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POLYHARMONIC FUNCTIONS OF INFINITE ORDER
ON ANNULAR REGIONS

OGNYAN KOUNCHEV AND HERMANN RENDER

Abstract. Polyharmonic functions f of in�nite order and type � on annular regions are
systematically studied. The �rst main result states that the Fourier-Laplace coe¢ cients
fk;l (r) of a polyharmonic function f of in�nite order and type 0 can be extended to
analytic functions on the complex plane cut along the negative semiaxis. The second
main result gives a constructive procedure via Fourier-Laplace series for the analytic
extension of a polyharmonic function on annular region A (r0; r1) of in�nite order and
type less than 1=2r1 to the kernel of the harmonicity hull of the annular region. The
methods of proof depend on an extensive investigation of Taylor series with respect to
linear di¤erential operators with constant coe¢ cients.

1. Introduction

Let G be a domain in the euclidean space Rd: A function f : G ! C is called poly-
harmonic of order p if f is 2p times continuously di¤erentiable and �pf (x) = 0 for all
x 2 G; where � = @2=@x21 + � � �+ @2=@x2d is the Laplace operator and �p the p-th iterate
of �: Polyharmonic functions have been investigated by several authors (see e.g. [1], [10],
[11], [12], [13], [16], [20], [21], [28], [33], [34], [35], [38]) and they have recently many
applications in approximation theory, radial basis functions and wavelet analysis (see e.g.
[6], [22], [23], [24], [29]).
Aronszaijn introduced in 1935 the concept of a polyharmonic function of in�nite or-

der (see [3] and [26]). On the one hand, this class of functions contains the class of
classical polyharmonic functions of all �nite orders p; and on the other hand it retains
many properties of the latter class, e.g. analytic extendibility to the harmonicity hull;
the monograph [2] is devoted to this subject and additional information can be found in
the research book of Avanissian [4]. Important examples are eigenfunctions of the Lapla-
cian, i.e., functions satisfying the equation �f (x) = �f (x) for some � 2 C; or so-called
metaharmonic functions (e.g. [40]).
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2 O. KOUNCHEV AND H. RENDER

Let us recall that a function f : G! C is polyharmonic of in�nite order and type � � 0
if, for any compact set K � G and for all " > 0; there exists a constant CK;" > 0 such
that

(1) max
x2K

j�pf (x)j � CK;" (2p)! (� + ")2p

for all natural numbers p: An equivalent way to express this inequality is to require that
for any compact subset K of G the inequality

(2) lim
p!1

max
x2K

2p

s
j�pf (x)j
(2p)!

� �

holds. [4, Theorem 1.4] characterizes real-analyticity in terms of estimates of the Lapla-
cian. Namely, an in�nitely di¤erentiable function f : G ! C is real-analytic if and only
if for any compact subset K of G there exists a constant CK and a constant �K such that

(3) max
x2K

j�pf (x)j � CK (2p)! (�K)
2p

for all natural numbers p: Thus polyharmonic functions of in�nite order and type � are
real-analytic and they allow the explicit control of the constant �K in (3).
In the present paper we shall study polyharmonic functions of in�nite order on the

annular region

A (r0; r1) :=
�
x 2 Rd; r0 < jxj < r1

	
for 0 � r0 < r1 � 1:

In this case tools from harmonic analysis, like the Fourier-Laplace series, are available. Our
�rst goal is to describe properties of the Fourier-Laplace coe¢ cients fk;l of a polyharmonic
function f of in�nite order. Let us recall some basic notations: Let

Yk;l (x) ; for l = 1; ::; ak;

be an orthonormal basis of the ak-dimensional linear space of harmonic homogeneous
polynomials of degree k � 0; which are orthonormal with respect to the scalar product

hf; giSd�1 :=
Z
Sd�1

f (�) g (�)d�;

where Sd�1 =
�
x 2 Rd; jxj = 1

	
is the unit sphere (see [5], [22], [32], [39]). Let f be a

continuous function on the annular region A (r0; r1) : Then the Fourier-Laplace coe¢ cients
fk;l of f are de�ned by

(4) fk;l (r) =

Z
Sd�1

f (r�)Yk;l (�)d� for r 2 (r0; r1) :

The formal series

(5)
1X
k=0

akX
l=1

fk;l (r)Yk;l (�)



POLYHARMONIC FUNCTIONS OF INFINITE ORDER ON ANNULAR REGIONS 3

is called the Fourier-Laplace series of f: The special case of a harmonic function f de�ned
on A (r0; r1) shall serve us as a guiding example: We have

(6) fk;l (r) =

�
�kr

k + �kr
�k�d+2 for d > 2; or d = 2; k � 1

�0 + �0 log r for d = 2; k = 0:

on the open interval (r0; r1) ; for suitable complex coe¢ cients �k and �k: More generally,
it is known that if f is polyharmonic of order p and d is odd then there exist polynomials
pk;l and qk;l of degree p� 1 such that fk;l (r) = rkpk;l (r

2) + r�k�d+2qk;l (r
2) (see [38], [41]

or [22]). Thus for odd dimension fk;l (r) extends to an analytic function on the punctured
plane C� := fz 2 C; z 6= 0g ; while for even dimension we can only infer that fk;l (r) is an
analytic function on the cutted complex plane C n (�1; 0] :
The �rst main result of this paper states the following: The Fourier-Laplace coef-

�cients fk;l (r) of a polyharmonic function f : A (r0; r1) ! C of in�nite order and type
0 possess analytic extensions to the cutted complex plane C n (�1; 0] (cf. Theorem 20
below). For odd dimension we can sharpen the result: There exist entire functions pk;l
and qk;l such that

(7) fk;l (r) = rkpk;l
�
r2
�
+ r�k�d+2qk;l

�
r2
�

for all r 2 (r0; r1) : In particular, it follows that the Fourier-Laplace coe¢ cients fk;l
de�ned on the interval (r0; r1) can be analytically extended to the punctured plane
C� := fz 2 C; z 6= 0g : We refer to Theorem 23 below.
The second main result of the paper addresses the problem of extending analytically

a polyharmonic function f : A (r0; r1)! C of in�nite order and type � � 0 to a suitable
domain in Cd: It is well known that polyharmonic functions of in�nite order and type
� = 0 de�ned on a domain G in Rd can be extended analytically to the so-called kerneleG of the harmonicity hull bG (see [2], [4]), or for a generalization [9]. In the case of the
annular region A (r0; r1) we can give an explicit formula for the analytic extension via
Fourier-Laplace series and, as a by-product, we show that it su¢ ces to assume that the
function f is polyharmonic of in�nite order and type � < 1=2r1 instead of the stronger
assumption of type � = 0: We refer to Theorem 25 and Theorem 26 below.
In order to make the results more precise we recall some basic notations in complex

analysis in several variables: For z = (z1; : : : ; zd) 2 Cd de�ne jzj2Cd = jz1j2 + � � � + jzdj2
and q (z) := z21 + � � � + z2d. The upper and lower Lie-norm L+ : Cd ! [0;1) and
L� : Cd ! [0;1) are de�ned by

