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1 Abstract

A polygonisation algorithm is presented which extends an existing skeletal implicit surface technique to
include operations based on Constructive Solid Geometry between blended groups of implicit surface
objects. The result is a surface definition (to be called Boolean Compound Soft Object, or BCSO for
short) which consists of a boolean expression with union, intersection, and set difference operators.
The geometric primitives that form the operands are soft objects bounded by the iso-surfaces resulting
from suitable potential fields. These potential fields are parameterized by configurations of so called
skeletal elements. The resulting system, unlike most CSG systems, combines blended and unblended
primitives. The polygonisation algorithm produces a mesh of triangles to facilitate fast viewing and
rendering.

keywords Free form surface design, implicit surfaces, constructive solid geometry, computer aided
geometric design

2 Introduction

Over the last few years, two techniques for defining complex geometric objects as composites from
more elementary geometric primitives have received some attention. They are Constructive Solid
Geometry (CSG; [Requicha 80], [Mantyla 88]) and Implicit Surface Modeling based on soft objects
(ISM; [Wyvill 86]). Both techniques have been used to construct a wide variety of non-trivial geometric
objects, but due to the difference in nature, the application fields of the two methods appears to be
quite different. Two earlier system that also combines CSG and skeletal implicit surface objects were
developed by Geoff Wyvill [Wyvill 90], using ray tracing to both traverse the CSG tree and render the
objects and also a system based on R-functions by Alexander Pasko et al [Pasko 95]. In this work our

1



approach is quite different in that we do not use ray tracing, instead we have developed a polygonizing
algorithm to facilitate fast rendering and improve the design cycle of such objects. For animation and
model visualization applications it is important to be able to view a model in real time. Currently this
can not be done with ray traced models, thus we employ a prototyping scheme that provides for fast
visualiztion even at reduced quality. As explained in the sequel, our model visualizations are not of
the same quality as ray traced images, however the polygonal meshes can be produced at an arbitrary
resolution and different views can be calculated in real time on modern graphics workstations.

In the table below we list some significant differences between CSG features and ISM features.
property CSG features ISM features BCSO Features

primitives geometric Primitives skeletal elements unlimited variety
e.g. sphere, cone, torus e.g. soft ellipsoids, of ISM’s either

soft lines, skeletal elements
soft polygons,... or blended groups

thereof
junctions unblended (non-C1), blended (C1), both C0 and C1

difficult to get C1 difficult to get in one object
non-C1

rendering either output b-rep either output polygon CSG operations
surface or ray trace while mesh or ray-trace performed on-the-
doing CSG-classification finding intersections fly during poly-
for each traced ray with ISM for each ray gonisation

main areas CAGD, industrial design computer (cartoon-type) traditional
of appli- and NC-machining animation, (pseudo-) CSG combined
cation biologic or organic with ISM

looking shapes, e.g.
also in the realm of
of industrial design

As indicated in the table the primitives in standard CSG, are a limited set of closed geometric
objects such as the sphere, cone, torus etc. Extended versions can also support primitives bounded by
free form surfaces, sweep surfaces, or other deformed primitives ([Crocker 87], [Jansen 87]).

Implicit surface systems also employ geometric primitives,known as skeletal elements, ([Bloomentha 90]).
Skeletal elements are geometric shapes that allow easy computation of a distance to a given point in
3-space.

Junctions in the boundary between surface fragments of different CSG primitives are generally not
C

1. It requires special primitives to obtain smooth blends ([Middleditc 85]). Alternatively, filleting
and rounding operations may apply to the boundary representation of the CSG-object ([Chiokura 83]).

The implicit functions used in ISM that give rise to the resultant iso-surface are in general dif-
ferentiable everywhere in 3-space, so the surface is smooth everywhere. Since there is no notion of
explicitly represented junctions in ISM, it is not possible to get non-C1 boundaries anywhere. (See
however [Gascuel 93]).

CSG and implicit surface systems are similar in that the underlying model description has to be
visualized. There are two basic approaches for each type of representation:

� For CSG systems, find a boundary representation (b-rep) and render the model as boundary
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fragments (mostly converted to polygon meshes), or alternatively, the object may be ray traced
while the CSG-expression evaluation takes place for each ray while being traced ([Jansen 87]).

