant errors were
made while estimating armpits of a shirt with very short sleeves as seen in Fig. 7
for the white shirt. They are caused by indistinguishable shape of the sleeves on
the contour. The contour resembles a straight line around the armpits.

The proposed algorithms were deployed to a real robot and successfully tested
in several folding sequences of various garments, as seen in Fig. 1. The folding
procedure succeeds approximately in 70% attempts. However, observed folding
failures were almost never caused by the described vision pipeline. Main source of
these failures lies in an unreliable grasping mechanism and in occasional inability
to plan move of robotic arms.

5 Conclusion

We have fulfilled our goal and proposed a fast method allowing to recognize the
configuration of a piece of garment. We have achieved a good accuracy, com-
parable to those of known approaches, despite the usage of a more challenging
nonuniform background. The presented model has proved to be sufficient for the
studied situation. The recognition procedure was deployed to a real robot and
successfully tested in fully automated folding.

In the future, we would like to strengthen power of the model by introducing
more global constraints. Our intention is to generalize the method to folded
pieces of garment. We would also like to learn the robot how to detect folding
failures and how to recover from them.
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7. Kolesnikov, A., Fränti, P.: Polygonal approximation of closed discrete curves. Pat-
tern Recognition 40(4), 1282–1293 (2007)

8. Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point
detection based on multiple-view geometric cues with application to robotic towel
folding. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA). pp. 2308–
2315 (2010)

9. Miller, S., Fritz, M., Darrell, T., Abbeel, P.: Parametrized shape models for cloth-
ing. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA). pp. 4861–4868
(2011)

10. Orchard, M., Bouman, C.: Color quantization of images. IEEE Trans. on Signal
Processing 39(12), 2677–2690 (1991)

11. Perez, J.C., Vidal, E.: Optimum polygonal approximation of digitized curves. Pat-
tern Recognition Letters 15(8), 743–750 (1994)
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