L� (z) =

r
jzj2Cd �

q
jzj4Cd � jq (z)j

2:

The Lie-ball of radius R 2 (0;1] is de�ned by cBR := fz 2 Cd;L+ (z) < Rg and it is also
called the classical domain of E. Cartan of the type IV, we refer to [2, p. 59], [17] or [31]
for further details.
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In the above terms our second main result says that a polyharmonic function f :
A (r0; r1) ! C of in�nite order and type � < 1=2r1 can be extended to an analytic
function on the domain

fz 2 Cd; r0 < L� (z) � L+ (z) < r1g n q�1 ((�1; 0]) :

The proof depends on a Laurent type decomposition of the function f : for odd dimension
d > 1 we show that there exists an analytic function f1 de�ned on

�
z 2 Cd;L+ (z) < r1

	
and an analytic function f2 de�ned on fz 2 Cd; r0 < L� (z) � L+ (z) < 1=2�g such that
the function F de�ned by

F (z) = f1 (z) +
�
z21 + : : :+ z2d

�(2�d)=2
f2 (z)

is an analytic extension of f: A similar result is formulated in Section 7 for even dimension.
The paper is organized as follows: In the Section 2 we recall some basic facts about the

action of the Laplace operator � on Fourier-Laplace series. For polyharmonic functions
of in�nite order we obtain estimates of derivatives of the Fourier-Laplace coe¢ cients with
respect to certain linear di¤erential operators depending on the radius r: The results in
Section 3 belong to the main technical merits of the paper: They are devoted to an
extensive discussion of the so-called fundamental function of a linear di¤erential operator
with constant coe¢ cients and the concept of a generalized Taylor series with respect to
the corresponding fundamental functions, the climax being Theorem 16 below. These
results are crucial for the main goals of the paper and are also of independent interest.
Section 4 contains the �rst main result about the analytic extendibility of the Fourier-

Laplace coe¢ cients for polyharmonic functions of in�nite order and type � < 1=2r0; and
Section 5 discusses the special case of odd dimension. In Section 6 we discuss the analytic
extendibility as described above for odd dimension, and in Section 7 the case of even
dimension is addressed. The paper concludes with an Appendix concerning estimates of
generalized derivatives of odd order by even orders in the framework of linear di¤erential
operators with constant coe¢ cients.
Throughout the paper it is assumed that d � 2: By !d�1 we de�ne the surface area of

Sd�1 with respect to the rotation invariant measure d�:

2. Basic estimates and examples

By Cm (G) we denote the set of all functions f : G ! C which are continuously
di¤erentiable up to the order m. It is well known that the Fourier-Laplace series (5)
converges absolutely and compactly in A (r0; r1) to f if f 2 Cm (A (r0; r1)) for m >
1
2
(d� 1). We refer to [18] for questions of convergence of Fourier-Laplace series and the
cited literature therein.
Let f 2 C1 (A (r0; r1)) and let fk;l; k 2 N0; l = 1; : : : ; ak; be the Fourier-Laplace co-

e¢ cients de�ned in (4). Recall that ak is the dimension of the space of all harmonic
homogeneous polynomials of degree k:
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For x 2 A (r0; r1) we use spherical coordinates x = r� where � = x= jxj and r = jxj : It
is not di¢ cult to establish the formula

(8) (�pf) (r�) =

1X
k=0

akX
l=1

Lpk (fk;l) (r) � Yk;l (�) ;

where the series converges absolutely and uniformly on compact subsets of A (r0; r1) and
Lpk is the p-th iterate of the di¤erential operator

(9) Lk =
d2

dr2
+
d� 1
r

d

dr
� k (k + d� 2)

r2

(see [22]). It follows that the (k; l)-th Fourier-Laplace coe¢ cient of �pf is equal to
Lpkfk;l (r) ; i.e., that

(10) Lpk (fk;l) (r) =

Z
Sd�1

(�pf) (r�)Yk;l (�)d�

for any r 2 (r0; r1) : Parseval�s formula yieldsZ
Sd�1

j�pf (r�)j2 d� =
1X
k=0

akX
l=1

jLpkfk;l (r)j
2 <1

for any r with r0 < r < r1:

Theorem 1. Let f 2 A (r0; r1) ! C be polyharmonic of in�nite order and type � � 0:
Then for each subinterval [a; b] of (r0; r1) and for all " > 0 there exists a positive number
Ca;b;" such that, for all k 2 N0; l = 1; : : : ; ak; for all r 2 [a; b] and p 2 N0;

jLpk (fk;l) (r)j � Ca;b;"
p
!d�1 (2p)! (� + ")2p :

Proof. Let [a; b] � (r0; r1) and K (a; b) :=
�
x 2 Rd; a � jxj � b

	
: Then (10) implies that

(11) jLpk (fk;l) (r)j � max
x2K(a;b)

j�pf (x)j �
Z
Sd�1

jYk;l (�)j d�

for all r 2 [a; b] : The integral on the right-hand side in (11) can be estimated by the
Cauchy Schwarz inequalityZ

Sd�1
jYk;l (�)j d� �

sZ
Sd�1

1d�

sZ
Sd�1

jYk;l (�)j2 d� =
p
!d�1:

Now the result follows from the de�nition of a polyharmonic function of in�nite order and
type � � 0 given in (1). �
The rest of this Section is devoted to an instructive example: For a real number � and

a harmonic homogeneous polynomial Yk (x) of degree k 2 N0; de�ne the function
H�;k (x) =

�
x21 + : : :+ x2d

�� � Yk (x) = jxj2� � Yk (x) :
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Obviously H�;k can be de�ned on the annular region Rd n f0g. In the next result we
restrict H�;k to the annular region A (r0; r1) with r0 > 0 and we shall show that H�;k is
polyharmonic of in�nite order and type at most 1=r0:

Theorem 2. For � 2 N0 or � = 1 � 1
2
d � k + j with j 2 N0 the function H�;k is

polyharmonic of �nite order. If � 2 R is di¤erent from these numbers, then H�;k; as a
function on the annular region A (r0; r1) with r0 > 0; is polyharmonic of in�nite order
and type at most 1=r0:

Proof. A straightforward calculation provides the formula

�
�
jxj2� Yk (x)

�
= 2� (2�+ d� 2 + 2k) � jxj2��2 Yk (x) :