� An implicit iso-surface, once polygonized, is just a polygon mesh that can be rendered as it
stands. Alternatively, it may be rendered directly via ray tracing. Although this is often too com-
putationally expensive for many applications, it has been demonstrated that CSG-type boolean
combinations of several iso-surfaces can be obtained by evaluating the boolean expressions along
with the ray intersections in a manner similar to standard CSG [Wyvill 90].

In this paper we present an extension to the uniform subdivision algorithm [Wyvill 86] to include
CSG operations between blended groups of implicit surface primitives.

Geometric primitives are complete ISM’s, so a virtually unlimited variety of primitives is available.
Next these primitives are assembled via the usual CSG-type boolean constructors. The skeletal
elements within one ISM primitive blend smoothly, so there are no visible non-C1 junctions within
those elements. On the other hand, two ISM primitives are combined in the CSG-sense, and hence a
visible junction arises there. So both types of junctions are supported within one surface representation
scheme. When ray tracing is employed for ISM’s, CSG-type operations can be berformed on-the-fly
where the operands are individual ISM’s [Wyvill 90], but ray tracing is computationally expensive.
On the other hand, when all ISM’s are polygonized first, then CSG-type operations can be performed
afterwards on the resulting polygon meshes ([Naylor 90]), since they are closed manifolds, but this has
a high complexity in terms of the number of triangles in the meshes involved: the fully triangulated
meshes of all input ISM’s have to be available, even if a given ISM only contributes for a small fraction
of its surface. Also, this strategy cannot be used if one the participating CSG-primitives (ISM’s) is
unbounded, as for instance when intersecting with a planar half space in order to ’cut an object in half’.
In the polygonizer presented here, we perform the CSG-operations on-the-fly while polygonizing the
resulting surface. This means that the complexity is linear in the number of triangles of the resulting
surface only, even if some of the contributing ISM’s would have given rise to much larger triangular
meshes.

In case we use the resulting mesh for further manipulations that require a parametrised representa-
tion, we may first want to reduce the number of triangles using resampling ([Schroeder 92]), and next
use e.g. Loop patches ([Loop 94]), so if need be, ISM’s can serve in a CAGD-context.

For the rest, the combined ISM/CSG modelsserve as an extension of the variety of shapes that may
be modeled with plain ISM’s, so they may be applied in the same areas.

Finally, we observe that the availability of CSG-type operations may extend the versatility of
volume visualisation techniques, e.g. in medical imaging where the surfaces of different structures
may serve as ISM surfaces in CSG-expressions.

An example of an implicit model which uses CSG operations is shown in fig. 1, the cylinders
smoothly blend together, difference operations are used to remove the insides of the cylinders and the
result is intersected with two planes. The cylinder in the horizontal direction shows the original shape
of the ISM cylinder primitive which has hemispherical ends.

In Section 2, we describe the algorithm for performing CSG-operations in parallel with polygonizing
the appropriate parts of ISM surfaces. Although this algorithm gives an adequate and consistent
polygonization for the smooth parts of the resulting surface, the non-C1 junctions are reproduced
poorly. This is due to the fact that the voxel structure that underlies our polygonization algorithm
has a uniform distribution, which is adequate under the assumption that for smooth surfaces the
curvature of the polygonized surface is distributed more or less uniformly over space. (In fact, it
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Figure 1: Blended, hollow cylinders, two of them have been intersected with orthogonal planes. The
cylinders in the horizontal direction have rounded ends as they are ISM primitives

can be rather wasteful in areas of large curvature radii. Adaptive polygonization techniques (see
e.g. [Bloomentha 88]) should be used to make this more efficient, but we do not focus on adaptive
techniques here.) The ’smoothness’-assumption does not hold, however, in the vicinity of the non-C1

junctions, and therefore severe voxelization artifacts may show up in these areas. Section 3 discusses
a remedy to these problems. Some implementation aspects are the topic of Section 4. Finally, Section
5 summarizes our results.

