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Abstract. We examine the different ways a set of n points in the plane can be 
connected to form a simple polygon. Such a connection is called a polygonization 
of the points. For some point sets the number of polygonizations is exponential in 
the number of points. For this reason we restrict our attention to star-shaped polygons 
whose kernels have nonempty interiors; these are called nondegenerate star-shaped 
polygons. 

We develop an algorithm and data structure for determining the nondegenerate 
star-shaped polygonizations of a set of n points in the plane. We do this by first 
constructing an arrangement of line segments from the point set. The regions in the 
arrangement correspond to the kernels of the nondegenerate star-shaped polygons 
whose vertices are the original n points. To obtain the data structure representing 
this arrangement, we show how to modify data structures for arrangements of lines 
in the plane. This data structure can be computed in O(n 4) time and space. By 
visiting the regions in this data structure in a carefully chosen order, we can compute 
the polygon associated with each region in O(n) time, yielding a total computation 
time of O(n 5) to compute a complete list of O(n 4) nondegenerate star-shaped 
polygonizations of the set of n points. 

I. Introduction 

M a n y  p rob lems  in compu ta t i ona l  geomet ry  and pa t te rn  recogni t ion  have to do  
with const ruct ing  objects  f rom sparse  par t ia l  informat ion.  Given  a set o f  points  
in the  p lane ,  pa t t e rn - recogni t ion  researchers  have been  in teres ted in re la t ionships  
be tween  h u m a n  pe rcep t ions  o f  the  pa t te rns  fo rmed  and theore t ica l  compu ta t iona l  
r epresen ta t ions  o f  the  po in t  set [1], [13], [15], [16], [22]. C o m p u t a t i o n a l  
geometers ,  tak ing  a s l ightly different  v iewpoint ,  have examined  ways in which  a 
set o f  po in ts  in the p lane  can be  connec ted  to form a s imple  po lygon .  We call  
such a connec t ion  a polygonization of  the points .  

The  n u m b e r  o f  po lygon iza t ions  o f  a set o f  n poin ts  is known to be exponen t ia l  
in n [9]. By p lac ing  fur ther  res t r ic t ions on the po lygoniza t ions ,  we hope  to make  
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the problem of  generating polygonizations more tractable. One restriction is to 
require polygons to be orthogonai (all sides are parallel to the x- or y-axis). The 
problem of determining whether a polygonization exists in this setting, where 
more than two points are allowed on a side, is NP-complete [18]. If exactly two 
points are allowed on each edge, this existence problem is solvable in polynomial 
time, and the solution, if it exists, is unique [14]. In this paper we look for 
star-shaped polygonizations, and again find it necessary to place further restric- 
tions on the problem. 

A related problem is that of  connecting line segments in the plane to form 
simple polygons. A restricted version of  this problem is solved in [20], but the 
general problem has been shown to be NP-Complete [19]. 

2.  F u n d a m e n t a l s  

In this paper we assume that we have a set of n points in the plane, no three of 
which are collinear, and that the points are labeled with the integers from 1 to 
n, n >-3. Figure l will be used to illustrate many of the ideas presented. 

A polygonization of  a set of n points is designated by listing the points in the 
order in which they are connected. The points are listed in counterclockwise 
order; that is, in moving from one point to the next in the polygonization, the 
interior of the polygon is on the left. The polygonization is represented as a 
circular list of  points (i~, i: . . . .  , i,), where il is connected to i2, i2 to i3 , . - - ,  i, 
to i~, and the choice of  starting point is arbitrary. For the point set of  Fig. 1, 
(1, 3, 2, 4, 5) and (3, 2, 4, 5, 1) represent the same polygonization, but (4, 1, 5, 3, 2) 
represents a different one. 

A polygonization of  n points defines a simple polygon P. In the terminology 
of  Shamos [21], a polygon P is star-shaped if there is some point in P that can 
"see" all other points of  P. The set of  all such points is called the kernel of P; 
that is, k e r ( P ) = { x  in PlVy in P, ~yy is in P}. Thus, a star-shaped polygon is 
one whose kernel is nonempty. Shamos [21] has proved several results about 
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Fig, 1 
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star-shaped polygons. First, the kernel of  any polygon P is the intersection of 
all the half-planes formed by the edges of  P. For a given edge, the half-plane to 
be intersected is the one lying on the same side of  that edge as the interior of  P. 
This intersection can be computed in O(n  log n) time. Moreover, the kernel of  
P is a convex polygon contained in P. We call a star-shaped polygon whose 
kernel has a nonempty interior a nondegenerate star-shaped polygon. 