Hence �p
�
jxj2� Yk (x)

�
= c�;p jxj2��2p Yk (x) where

c�;p = 2� (2�� 2) � � � (2�� 2 (p� 1)) �
� (2�+ d� 2 + 2k) � � � (2�+ d� 2 + 2k � 2 (p� 1)) :

Thus �p
�
jxj2� Yk (x)

�
= 0 if and only if 2�� 2j = 0 or 2�+ d� 2+ 2k� 2j = 0 for some

j = 0; : : : ; p� 1: This means that � = j for some j 2 f0; : : : ; p� 1g or � = 1� 1
2
d� k+ j

for some j 2 f0; : : : ; pg : Hence the �rst statement is proven.
Next consider the power series f (z) =

P1
p=1 c�;pz

p= (2p)! in the complex variable z:
Assume that � 6= j and � 6= 1 � 1

2
d � k + j for all natural numbers j 2 N0: Then the

convergence radius R can be computed by the ratio test

R = lim
p!1

c�;p= (2p)!

c�;p+1= (2p+ 2)!
= lim

p!1

(2p+ 1) (2p+ 2)

(2�� 2p) (2�+ d� 2 + 2k � 2p) = 1:

The convergence radius formula yields R = limp!1
p
p
jc�;pj = (2p)! = 1: Moreover,

(12) 2p

s���p
�
jxj2� Yk (x)

���
(2p)!

= 2p

s���� c�;p(2p)!

���� 2ppjYk (x)j 2pqjxj2� � 1jxj :
Let now K � A (r0; r1) be a compact subset. Since Yk is continuous it is bounded on K;
say by Mk: Clearly jxj > r0 for x 2 K: Thus we can estimate

2p
p
jYk (x)j 2p

q
jxj2� � 1jxj �

2p
p
Mk

2p

q
r2�1 � 1

r0

for all x 2 K. Using this estimate in (12) and taking the limit p!1; we see that H�;k

is polyharmonic of in�nite order and type at most 1=r0: �
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3. Linear differential operators with constant coefficients

In this section we shall review some results about linear di¤erential operators with
constant coe¢ cients (see e.g. [15]). Mainly we shall study Taylor-type expansion of a
C1-function with respect to a linear di¤erential operator with constant coe¢ cients. Some
material can be found in [37] but we shall need a deeper analysis of this topic. We shall
give a self-contained presentation in order to facilitate the readability of the paper and to
�x notations.
Let �0; : : : ; �n be complex numbers, and de�ne the linear di¤erential operator with

constant coe¢ cients L by

(13) L := L�0;:::;�n :=

�
d

dx
� �0

�
: : : :

�
d

dx
� �n

�
:

The space of all solutions of Lu = 0 is denoted by

(14) E(�0;:::;�n) := ff 2 C1 (R) ;Lf = 0g :
Elements in E(�0;:::;�n) are called exponential polynomials or sometimes L-polynomials, and
�0; : : : ; �n are called exponents or frequencies (see e.g. Chapter 3 in [8]).
In the case of pairwise di¤erent �j; j = 0; : : : ; n; the space E(�0;:::;�n) is the linear span

generated by the functions e�0x; e�1x; : : : ; e�nx: In the case when �j occurs mj times in
�n = (�0; : : : ; �n) ; a basis of the space E(�0;:::;�n) is given by the linearly independent
functions

(15) xse�jx for s = 0; 1; : : : ;mj � 1:
In the case that �0 = � � � = �n = 0; the space E(�0;:::;�n) is just the space of all polynomials
of degree at most n; and we shall refer to this as the polynomial case.

3.1. The fundamental function. It is well known that for �n = (�0; : : : ; �n) 2 Cn+1
there exists a unique solution ��n 2 E(�0;:::;�n) to the Cauchy problem

��n (0) = : : : = �
(n�1)
�n

(0) = 0 and �(n)�n (0) = 1:

We shall call ��n the fundamental function in E(�0;:::;�n) (see e.g. [30]). An explicit formula
for ��n is

(16) ��n (x) :=
1

2�i

Z
�r

exz

(z � �0) � � � (z � �n)
dz;

where �r is the path in the complex plane de�ned by �r (t) = reit, t 2 [0; 2�], surrounding
all the complex numbers �0; : : : ; �n (see Proposition 4 below). Note that (16) implies the
useful formula

(17)
�
d

dx
� �n+1

�
�(�0;:::;�n+1) (x) = �(�0;:::;�n) (x) :
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The fundamental function can be seen as analogue of the power function xn in the space
E(�0;:::;�n): In the polynomial case, i.e., �0 = : : : = �n = 0; the fundamental function is

(18) �pol,n (x) =
1

n!
xn:

In general, explicit formulae for the fundamental function are complicated. However, in
the case of equidistant exponents one can compute the fundamental function in a very
simple way (see [27]):

Example 3. Assume that �k = �+!k for k = 0; : : : ; n; and complex numbers ! 6= 0 and
�: Then

(19) �equi,n (x) =
1

n!

1

!n
e�x (e!x � 1)n = 1

n!

1

!n

nX
k=0

�
n

k

�
e(�+k!)x (�1)n�k :

Indeed, it is easy to see that �equi,n (0) = � � � = �(n�1)equi,n (0) = 0 and �
(n)
equi,n (0) = 1; and the

right-hand side of (19) shows that �equi,n 2 E(�0;:::;�n).

In the following we shall give estimates of the fundamental function which seem to be
new. Our estimates are based on the Taylor expansion of the fundamental function ��n
which will be described as follows:

Proposition 4. The function �(�0;:::;�n) de�ned in (16) satis�es �
(k)
(�0;:::;�n)

(0) = 0 for
k = 0; : : : ; n� 1. For k � n the formula

(20) �
(k)
(�0;:::;�n)

(0) =
X

(s0;:::;sn)2Nn+10
s0+���+sn+n=k;

�s00 � � ��snn

holds. In particular, �(n)(�0;:::;�n) (0) = 1 and �
(n+1)
(�0;:::;�n)

(0) = �0 + � � �+ �n:

Proof. For z 2 C with jzj > j�jj ; the geometric series

1

z � �j
=
1

z
� 1

1� �j=z
=

1X
s=0

�sj

�
1

z

�s+1
converges. Thus we obtain from (16) that

�(�0;:::;�n) (x) =
1X
s0=0

� � �
1X
sn=0

1

2�i

Z
�r

�s00 : : : �
sn
n

exz

zs0+���+sn+n+1
dz:

By di¤erentiating one obtains

�
(k)
(�0;:::;�n)

(x) =

1X
s0=0

� � �
1X
sn=0

1

2�i

Z
�r

�s00 � � ��snn
zkexz

zs0+���+sn+n+1
dz:

For x = 0 the integral is easy to evaluate and the result is proven. �
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In the following proposition we give the �rst estimate for the fundamental function:

Proposition 5. Let �0; : : : ; �n be complex numbers and Mn := max fj�jj ; j = 0; : : : ; ng :
Then the inequality

(21)
���(�0;:::;�n) (z)�� � �(j�0j;:::;j�nj) (jzj) � 1

n!
jzjn eMnjzj

holds for all z 2 C:

Proof. Using (20) we can estimate the Taylor coe¢ cient����(k)(�0;:::;�n) (0)��� � X
s0+���+sn+n=k

j�s00 � � ��snn j =
1X

s0+���+sn+n=k

j�0js0 � � � j�njsn

which is obviously equal to �(k)(j�0j;:::;j�nj) (0) : Since ��n (z) =
P1

k=n�
(k)
(�0;:::;�n)

(0) zk=k! we
can estimate ���(�0;:::;�n) (z)�� � 1X

k=n

1

k!