3 Voxel-based CSG-operations

Given a scalar field function f = f(x; y; z), the Uniform voxel Subdivision Algorithm of [Wyvill 86]
estimates intersections of the iso-surface f(x; y; z)jf(x; y; z) = 0g, to be polygonized, with the 12
edges of a cubic voxel, on the basis of the f(xc; yc; zc) values, c = 0; � � � ; 7, in the 8 corner vertices
(xc; yc; zc) of that voxel (see fig. 2). Here, the front lower left corner vertex (solid circle) has f > 0
whereas the other corner vertices (open circles) have f < 0. A vertex with f > 0 classifies ’in’ with
respect to the iso-surface and a vertex with f < 0 classifies ’out’. In the case where an intersection
of that edge with the iso-surface exists, the extreme vertices of a voxel edge are classified differently.
Cases where an edge contains one intersection are indistinguishable from cases where there are any odd
number of intersections. Similarly, the occurrence of an even number of intersections goes unnoticed.

On the bases of linear interpolation of the values of f in the corner vertices, the intersection points
(solid squares) are estimated. (Alternatively, more sophisticated, but slower, numerical methods such
as regula falsi or Newton Raphson may be used to obtain more accurate estimates of the intersections.)
The shaded triangle in fig. 2 is the mesh element that originates from this voxel. Any intersections
found are connected by piecewise planar surface elements (triangles), and the collection of all these
triangles forms the triangulated polygon mesh that approximates the iso-surface.
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Figure 2: A cubic voxel intersected by an iso-surface.

In order to generalize towards CSG-expressions in iso-surfaces, we assume that instead of a scalar
function f(x; y; z), we have an n� component vector function fj(x; y; z); j = 0; � � � ; n � 1. Each of
the components fj gives rise to its own iso-surface, each iso-surface can be seen as the boundary of
one ISM primitive. The resulting surface has to be constructed such as to bound the appropriate CSG-
expression in each of the ISM primitives. In the sequel, the CSG-operations are denoted as DIFF ,
UNION , and INTSCT , for difference, union, and intersection, respectively. The arguments of these
operators will be either numbers of ISM primitives (the above j) or other CSG-operations.

In order to see how this works out, we study a 2-D version first (see fig.3). Here C1 and C2 are two
iso-value contours that both intersect voxel edge A-B. They give rise to (estimated) intersections p1

and p2, respectively. SupposeC1 is the boundary of ISM primitive 1 whereasC2 bounds ISM primitive
2, and we want to polygonize the boundary of the object DIFF (1; 2). It can be seen from fig. 3 that
p2 is the relevant intersection of the two.

In general, we observe that depending on the in- or out-classifications of each of the components
fj in A and B we can determine, for each of the operatorsDIFF , UNION , INTSCT , which of the
intersections is the relevant one. Note that there does not always have to be a relevant intersection: if the
resulting iso-surface does not pass through the edge AB, the ’relevant intersection’ is not defined. The
following table gives an exhaustive list of all possible in- and out-cases for two participating objects i
and j.
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Figure 3: Using vector functions to represent several ISM objects at once.

fi(A) fj(A) fi(B) fj(B) DIFF (i; j) UNION(i; j) INTSCT (i; j)

out out out out out, -, out out, -, out out, -, out
out out out in out, -, out out, pj , in out, -, out
out out in out out, pi, in out, pi, in out, -, out
out out in in out, -, out(*) out, MIN , in out, MAX , in
out in out out out, -, out in, pj , out out,- ,out
out in out in out, -, out in, -, in out,- ,out
out in in out out, MAX , in in, -, in(*) out,- ,out(*)
out in in in out, -, out in, -, in out,pi,in
in out out out in, pi, out in, pi, out out, -, out
in out out in in, MIN , out in, -, in(*) out, -, out(*)
in out in out in, -, in in, -, in out, -, out
in out in in in, pj , out in, -, in out, pj , in
in in out out out, -, out(*) in, MAX , out in, MIN , out
in in out in out, -, out in, -, in in, pi, out
in in in out out, pj , in in, -, in in, pj , out
in in in in out, -, out in, -, in in, - , in