3. Star-Shaped Polygonizations of a Point Set 

Next we prove two results concerning the existence and uniqueness of  star-shaped 
polygonizations for a set of  points in the plane. The techniques used in this 
section are due to Graham [6]. 

Theorem 3.1. For a given set o f  n >- 3 points in the plane, no three collinear, and 
a point r inside the convex hull o f  the set, there exists at least one star.shaped 
polygonization o f  the set that contains r in its kernel. 

Proof. Pick any ray emanating from r. For each point i in the point set, compute 
the counterclockwise angle from the chosen ray to the ray ri.  Sort the angles 
from smallest to largest and connect the points in the corresponding order, with 
the last being connected to the first. The rays ri divide the plane into wedges. 
Since r is interior to the convex hull of  the set of  points, the angle of  each of 
these wedges is less than 180 ° , so the wedges are convex. Thus, each wedge 
contains the edge of  the polygon that joins the points on the rays bounding it. 
Because each edge of the polygon is confined to a unique wedge, the polygon is 
simple. The fact that the wedge angles are less than 180 ° also ensures that r is 
in the interior half-plane formed by each edge, so that r is in the kernel of  the 
polygon. Some ambiguity is possible here if two angles are equal. I f  so, connect 
the points with equal angles in either order, and r will be in the kernel of  both 
of  the resulting polygons. [] 

In order to eliminate the ambiguity present in Theorem 3.1, we prove the 
following uniqueness theorem. 

Theorem 3.2. For a set o f  n >- 3 points in the plane, no three collinear, let r be a 
point interior to the convex hull o f  the set. Suppose that i f  r is collinear with any 
two points o f  the set (in this case, r is not one o f  the original n points), the two 
points lie on opposite sides o f  r. Then there is a unique star-shaped polygonization 
o f  the set with r in its kernel. 

Proof Suppose P and Q are two different polygonizations of the point set, each 
containing r in its kernel. Let i be a point in the point set whose successor j in 
P is different from its successor k in Q. Without loss of  generality we can assume 
that the counterclockwise angle 0 from "~" to " ~  satisfies 0 < 0 < ~r, since no three 
points in the point set are collinear. 
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Fig. 2 

Because r is in the kernel of P, it must lie to the left of-~" in Fig. 2. (In general, 
this means that r lies in the half-plane to the left as we move out along the ray 
from i to j.) Similarly, because r is in the kernel of Q, it lies to the left of ~ ' .  
By hypothesis, r cannot lie on any of the line segments in Fig. 2 except possibly 
the segment ik. If r lies in region A or on segment ik, then in polygon Q the 
edge ik obscures j from the sight of r, contradicting r being in the kernel of Q. 
If  r lies in the open region B, then the edges of  polygon P adjacent to k obscure 
at least part of edge ~ in P from the sight of r, contradicting r being in the 
kernel of P. Thus, r cannot be in the kernel of two distinct star-shaped 
polygons. [] 

4. Arrangements for Computing Star-Shaped Polygons 

We now construct an arrangement of line segments determined by the n points 
of our set of points. Each region of this arrangement will be shown to be the 
kernal of one of the nondegenerate star-shaped polygonizations of the original 
n points. 

Let i and j denote points of the point set. The arrangement consists of three 
sets of line segments: 

(i) The line segments ff on the boundary of the convex hull of the set. 
(ii) For each pair of points, i on the boundary of  the convex hull and j in 

the interior of the convex hull, the line segment determined by intersecting 
the ray opposite to j--{ with the convex hull. 

(iii) For each pair of points, i and j, both in the interior of the convex hull, 
the two line segments determined by intersecting the rays opposite j i  
and -~  with the convex hull. 

The arrangement for the point set in Fig. 1 is given in Fig. 3. In the arrangement 
of Fig. 3, segments 1 2, 2 3, and 3 1 form the boundary of the convex hull and 
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are of type (i). Segments 4 13 and 5 14 are of type (iii), generated by points 4 
and 5. The remaining segments are of type (ii). 

Each of the original n points lying in the interior of the convex hull must have 
at least three segments of type (ii) incident to it, because the boundary of the 
convex hull must contain at least three of the original points. Thus, the arrange- 
ment of line segments divides the convex hull into (closed) regions. It follows 
from Theorem 3.2 that each point in the interior of one of the regions is in the 
kernel of a unique star-shaped polygon. The next three theorems demonstrate 
the relationship between the star-shaped polygonizations of a set of n planar 
points and the regions of  the associated arrangement. 

Theorem 4.1 Let r, and r2 be two points in the interior o f  the same region o f  the 
arrangement associated with a set o f  n > 3 points, n.o three of  which are collinear. 
Then the unique star-shaped polygon containing r, in its kernel is the same as the 
unique star-shaped polygon containing r2 in its kernel. 