����(k)(�0;:::;�n) (0)��� � jzjk = �(j�0j;:::;j�nj) (jzj) :
Since j�jj � Mn for all j = 0; : : : ; n, we can estimate j�0js0 � � � j�njsn � M s0+���+sn

n : Using
(20) for j�0j ; : : : ; j�nj we obtain for k � n

�
(k)
(j�0j;:::;j�nj) (0) =

X
s0+���+sn=k�n

j�0js0 � � � j�njsn �
�
k � n+ n

k � n

�
Mk�n
n :

We conclude that

�(j�0j;:::;j�nj) (jzj) �
1X
k=n

jzjk

k!

�
k

k � n

�
Mk�n
n =

1X
k=0

jzjk+n

(k + n)!

�
k + n

k

�
Mk
n

=
1

n!
jzjn

1X
k=0

1

k!
jMnzjk =

1

n!
jzjn eMnjzj:

The proof is accomplished. �

Suppose now that �0; �1; : : : ; is a bounded sequence of complex numbers. Then (21)
implies that

(22) lim
n!1

n
p
n! j��n (z)j � jzj :

In the special case that the exponents �n are equal to 0; a stronger conclusion is valid.
Namely, by using the explicit formula (18), we know that the limit in (22) exists and

lim
n!1

n

q
n! j�pol,n (z)j = lim

n!1
n
p
jznj = jzj :
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Next suppose that the estimate j�nj � �n holds for all natural numbers and some � > 0:
Then (21) yields the estimate

(23) lim
n!1

n
p
n! j��n (z)j � jzj e�jzj:

The estimate (23) seems to be satisfactory. However, the example of the equidistant
points �n = n! shows that this is not the optimal estimate. Namely, by using (19) we
infer that

lim
n!1

n

q
n! j�equi,n (z)j =

1

j!j je
!z � 1j � jzj ej!jjzj:

Next we shall provide a similar estimate for general exponents �n obeying an estimate of
the form j�nj � �n:

Proposition 6. Let �j and �j be real numbers satisfying 0 � �j � �j for j = 0; : : : ; n:
Then ��n (x) is real for all x 2 R and ��n (x) > 0 for all x > 0: Moreover���(�0;:::;�n) (z)�� � �(�0;:::;�n) (jzj)
for all complex numbers z:

Proof. By (20) the Taylor coe¢ cients of �(�0;:::;�n) (x) are real, so �(�0;:::;�n) (x) is a real
number for real x: Clearly 0 � �j � �j implies that 0 � �

sj
j � �

sj
j for any natural number

sj, j = 0; : : : ; n: Thus 0 � �s00 � � ��snn � �s00 � � ��snn for any (s0; : : : ; sn) 2 Nn+10 : By formula
(20) we have

0 � �(k)(�0;:::;�n) (0) � �
(k)
(�0;:::;�n)

(0)

for all k 2 N0: It follows that 0 � �(�0;:::;�n) (jzj) � �(�0;:::;�n) (jzj) : The proof is �nished
by combing the last inequality with (21). �
Theorem 7. Let �n; n 2 N0; be complex numbers such that limn!1 j�nj =n � �: Then for
any " > 0 there exists a number � > 0 such that

(24) n! j��n (z)j � e�jzj
�
e(1+")�jzj � 1
(1 + ") �

�n
for all natural numbers n and for all complex numbers z: In other words,

(25) lim
n!1

n
p
n! j��n (z)j �

e�jzj � 1
�

:

Proof. Let " > 0: Then there exist n0 such that j�nj � (1 + ") �n for all n � n0: Take
� > 0 large enough so that j�nj � (1 + ") �n + � for all natural numbers n: De�ne
�n := � + (1 + ") �n for all n; so j�nj � �n for all n 2 N0: Propositions 5 and 6 and
Example 3 show that���(�0;:::;�n) (z)�� � �(j�0j;:::;j�nj) (jzj) � �(�0;:::;�n) (jzj) = 1

n!
e�jzj

�
e(1+")�jzj � 1
(1 + ") �

�n
:

This shows (24) and clearly (25) is a simple consequence of (24). �
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The next theorem is our main result in this subsection and it will be used in later
sections:

Theorem 8. Let � > 0 and �n; n 2 N0; be complex numbers such that limn!1 j�nj =n � �:
Let an be complex numbers for n 2 N0 and de�ne R� through

(26)
1

R�
= lim

n!1
n

r���an
n!

���:
If R� > 0; then the series

P1
n=0 an��n (z � x0) converges compactly and absolutely in the

ball with center x0 and radius
1

�
ln (1 + �R�) :

Proof. Let � < (1=�) ln (1 + �R�) : Then
�
e�� � 1

�
=R� < �: Take now " > 0 small enough

so that

(27)
e(1+")�� � 1

(1 + ") (R� � ")
< �:

Since 1
R� <

1
R��" ; formula (26) shows that there exists a natural number n0 such that���an

n!