In the above table, the entries in the columns labeledDIFF (i; j),UNION(i; j), and INTSCT (i; j)

take the form ’clA, p, clB’. Here clA and clB are the in- or out-classifications of the resulting object
in the vertices A and B, respectively. If they are equal, the intersection point is not defined, indicated
by a ’-’ for the intersection point p. Otherwise, the intersection point is either the intersection point
pi (associated with ISM nr. i), the intersection point pj (associated with ISM nr. j), or the minimum
or maximum of these two. The minimum, MIN = MIN(pi; pj), is the point closest to extreme A
whereas MAX = MAX(pi; pj) is the point closest to B. Some entries are labeled with an asterisk
(*). For these entries, the application of the corresponding boolean operator on the coverage intervals
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would really yield either zero or two intersection points. Since we have to comply with the convention
that these intersection configurations go unnoticed, we have to report ’no intersection’ in these cases.

Based on the table above and on a straightforward binary tree-representation of the boolean expres-
sion, an algorithm to compute the intersection point and in=out classification of the resulting surface,
given the intersection points and in=out-classifications of the n ISM primitives, is readily obtained.

For a single voxel edge the algorithm in ANSI-C, it reads as follows:

typedef struct B_EXP {
char kind; /* the kind of this operator node u,i,d or n for union,

* intersection, difference or primitive number */
int n; /* if kind==’n’, the value of the primitive number */
struct B_EXP *se1, *se2;

/* if kind!=’n’, the first and second sub-expressions */
} B_EXP;

typedef struct {
int A_in,B_in;/* two booleans that indicate if the two

* extremes are inside */
float p; /* a number between 0 and 1, defined if (A_in!=B_in)

* indicating the relative position of
* the surface intersection */

}SEGMENT;

SEGMENT combine(SEGMENT s[],B_EXP *e) {
SEGMENT rs,ss1,ss2; /* if the expression is an operator,

* ss1(2) are its operands */
if(e->kind==’n’) {
rs=s[e->n];
return rs;

}
ss1=combine(s,e->se1);
ss2=combine(s,e->se2);
switch(e->kind) {
case ’u’:rs=form_union(&ss1,&ss2);break;
case ’i’:rs=form_intersection(&ss1,&ss2);break;
case ’d’:rs=form_difference(&ss1,&ss2);break;

}
return rs;

}

The functions form union(), form intersection(), and form difference() implement the instructions
in the above table. Before a call to combine is made, the caller has to set up the array s[] of segments,
one segment for each of the ISM primitives. This means that for each of the primitives the intersection
point with the current voxel edge has to be computed, as well as the in=out classification for that
primitive in both extremes of the voxel edge. The segment that is returned by combine() contains the
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Figure 4: Approximating the intersection of two implicit contours. Left: p12 is a first guess. Right:
iterating to get a more accurate approximation of x.

intersection of the resulting boundary surface with the current voxel edge (if it exists), as well as the
in=out classification in both extremes of this edge.

So an existing implementation of the uniform voxel space-subdivision algorithm can be easily
extended by replacing the computation of the intersection by a loop that computes the intersections
for all ISM surfaces, and next perform a call to combine() to have the intersection with the resulting
surface computed.

For efficient evaluation of the boolean expressions the implementation of the combine()� function
is rather straightforward. We observe, however, that simple tests can be included to avoid evaluating
sub expressions that do not contribute to the final result. For instance, computing INTSCT (i; j) for
two segments i and j where i is entirely outside the BCSO, yields again a segment that is entirely
outside, irrespective of j. So if we haven’t computed the sub expression yielding j yet, we may just
as well leave it. Similar considerations hold for all other operations. These and other techniques have
been well known in the field of ray tracing for CSG objects; see ([Jansen 87]) for an overview.