Proof. Suppose that the polygonization associated with rl is different from the 
polygonization associated with r2. Then there must be three points, i, j, and k, 
in the original point set with the property that a ray sweeping counterclockwise 
from r-~ intercepts the three points shown in the order kji and a ray sweeping 
counterclockwise from r2k intercepts the three points in the order kij. A partial 
picture of the arrangement associated with the point set is shown in Fig. 4. 

Notice that any of R2, R3, and R4 might be empty if i, j, or k is on the 
convex hull, respectively. Moreover, in the complete arrangement, the regions 
RI, R2, R3, and R 4 might possibly be subdivided further. The point rl must 
lie in region R~, but the point r2 must lie in one of regions R2, R3, or R4. 
Consequently, r~ and r2 must lie in different regions of the arrangement. This 
is a contradiction. [] 

Theorem 4.2. Let R~ and R2 be two different regions of  the arrangement associated 
with a set o f  n >- 3 points, no three o f  which are collinear. Then the unique star-shaped 
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polygon associated with R~ is different from the unique star.shaped polygon associated 
with R2. 

Proof Let P~ be the polygonization associated with R~ and/'2 be the polygoniz- 
ation associated with R2. We begin by considering the case where R~ and R2 are 
adjacent regions; that is, R, and R2 share a common edge L in the interior of 
the arrangement. L must have been generated by two points i and j where at 
least i is interior to the convex hull of the set of points. Let k be any third point 
in the set. A partial picture of the arrangement is shown in Fig. 5. 

As in the proof of Theorem 4.1, any of the regions can be subdivided further 
in the complete arrangement. Furthermore, j or k could be on the convex hull, 
in which case the associated region would disappear. Points r inside the shaded 
regions have the property that a ray sweeping counterclockwise from ~-~ intersects 
the three points shown in the order k/j. Points r outside the shaded regions and 
inside the convex hull have the property that a ray sweeping counterclockwise 
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from ~ intersects the three points shown in the order kji. Because Rt lies outside 
the shaded regions and R2 ties inside a shaded region, they must give rise to 
different polygonizations. 

Next suppose that Rt and R2 are not adjacent but that they give rise to the 
same polygon P. Both R t and R 2 lie inside the kernel of P, which is a convex 
set. This can happen only if at least one other region is also in the kernel of. 
P. At least one such region must be adjacent to R t o r  R 2. We have already 
seen that this cannot happen, so Rt and R2 must have different associated 
polygonizations. [] 

It follows from Theorems 4.1 and 4.2 that each region of the arrangement has 
an associated star-shaped polygonization of the point set. Not all star-shaped 
polygonizations have associated regions, however; any degenerate star-shaped 
polygonization of the point set corresponds to a single point or line segment in 
the arrangement. For example, in the arrangement of Fig. 6, point r is the 
intersection of the three segments generated by the point pairs (2, 5), (3, 6), and 
(1,4). Regions R~-R6 are associated with the six nondegenerate star-shaped 
polygonizations containing r in their kernels. The two degenerate polygonizations 
(1, 6, 3, 5, 2, 4) and (1, 4, 3, 6, 2, 5) have kernel r and no associated region. 

In general, the more line segments that intersect in a given point in the 
arrangement, the more degeneracies arise. A point that is the intersection of k 
line segments lies in the kernels of 2 k star-shaped polygonizations. The authors 
are grateful to Douglas Dunham for pointing this out. 

Theorem 4.3. For a set of  n >>- 3 points in the plane, no three of which are collinear, 
there is a one-to-one correspondence between the nondegenerate star.shaped poly- 
gonizations of the set and the regions determined by the arrangement of line segments 
associated with this set. Moreover, each region is the kernel of  its associated polygon. 

Proof. Let R be a region in the arrangement, and let r be any point in the 
interior of R. If P is the unique star-shaped polygon containing r in its kernel, 
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then Theorem 4.1 implies that R is contained in the kernel of  P. Furthermore, 
because R has a nonempty interior, P must be nondegenerate. By Theorem 4.2, 
the exterior of  R does not intersect the kernel of  P, and hence the kernel of  P 
is contained in R. Thus, R and the kernel of P are equal. 

Now let P be any nondegenerate star-shaped polygon on the point set. Because 
the kernel of P has a nonempty interior, which lies inside the convex hull of the 
point set, the kernel of  P must have nonempty intersection with the interior of 
some region R of the arrangement. Then R is the region associated with P, and 
the kernel of P is R. [] 

Corollary 4.4. Kernels of different polygonizations of a set of n points are disjoint 
except for the boundaries, and the union of all these kernels is the convex hull of 
the set. 