��� � � 1

R� � "

�n
for all n � n0: By Theorem 7 there exists a natural number � > 0 such that

n! j��n (z)j � e�jzj
�
e(1+")�jzj � 1
(1 + ") �

�n
for all complex numbers z and for all natural numbers n: The last two inequalities lead
to

1X
n=n0

jan��n (z � x0)j � e��
1X

n=n0

�
e(1+")�� � 1

(1 + ") � (R� � ")

�n
valid for all z with jz � x0j � �: This series converges in view of the estimate (27). �
Example: Let �n = n + 1 for n 2 N0; and consider the constant function f (x) = 1:

Then

an :=

�
d

dx
� �0

�
� � �
�
d

dx
� �n�1

�
f (x0) = (�1)n �0 � � ��n�1 = (�1)n n!:

Thus limn!1
n
p
janj =n! = 1: Further ��n (x) = ex (ex � 1)n =n!: According to Theorem 8

(with x0 = 0 and � = 1) the series

(28)
1X
n=0

an��n (x) =

1X
n=0

(�1)n ex (ex � 1)n = ex
1

1� (1� ex)
= 1
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converges for all complex numbers z with jzj < ln 2: Of course, this can be seen directly
for real x: Namely, if ex � 1 < 1 (which means that ex < 2; so x < ln 2); the series
obviously converges. On the other hand, for ex � 1 � 1 we do not have convergence.
Theorem 16 below provides the following interpretation: The constant function 1 has
the Taylor series expansion (28) on (� ln 2; ln 2) with respect to the di¤erential operators
(d=dx� �0) � � � (d=dx� �n�1) :
An analogue of Theorem 8 can be proved for a bounded sequence of exponents �n (see

Theorem 9 below), either by using Proposition 5 or by applying Theorem 8 for � > 0
arbitrary. In the latter case, the rule of L�Hospital

lim
�!0

ln (1 + �R�)

�
= lim

�!0

R�

1 + �R�
= R�

can be used for computing the correct radius of convergence:

Theorem 9. Let �n; n 2 N0; be a bounded sequence of complex numbers. Let an be
complex numbers for n 2 N0 and de�ne R� as in (26). If R� > 0 then the seriesP1

n=0 an��n (z � x0) converges compactly and absolutely in the ball with center x0 and
radius R�:

It is a natural and interesting question whether in (25) the limit exists. We mention
two results addressing this problem but we omit the proofs since we shall not need them
in the following.

Theorem 10. Suppose that �n; n 2 N0; is a bounded sequence of real numbers and �n =
(�0; : : : ; �n) : Then the following limit exists for all x � 0:

lim
n!1

n
p
n!��n (x) = x:

Theorem 11. Let �n; n 2 N0 be a sequence of real numbers such that the limit limn!1 �n=n =
� exists. Then the following limit exists for all x � 0:

lim
n!1

n
p
n!��n (x) =

e�x � 1
�

:

3.2. Taylor series for linear di¤erential operators with constant coe¢ cients. Let
�0; : : : �n be complex numbers. As analogue of the n-th derivative f (n) (t) of a function
f (t) ; we de�ne in the setting of linear di¤erential operators

D(n)f (t) :=

�
d

dt
� �0

�
� � �
�
d

dt
� �n�1

�
f (t) :

To avoid overburdened indexes, we dropped the dependence on �j in the above notation
D(n)f (t) : For n = 0 we de�ne D(0)f (t) = f (t) : We shall also use the notation

D�f (t) :=
d

dt
f (t)� �f (t)
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which should be distinguished from the notation D(n)f:
The main result of this subsection is Theorem 16 providing a Taylor type expansion of

a smooth function according to the fundamental functions �n (x� x0). As a preparation
we need the following well-known result whose proof is included for convenience of the
reader (cf. e.g. [37]).

Theorem 12. Let �0; �1; : : : ; �n be complex numbers and de�ne �k = (�0; : : : ; �k) for
k 2 f0; : : : ; ng : Assume that f : [x0; x0 + ] ! C is Cn+1 for some  > 0. Then for any
m � n and x 2 [x0; x0 + ]

(29) f (x) =
mX
k=0

D(k)f (x0) ��k (x� x0) +

Z x

x0

D(m+1)f (t) � ��m (x� t) dt:

Proof. We shall prove the statement by induction over m: For m = 0 this means that

f (x) = f (x0) �(�0) (x� x0) +

Z x

x0

�
d

dt
� �0

�
f (t) � �(�0) (x� t) dt:

Since �(�0) (x) = e�0x; this is equivalent to

f (x)� e�0(x�x0)f (x0) =

Z x

x0

�
d

dt
� �0

�
f (t) � e�0(x�t)dt = e�0x

Z x

x0

d

dt

�
e��0tf (t)

�
dt;

which is obviously true since

d

dt

�
e��0tf (t)

�
= e��0t

�
d

dt
� �0

�
f (t) :

Suppose now that the statement is true for m < n and we want to prove it for m+1 � n:
It su¢ ces to prove that

Am :=

Z x

x0

D(m+1)f (t) � ��m (x� t) dt

is equal to

Bm := D(m+1)f (x0) ��m+1 (x� x0) +

Z x

x0

D(m+2)f (t) � ��m+1 (x� t) dt:

Using the recursion �0�m+1 (t) = ��m (t) + �m+1��m+1 (t) in (17), one obtains

d

dt

�
��m+1 (x� t)

�
= ��0�m+1 (x� t) = ���m (x� t)� �m+1��m+1 (x� t)

and therefore D��m+1��m+1 (x� t) = ���m (x� t) : Thus

Am = �
Z x

x0

D(m+1)f (t) �D��m+1
�
��m+1 (x� t)

�
dt:
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Proposition 13 below applied to g = ��m+1 (x� t) ; f = D(m+1)f (t) and � = �m+1 gives

Am = �D(m+1)f (t) ��m+1 (x� t) jxx0 +
Z x

x0

D�m+1D
(m+1)f (t) � ��m+1 (x� t) dt;

and the result is proven since D�m+1D
(m+1)f (t) = D(m+2)f (t) : �

Proposition 13. Let � be a complex number and let f; g : [a; b] ! C be continuously
di¤erentiable. Then for any x0; x 2 [a; b] with x > x0; holdsZ x

x0

f (t) �D��g (t) dt = f (t) � g (t) jxx0 �
Z x

x0

D�f (t) � g (t) dt:

Proof. Partial integration yields
R x
x0
fg0dt = f � g jxx0 �

R x
x0
f 0gdt: ThenZ x

x0

f (t) �D��g (t) dt =

Z x

x0

f (t) � (g0 (t) + �g) dt = f � g jxx0 �
Z x

x0

f 0gdt+�

Z x

x0

f (t) � gdt;

which gives the statement. �
The next result gives a simple su¢ cient condition such that the "Taylor polynomial",

de�ned by (31) below, converges to f: This criterion is based on estimates of derivatives
D(2n)f (t) of even order motivated by the results in Section 2 for the Fourier-Laplace
coe¢ cients of a polyharmonic function of in�nite order. It is also instructive to compare
the result with the classical polynomial case (see e.g. [19] for a di¤erent approach).