4 Arriving at non-smooth edges

Unlike implicit blends, CSG operations should result in sharp contours between primitives. Again
we first study the problem in 2-D. Consider fig. 4. Here we have again the configuration that two
iso-value contours, C1 and C2 intersect. The intersection point is x = (x; y; z), but this is of course
a priori unknown and we should try to find an approximation to it. Suppose that the CSG-expression
is DIFF (2; 1) where the interior region associated with curve C1 is on the left of C1 and the interior
region associated with C2 is on the right of C2. Then the combine()-function from Section 2 results in
the two relevant intersections between the resulting contour and the voxel edges p1 and p2, respectively.
Following the uniform subdivision strategy for inferring the contour from intersection points, we would
obtain the dashed line p1p2 as a segment of the contour. Since this is quite far from the actual intersection
point, the non-C1 junction is not very well reproduced. Instead we observe that we should find an
estimate for x such that f1(x) = f2(x) = 0 where f1 and f2 are the scalar field functions for the two
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ISM primitives with contours C1 and C2, respectively. Assuming we have a starting point which is not
too far off, say p12 =

p1+p2
2 , we can apply first order Taylor expansion to the difference n12 = x�p12.

As follows:

0 = f1(x) = f1(p12 + n12) � f1(p12) + (n12;rf1(p12)) (1)

0 = f2(x) = f2(p12 + n12) � f2(p12) + (n12;rf2(p12)) (2)

As we can evaluate f1 = f1(p12) and f2 = f2(p12), and similarly rf1 andrf2 in the same point p12,
we can solve the two linear equations 1 and 2 in n12 e.g. in least squares sense. However, since we
have to iterate anyway in order to find an accurate estimate for x, due to the f being nonlinear, we
proceed differently. Using 1 we can try to get an estimate n1 for n12 by setting n1 = �1rf1, for an
unknown scalar �1. For �1 we then find

�1 = �
f1

(rf1;rf1)
; (3)

so

n1 = �
f1rf1

(rf1;rf1)
; (4)

and similarly

n2 = �
f2rf2

(rf2;rf2)
: (5)

The two vectors n1 and n2 thus obtained are depicted in fig. 4. Since n1 would move p12 +n1 closer to
the contour C1, and n2 would move p12 +n2 closer to contour C2, their sum n12 = n1 +n2 is expected
to move p12 + n12 closer to the intersection of the two. So we set

p0
12 = p12 + n1 + n2 (6)

and re-iterate the previous computations until the length of the resulting displacement vector n12 drops
below a given threshold. In practice, 10 iterations are sufficient for a visually smooth approximation
of the contour. The right hand part of fig. 4 shows the subsequent estimates for the intersection point
during a series of iterations in the case of a ’hard’ configuration. We make two observations:

� Converge is only linear. Faster schemes could be employed, but the number of edges that have
to be split (i.e. the number of edges that are in the vicinity of a non-C1 junction) is expected to
be significantly less than the total number of edges. So the additional effort would not pay off.

� When the surfaces of the two ISM primitives are intersecting under a sharp angle, convergence
may need considerably more steps. In pathological cases it can even happen, if one of the
functions fj varies wildly in the vicinity of the intersection, that the 1st order Taylor approximation
that underlies our intersection-finder is insufficient, in which case the algorithm is numerically
unstable. This is reminiscent, however, of the numerical difficulties in finding intersections
between nearly tangent curved surfaces in more general contexts. However this does not cause
our algorithm to fail. A surface will still be found and a consistent mesh produced, although it
will show an inexact surface representation.
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Figure 5: Splitting schemes for 3-D triangles

A more sophisticated numerical technique may find a better approximation to the non-C1 junction,
however we should not lose sight of our goal here, which is to make a reasonable prototype mesh.
Ray tracing using a guaranteed method (e.g. see [Kalra 89]) would produce a better result for
a single image, although as can be seen for the examples we present the artifacts are generally
small. Our intent is to produce a mesh which can then be arbitrarily transformed as polygons on
a graphics workstation for rendering in real time as a prototype.

Notice that this computation only needs to be done if the intersections p1 and p2 belong to the
surfaces of different ISM’s.

In three dimensions, we are confronted with triangles rather than line segments that may have to
be split. Here, two situations have to be distinguished.

Consider fig. 5. In the top row, we see the case where in the triangle p1p2p3 point p1 belongs to
the surface of one ISM primitive whereas p2 and p3 together belong to another ISM primitive surface.
So edges p1p2 and p1p3 are split and the split points are computed according to the above algorithm
(fig. 5b). The new configuration consists of the two polygons in the diagram (fig. 5c); for a fully
triangulated boundary mesh, the quadrangle should be triangulated as well.