5. Generating Nondegenerate Star-Shaped Polygonizations 

To represent the arrangement of  line segments described in Section 4, we replace 
each line segment with the line on which it lies and use the techniques for 
constructing arrangements of  lines in the plane developed by Chazelle et al. [3] 
and Edetsbrunner et al. [5]. Data structures for representing such arrangements 
are described in [7], [8], [11], and [17]. From n points in the plane arise O(n 2) 
lines, and the arrangement can be constructed in O(n 4) time and space. To 
maintain the original line-segment arrangement, we designate the edges coming 
from that arrangement as real edges and the rest as dummy edges [2], [4]. See 
Fig. 7 for the line arrangement on our set of five points. 

It is now possible to traverse the regions of the line-segment arrangement by 
doing a depth-first search of the dual graph; by visiting the regions in this order, 
we always move from a region to an adjacent region, and the corresponding 
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polygonizations differ only by interchanging the pair of points corresponding to 
the real edge crossed. Thus, to print the entire list of O(n 4) nondegenerate 
star-shaped polygonizations we do O(n) work at each step to switch one pair of  
points and print the new polygonization, yielding a total computation time of  
O(nS). 

Theorem 5.1. A data structure representing the arrangement of line segments 
described in Section 4for  a set of  n >- 3 planar points, no three of which are collinear, 
can be constructed in O(n 4) time and space. From this structure, a list of  all 
nondegenerate star-shaped polygonizations of  the n points can be generated in O(n 5) 
time. 

A similar technique can be used to compute the nondegenerate star-shaped 
polygonization with minimum boundary length. The time to correct the boundary 
length when moving from one region to an adjacent one is O(1), so the shortest 
length can be computed in O(n 4) time. The minimum length nondegenerate 
star-shaped polygon is not necessarily a solution to the traveling salesman prob- 
lem. For example, consider a set of points on two concentric circles, where the 
points are quite dense on the circles and the distance between the circles is large. 
Any star-shaped polygon on these points will have numerous edges between the 
two circles, whereas a traveling salesman tour will move back and forth between 
the circles only once. 

6. Discussion and Open Problems 

It is somewhat unappealing to represent an arrangement of line segments as an 
arrangement of lines. It would be much more aesthetic to simply build a data 
structure whose faces, edges, and vertices are those of the line-segment arrange- 
ment itself. Unfortunately, the time bound arguments given in [3] and [5] seem 
to be dependent upon the existence of complete lines in the arrangement. A 
straightforward O ( N  2) algorithm for constructing an arrangement of  N line 
segments in the plane would be welcome. 

A less straightforward and less appealing method for constructing a line- 
segment arrangement is to construct the associated line arrangement and then 
"clean it up"  by removing dummy edges and vertices created by dummy edges. 
Examples exist that have l-l(n 4) nondegenerate star-shaped polygonizations, and, 
because O(n) work must be done just to print a polygonization, a time bound 
of O(n 5) cannot be beaten in the worst case. Thus, cleaning up the data structure 
may at best produce a lower constant factor. For other applications this approach 
may be more worthwhile. 

Another method to consider is the plane-sweep. The methods described by 
Nievergelt and Preparata [ 12] can be adapted to construct a line-segment arrange- 
ment in time O ( ( N + S )  log N),  where N is the number of  line segments and S 
is the number of intersections. In our application with n points in the plane, 
N = O(n 2) and S =  O(n4), so at worst this is an O(n41og n) computation. For 
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sets where S is known to be relatively small, however,  this method may well be 
more practical than the O ( n  4) techniques. 

Although the results in [14] on orthogonal polygonizations extend to three 
dimensions,  the results in this paper do not. In R 3, a region o f  space can lie in 
the kernels of  exponentially many polytopes on a point set, so the decomposit ion 
of  the convex hull into kernels of  distinct polygonizations breaks down. For 
example,  take n - 1 points forming a convex set in the xy-plane, and triangulate 
the set o f  points. N o w  lift some of  the points out of  the plane in the z-direction, 
along with the part o f  the xy-Plane within their convex hull. This can be done 
so that creases develop only along the edges of  the triangulation, creating a 
multifaceted surface. To complete the construction, place an nth point at some 
large distance above the xy-plane and connect  it with the remaining points to 
form a cone-shaped polytope,  where the first n -  1 points lie around the base 
and last point is at the apex. Each different triangulation of  the first n - 1 points 
gives rise to a different polytope, and all o f  these polytopes have kernels which 
contain the apex of  the cone and a neighboring region inside the cone. Because 
a convex set o f  n - 1 points in the plane has ~(4"n -3/2) triangulations [10], there 
a r e  ~'~(4nn -3/2) of these polytopes. 
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