Theorem 14. Let �n; n 2 N0; be complex numbers such that limn!1 j�nj =n � � for some
� � 0. Assume that f 2 C1 [x0; x0 + ] with  > 0 satis�es the following property: there
exist constants � � 0 and C > 0 such that

(30)
��D(2n)f (t)

�� � C � (2n)! � �2n

for all t 2 [x0; x0 + ] and n 2 N0: Then

(31) s2n�1 (x) :=
2n�1X
k=0

D(k)f (x0) ��k (x� x0)

converges uniformly to f (x) on the interval [x0; x0 + �] for a suitable positive � < :

Proof. De�ne sn =
Pn

k=0D
(k)f (x0) ��k (x� x0) : Then f (x) = sn (x)+Rn (x) by Taylor�s

formula (29) where

(32) Rn (x) =

Z x

x0

D(n+1)f (t) � ��n (x� t) dt:

For the convergence of s2n�1 (x) to f (x) ; it su¢ ces to show thatR2n�1 (x)! 0 for n!1:
Note that the integration parameter t in (32) satis�es x0 � t � x; so we have x�t � 0 and
0 � x�t � x�x0:We shall show uniform convergenceR2n�1 (x)! 0 for all x 2 [x0; x0 + �]
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where � > 0 will be speci�ed later. Clearly we have jx� tj � x � x0 � x0 + � � x0 � �:
By Theorem 7, for given " > 0 there exists a natural number � > 0 such that����2n�1 (x� t)

�� � e�jx�tj

(2n� 1)!

�
e(1+")�jx�tj � 1
(1 + ") �

�2n�1
� e��

(2n� 1)!

�
e(1+")�� � 1
(1 + ") �

�2n�1
for all natural numbers n: This in connection with (30) leads to the estimate:

jR2n�1 (x)j � C jx� x0j (2n)!�2n
e��

(2n� 1)!

�
e(1+")�� � 1
(1 + ") �

�2n�1
:

Now we make � > 0 so small such that �
�
e(1+")�� � 1

�
= (1 + ") � < 1: Then R2n�1 (x)

converges uniformly on [x0; x0 + �] to zero. �

Proposition 15. Let �n; n 2 N0; be real numbers such that limn!1 j�nj =n � � for some
� > 0. Let f 2 C1 [x0; x0 + ] with  > 0 and assume that there exist constants C > 0
and � > 0 such that

(33)
��D(2n)f (t)

�� � C � (2n)!�2n for all t 2 [x0; x0 + ] :

Then for every " > 0 there exist constants C2 > 0 and � > 0 such that

(34)
��D(2n+1)f (t)

�� � C2 (2n+ 1)! (� + ")2n+1

for all t 2 [x0; x0 + �] and for all natural numbers n:

Proof. Let "0 > 0. Then there exists � > 0 such that

(35) j�nj � �+ � (1 + "0)n for all n 2 N0:
Let  > 0 and " > 0 as in the proposition. Clearly we can �nd � > 0 small enough so
that 2� < ; and

(36) e2�(1+"0)�� < � + ":

The assumption (33) implies the estimate

(37)
��D(2n)f (t)

��+ ��D(2n+2)f (s)
�� � C (2n+ 2)!�2n

�
1 + �2

�
for all s; t 2 [x0; x0 + 2�] : Theorem 32 in the appendix provides the estimate��D(2n+1)f (x)

�� � 2max�2
�
; �

�
e(j�2nj+j�2n+1j)�

�
�

max
t2[x0;x0+2�]

��D(2n)f (t)
��+ max

t2[x0;x0+2�]

��D(2n+2)f (t)
���

for all x 2 [x0; x0 + �] : Now (35) and (37) imply that��D(2n+1)f (x)
�� � 2max�2

�
; �

�
Ce2��+�(1+"0)�+4�(1+"0)n� (2n+ 2)!�2n

�
1 + �2

�
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for all x 2 [x0; x0 + �] and for all n 2 N0: The statement is now obvious since (36) implies
that

(2n+ 2) e4�(1+"0)n��2n � A (� + ")2n

for a suitable constant A and for all n 2 N0: �
The next theorem is the main result of this subsection:

Theorem 16. Let �n; n 2 N0; be real numbers with the property that limn!1 j�nj =n � �
for some � > 0. Let f 2 C1 [x0; x0 + ] with  > 0 and assume that there exist constants
C > 0 and � > 0 such that ��D(2n)f (t)

�� � C � (2n)!�2n

for all t 2 [x0; x0 + ] and n 2 N0: Then the series
1X
n=0

D(n)f (x0) ��n (z � x0)

de�nes an analytic extension of f and it converges compactly and absolutely in the dics
in C with center x0 and radius

1

�
ln

�
1 +

�

�

�
:

Proof. By Proposition 15, for each " > 0 the estimate
��D(n)f (x0)

�� � C2n! (� + ")n holds
for all natural numbers n. Thus

lim
n!1

n

r
jD(n)f (x0)j

n!
� � + ":

Now let " go to 0: By Theorem 8,
P1

n=0D
(n)f (x0) ��n (z � x0) converges for all z as

stated in the theorem. By Theorem 14, the series represents the function f: �

4. Analytic extensions of Fourier-Laplace coefficients

Let us recall that fk;l (r) is the Fourier-Laplace coe¢ cient of the function f 2 C (A (r0; r1))
de�ned for all values r 2 (r0; r1) ; cf. formula (4). Using the transformation r = ev with
v 2 (log r0; log r1) we can de�ne a functionefk;l (v) := fk;l (e

v) :

Let us look at a simple example:

Example 17. Let f (x) = log jxj be de�ned on the annular region Rd nf0g : Recalling that
Y0;1 (�) = 1=

p
!d�1; the Fourier-Laplace coe¢ cient f0;1 de�ned in (4) satis�es f0;1 (r) =p

!d�1 log r. Thus f0;1 has an analytic extension to the cutted complex plane C n (�1; 0]

and ef0;1 (v) = p!d�1 log ev = p!d�1v is de�ned for every complex number v 2 C:
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The next observation is very useful: the di¤erential operator Lpk de�ned in (9) in Section
2 can be transformed to a linear di¤erential operator with constant coe¢ cients in the
variable v for r = ev: We cite the following theorem ([22, Theorem 10:34]):

Theorem 18. Let 0 � r0 < r1 � 1 and let g : (r0; r1)! C be a C1-function. De�neeg : (log r0; log r1)! C; eg (v) := g (ev) :

Then
[Lpk (g)] (e

v) = e�2pv [Mk;p (eg)] (v)
for any v 2 (log r0; log r1) ; where

(38) Mk;p =

p�1Y
j=0

�
d

dv
� (k + 2j)

� p�1Y
j=0

�
d

dv
� (�k � d+ 2 + 2j)

�
:

For given k 2 N0 and dimension d; let us de�ne the exponents
(39) �2j (k; d) = k + 2j and �2j+1 (k; d) = �k � d+ 2 + 2j for j 2 N0:
For notational simplicity we will often suppress the dependence on k and d and we simply
write �n with n 2 N0: In accordance with the notations in Section 3; we shall de�ne