In the bottom row, all three vertices p1, p2, and p3 belong to different ISM surfaces. A configuration
like this occurs e.g. near a corner vertex of a cube (see inset in fig. 5). In this case the triangle is to be
replaced by 6 triangles, which means that we not only have to find the intersections associated with the
mid points of edges, but also one additional new point that comes in the place of the mid point p123 of
the triangle. This latter intersection is a three-fold intersection, i.e. a point where three ISM primitive
surfaces meet. We find the latter point using exactly the same approach as we did for intersections with
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two ISM primitive surfaces. Only our starting estimate will be p123 in stead of p12. So we compute

n1 = �
f1rf1

(rf1;rf1)
; (7)

n2 = �
f2rf2

(rf2;rf2)
: (8)

n3 = �
f3rf3

(rf3;rf3)
: (9)

where the f andrf are defined in the point p123, and next we set

p0
123 = p123 + n1 + n2 + n3: (10)

Figure 6 shows a wheel model before and after the application of the edge enhancement described
above. This image clearly shows the improvement to the edges of the model with the additional
polygons.

5 Implementation aspects.

Finding the surface: A simple heuristic to obtain a starting voxel for the uniform subdivision algorithm
in the case of one single ISM object is to probe the functionf in the centre of one of the skeletal elements
where it is certain that f > 0 and next move onwards in an arbitrary direction one voxel at a time until
a voxel has been found that has vertices both inside and outside the ISM; this voxel is an appropriate
starting position for the polygonizer. When polygonizing the surface of a combined CSG/ISM object,
however, this strategy does not necessarily work. Consider the intersection of two spheres with slightly
different centres; both centre points will be outside the resulting model, and if we happen to proceed
in a direction away from the model, we never find the surface. A partial fix to this problem is to probe
in several directions, in order to enlarge the chance to find the surface. It appears however that a 100%
reliable starting strategy should probe in an infinite amount of directions since there seems to be no
way for computing beforehand where the surface is. In practice, this turns out to be not much of a
problem since there usually will be at least one ISM skeletal element with its centre inside the resulting
surface. So probing in 2 or 3 sufficiently different directions, starting from all the skeletal elements,
is a practical way to initiate the surface polygonization. Initiating the search from all of the skeletal
elements is also necessary to find the surface in case it consists of several disjoint segments as described
in [Wyvill 86].

Normal vectors: for illumination computations, normal vectors should be provided that are
consistently oriented. For a single ISM primitive j, normal vectors always point in the direction
of rfj . In the case ISM j is subtracted from the current combined model, the normal vector on this
part of the surface should point in the direction of �rfj. The combine()-function from Section 2
therefore could be extended in such a way that it also computes information on the orientation of the
normal vector of the resulting surface as a result of the two normal vectors in the two input surfaces.
This is of course easily done on the basis of the values of A in and B in. Notice however, that
computing normal vectors is relatively expensive, and it is really only necessary to have the normal
vector for the single ISM primitive that is responsible for the resulting intersection. Therefore the
combine()� function should rather return an identification of that ISM, together with a boolean to
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indicate if the normal vector should be reversed so that the normal vector calculation can take place
afterwards. We also observe that in the intersections that are computed as in Section 3, two or three
normal vectors should be output, namely one for each of the intersecting ISM’s, in order to obtain also
visually non-C1 junctions. Finally observe that it is advantageous to have the combine()�function
compute the identification of the resulting ISM, so that ISM’s with different surface attributes (e.g.
colours) give rise to appropriately coloured parts in the surface.

6 Results; discussion; conclusion

Results
Figure 6 shows a wheel built from 14 BCSO primitives. These are combined to form seven

ISM’s. For example, the seven spokes are blended together with the outer torus to form a single ISM.
Intersecting half planes are used to flatten the front and back and a difference operation was used to
subtract a torus from the flattened surface to form the decorative groove. The colours have been chosen
to illustrate the separate ISM’s.