�n (v) := �(�0;:::;�n) (v) ;

D(n)g (v) :=

�
d

dv
� �0

�
� � �
�
d

dv
� �n�1

�
g (v) :

Now we will prove the following result:

Theorem 19. Let f : A (r0; r1) ! C be polyharmonic of in�nite order and type � � 0

and de�ne efk;l (v) := fk;l (e
v) for v 2 (log r0; log r1). Then, given v0 2 (log r0; log r1) and

" > 0; there exists a constant C > 0 such that

(40)
���D(n) efk;l (v0)��� � C � n! � [ev0 (� + ")]n

for all n 2 N0 and for all k 2 N0; l = 1; : : : ; ak:

Proof. Clearly, �n; n 2 N0; de�ned as above, are real numbers with the property that
limn!1 j�nj =n = 1: Let v 2 (log r0; log r1) and " > 0: We want to apply Proposition 15
for � = 1 and to the function efk;l and � = ev0 (� + "). Thus we want to show that the
following estimate holds: There exists  > 0 and C > 0 (independent of k; l) such that���D(2p) efk;l (v)��� � C � (2p)! [ev0 (� + ")]2p

for all v 2 [v0; v0 + ] and p 2 N0: Theorem 18 shows that

(41) D(2p) efk;l (v) =Mk;p

� efk;l� (v) = e2pvLpk (fk;l) (e
v)
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for all v 2 (log r0; log r1) : Let us take  > 0 and "1 > 0 small enough so that ev0+ (� + "1) <
ev0 (� + ") and v0 +  < log r1: Theorem 1 shows that, for "1 > 0 and for the subinterval
[v0; v0 + ] � (log r0; log r1) ; there is positive number C such that

jLpk (fk;l) (ev)j � C (2p)! (� + "1)
2p

for all v 2 [v0; v0 + ] and all p 2 N0; k 2 N0; l = 1; : : : ; ak: Since ev � ev0+; we obtain
from (41) the estimate���D(2p) efk;l (v)��� � e2pv jLpk (fk;l) (ev)j � Ce2p(v0+) (2p)! (� + "1)

2p

� C (2p)! [ev0 (� + ")]2p :

Thus the assumptions of Proposition 15 are satis�ed and the theorem is proven. �
Here is the main result about the analytical extension in the present section.

Theorem 20. Let f : A (r0; r1) ! C be polyharmonic of in�nite order and type � � 0

and de�ne efk;l (v) := fk;l (e
v) for v 2 (log r0; log r1). Then, given v0 2 (log r0; log r1) ; the

series
1X
n=0

D(n) efk;l (v0) � �n (v � v0)

de�nes an analytic extension of efk;l; and it converges compactly and absolutely in the disk
with center v0 and radius

ln

�
1 +

1

ev0 � �

�
:

If f is polyharmonic of in�nite order and type 0; then efk;l (v) is an entire function and
the Fourier-Laplace coe¢ cient fk;l possesses an analytic extension to the cutted complex
plane C� := C n (�1; 0].

Proof. Theorems 19 and 16 show the �rst statement. If f is polyharmonic of in�nite
order and type 0; the convergence radius is in�nite and efk;l is entire. Now de�ne g (z) =efk;l (log z) for all z in the cutted complex plane C�: Then for r 2 (r0; r1) we have

g (r) = efk;l (log r) = fk;l
�
elog r

�
= fk;l (r) :

�

5. Analytic extensions of Fourier-Laplace coefficients for odd
dimension

Assume that the dimension d of the underlying euclidean space is odd. Then for any
�xed k 2 N0 the exponents
(42) �2j (k) := k + 2j and �2j+1 (k) := �k � d+ 2 + 2j
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de�ned in (39) are pairwise di¤erent and j�m (k)� �n (k)j � 1 for all m 6= n: Since �n (k)
are pairwise di¤erent, the de�ning equality (16) for the fundamental function �n implies
that

(43) �n (v) =
nX
j=0

e�j(k)v

q0n (�j (k))
where q0n (�j (k)) =

nY
s=0
s 6=j

(�j (k)� �s (k)) :

Here the polynomial

qn (�) =
nY
j=0

(�� �j)

is the symbol of the linear di¤erential operator L de�ned in (13) for which the notation
L (�) would be more traditional.
If f is polyharmonic of in�nite order and type � and v0 2 (log r0; log r1) then, according

to Theorem 20, the series

fk;l (e
v) = efk;l (v) = 1X

n=0

D(n) efk;l (v0) �n (v � v0)

converges for v in a neighborhood of v0: It follows that

fk;l (e
v) =

1X
n=0

nX
j=0

D(n) efk;l (v0) e�j(k)�(v�v0)
q0n (�j (k))

:

Substituting ev = r back we arrive at

fk;l (r) =
1X
n=0

nX
j=0

D(n) efk;l (v0) e��j(k)v0

q0n (�j (k))
r�j(k):

In the following, we want to prove that this double series converges compactly and ab-
solutely, even for complex values r; in the punctured plane C� provided that f is polyhar-
monic of in�nite order and type 0:
First we need an estimate for jq0n (�j)j:

Proposition 21. Let �0; : : : ; �n be real numbers such that j�s � �tj � � > 0 for all
s; t 2 f0; : : : ; ng ; s 6= t: Then for qn (z) = (z � �0) � � � (z � �n) we have

jq0n (�j)j = lim
z!�j

���� qn (z)z � �j

���� � �nn!

2n
for all j = 0; : : : ; n:

Proof. We may assume that �0 < � � � < �n: Then

lim
z!�j

qn (z)

(z � �j)
= (�j � �0) � � � (�j � �j�1) (�j � �j+1) � � � (�j � �n) :

Using �0 < � � � < �n we obtain an estimate for �k+l � �k as

�k+l � �k = �k+l � �k+l�1 + �k+l�1 � �k+l�2 + �k+l+2 � � � �+ �k+1 � �k � l � �:
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Finally we obtain

lim
z!�j

���� qn (z)(z � �j)

���� � �nj! (n� j)! =
�nn!�
n
j

� � �nn!
1

2n
:

�

The next result strengthens Theorem 20 for odd dimension d > 1. For example, in
the case that f is polyharmonic of in�nite order and type 0; it follows that the Fourier-
Laplace coe¢ cients possess an analytic extension to the punctured plane C� instead of
the cutted complex plane C n (�1; 0] : In Theorem 23 below we shall give an explicit
representation of the Fourier-Laplace coe¢ cients giving a proof of formula (7) mentioned
in the introduction.