Figure 7 shows two primitive cylinders (magenta) are positioned in a cross formation. They blend
with each other and the magenta spheres. The white spheres and the yellow cylinder have been added
using a union operation. Two green cylinders have been blended together to form a smoothly blended
T-shape ISM, that has been subtracted from inside the magenta cylinders. The cut-away is formed by
taking the intersection of two half planes and forming the union with the remainder of the object after
translating the cut-away portion.

The coffee grinder of figure 6 was constructed from 15 ISM’s, composed of some 25 primitives.
Again colours are used to distinguish between different ISM’s.

The table and mirror frame were also modelled using BCSO’s. Our polygonizer took about 1
minute on an SGI Indy to convert the primitive description and boolean expression to about 1.5 million
triangles. There are 37 BCSO primitives in the coffee grinder (14 blending groups), 17 primitives in
the table (10 blending groups) and 19 primitives in the mirror (16 blending groups). The polygons
were ray traced using a locally modified version of Rayshade [Kolb 95].

The model of the American Type 4-4-0 (c. 1855) uses 237 CSG primitives and takes about 5
minutes to produce about 450,000 polygons on the SGI Indy.

It should be noted that the times given are for the manufacture of a relatively high density mesh.
Lower quality meshes can be produced significantly faster. Once the polygons have been calculated
different views can be chosen in real time.

7 Discussion

Earlier work has used ray tracing to compute BCSO objects. The main contribution of this research
is introduce a scheme for polygonization of these models. It is therefore helpful to compare the two
methods. Both ray tracing and voxel-based polygonization are methods to convert an ISM into a
(explicit) coordinate representation:

� ray tracing by sampling the surface with a large set of light rays and using the collection of
intersections to directly assign colours to pixels. To get an accurate rendering, the number of
rays has to be at least as high as the number of pixels, but consequently sampling artifacts are
not larger than pixels.
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Figure 6: upper: Wheel before and after postprocessing. lower: The Canmore coffee grinder.
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Figure 7: Combining blended primitives with CSG operations.
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Figure 8: upper: The Canmore coffee grinder and friends. Lower: American Type 4-4-0 (c. 1855)
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� voxel-based polygonization by sampling the surface on a regular grid of voxel edges, and
using the collection of surface-edge intersections to build a polygon mesh. To get an adequate
representation, the voxel grid only has to be dense enough to capture all geometric features of
the implicit surface, but sampling artifacts may be as large as individual voxels. With respect to
sampling the ISM, voxel edges essentially play the roles of the rays in ray tracing.

Due to the fundamental similarity of the two techniques, it should not come as a surprise that both can be
extended to cope with CSG-expressions in ISM’s. This has been well known for ray tracing where the
CSG-expressions are evaluated on a per-ray base; in this paper we suggest to follow a similar technique
for voxel-based polygonization where the CSG-expressions are evaluated on a per-voxel-edge base.

8 Conclusion

We propose an extension to voxel-based polygonization of ISM’s which accounts for CSG-type ex-
pressions in ISM’s. It converts a BCSO into a polygon mesh which displays both smooth blends,
characteristic in implicit surface modelling, and non-C1 junctions characteristic for traditional CSG.
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10 Glossary

BCSO: Boolean Compound Soft Object: a CSG expression with a set of ISM’s as operands.

CSG: a method for combining shapes (primitives) via the boolean operationsDIFF (set difference),
UNION (set union), and INTSCT (set intersection).

CSG expression: an expression in CSG operations with primitives as operands.

CSG operation: set difference, set union, or set intersection.

ISM: Implicit Surface Model.

ISM surface: the boundary of an ISM.

ISM primitive: an ISM as it occurs in boolean expressions to arrive at a BCSO.

junction: a curve on the surface of a CSG object which is the intersection curve of two of the consituent
primitives.

skeletal element: a geometric primitive (e.g. point, line, torus, etc.) that parameterises a scalar
function f such that the iso-surface f = 0 forms the ISM surface of the ISM that is defined via
one or more of such elements.
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skeleton: a collection of skeletal elements that form an ISM.

polygonization: the approximation of an implicit surface by a polygon mesh (usually a mesh consisting
of triangles).

primitives: operands in a CSG expression.

segment: an edge of a voxel that intersects the surface of a BCSO.

voxel: a cubic volume in 3-D space which is oriented along the coordinate axes.
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