Theorem 22. Let d > 1 be odd and �j (k) as in (42). Let f : A (r0; r1) ! C be
polyharmonic of in�nite order and type � < 1=2r0: Then for any v0 with r0 < ev0 <
min fr1; 1=2�g ; the series

(44) Fk;l (z) :=
1X
n=0

nX
j=0

D(n) efk;l (v0) e��j(k)v0

q0n (�j (k))
z�j(k)

converges compactly and absolutely in the annulus fz 2 C; 0 < jzj < 1=2�g and Fk;l (r) =
fk;l (r) for all r 2 (r0;min fr1; 1=2�g).

Proof. Let K be a compact subset of fz 2 C; 0 < jzj < 1=2�g : Then there exists � 2
(0; 1=2�) with K � fz 2 C; 0 < jzj � �g : Let v0 satisfy r0 < ev0 < min fr1; 1=2�g. If
necessary, we can make � larger such that

(45) ev0 < � < 1=2�:

Then 2�� < 1 and therefore there exists " > 0 such that 2� (� + ") < 1: Theorem 19
provides the estimate ���D(n) efk;l (v0)��� � Cn!env0 (� + ")n :

Since 1= jq0n (�j)j � 2n=n!; we obtain

A (z) :=

1X
n=0

nX
j=0

����D(n) efk;l (v0) e��j(k)v0

q0n (�j (k))
z�j(k)

���� � 1X
n=0

Cenv02n (� + ")n
nX
j=0

��ze�v0���j(k) :
Moreover

nX
j=0

��ze�v0���j(k) � ���ze�v0��k + ��ze�v0���k�d+2� [n=2]X
j=0

��ze�v0��2j :
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Clearly jze�v0j2j � (�e�v0)2j for jzj � � and for j = 0; : : : ; [n=2]. Since �e�v0 > 1 by (45),
we estimate (�e�v0)2j � (�e�v0)n and we obtain

A (z) �
���ze�v0��k + ��ze�v0���k�d+2� 1X

n=0

C (n+ 1) (2 (� + ") �)n

for all z 2 K: This series converges since 2� (� + ") < 1: �
Theorem 23. Let d > 1 be odd and �j (k) as in (42). Let f : A (r0; r1) ! C be poly-
harmonic of in�nite order and type � < 1=2r0: Then for each k 2 N0; l = 1; : : : ; ak; there
exist complex numbers ak;l;j with j 2 N0 such that

(46) fk;l (z) = zk
1X
j=0

ak;l;2jz
2j + z�k�d+2

1X
j=0

ak;l;2j+1z
2j

converges compactly and absolutely in the annulus fz 2 C; 0 < jzj < 1=2�g. The power
series

f
(1)
k;l (z) :=

1X
j=0

ak;l;2jz
2j and f (2)k;l (z) :=

1X
j=0

ak;l;2j+1z
2j

have convergence radius at least 1=2�:

Proof. 1. First we de�ne the coe¢ cients ak;l;j: Since � < 1=2r0; there exists v0 2
(log r0; log (1=2�)) and we can assume that ev0 < r1: Then ev0 < 1=2� and we can �nd
" > 0 such that ev0 (� + ") < 1=2: We put

(47) ak;l;j := e��j(k)v0
1X
n=j

D(n) efk;l (v0)
q0n (�j (k))

:

Using the estimate (40) in Theorem 19, we see that
1X
n=j

�����D(n) efk;l (v0)
q0n (�j (k))

����� � C
1X
n=j

[ev0 (� + ")]n
n!

jq0n (�j (k))j
;

and the last series is converging using the ratio test for bn := n!= jq0n (�j (k))j
bn+1
bn

=
n+ 1

j�n+1 (k)� �j (k)j
! 1

and the fact that ev0 (� + ") < 1=2. So far we have proven that the coe¢ cients ak;l;j are
well de�ned.
2. Using (47) and the fact that 1= jq0n (�j (k))j � 2n=n!; we obtain

(48) jak;l;jj � Ce��j(k)v0
1X
n=j

[2ev0 (� + ")]n = Ce��j(k)v0
[2ev0 (� + ")]j

1� 2ev0 (� + ")
:
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Using the de�nition of �2j (k) and �2j+1 (k) ; we obtain the estimate

jak;l;2jj � Ce�kv0
[2 (� + ")]2j

1� 2ev0 (� + ")
;(49)

jak;l;2j+1j � Ce(k+d)v0
[2 (� + ")]2j+1

1� 2ev0 (� + ")
:(50)

It follows that limj!1
2j
p
jak;l;2jj � 2 (� + ") and limj!1

2j
p
jak;l;2j+1j � 2 (� + ") for any

" > 0; from which we conclude that the power series f (1)k;l and f
(2)
k;l have convergence radius

at least 1=2�:
3. By Theorem 22 the series

1X
n=0

nX
j=0

D(n) efk;l (v0) e��j(k)v0

q0n (�j (k))
z�j(k)

converges compactly on each compact subset K of fz 2 C; 0 < jzj < 1=2�g : So we may
rearrange the series and the series

1X
j=0

z�j(k)e��j(k)v0
1X
n=j

D(n) efk;l (v0)
q0n (�j (k))

=
1X
j=0

ak;l;jz
�j(k)

converges compactly in fz 2 C; 0 < jzj < 1=2�g : The decomposition (46) follows by split-
ting the sum over odd and even indices. The proof is complete. �

Remark 24. The coe¢ cients ak;l;j do not depend on the special value v0 since the coe¢ -
cients in (46) are unique. The coe¢ cients ak;l;j in (47) are well de�ned provided that f is
polyharmonic of in�nite order and type < 1=r0: However, for the estimate (48) we needed
that the type � is smaller than 1=2r0.

6. Analytic extensions of polyharmonic functions of infinite order for
odd dimension

We recall some notations and basic facts. We have de�ned q (z) := z21 + � � � + z2d for
z = (z1; : : : ; zd) 2 Cd and clearly the following inequality holds for all z 2 Cd :

jq (z)j � jz1j2 + � � �+ jzdj2 =: jzj2Cd :

Note that q (z) is the analytic extension of jxj2 = x21 + � � � + x2d: The Lie norm L+ (z) 2
[0;1) is de�ned by the equation

L+ (z)
2 = jzj2Cd +

q
jzj4Cd � jq (z)j

2 for z 2 Cd



POLYHARMONIC FUNCTIONS OF INFINITE ORDER ON ANNULAR REGIONS 23

(see e.g. [2], [4], [31], [36]). Note that jzjCd � L+ (z) for all z 2 Cd: In [25] the following
estimate is established (see also [14]):

(51)
akX
l=1

jYk;l (z)j2 �
ak
!d�1

�
jzj2 +

q
jzj4 � jq (z)j2

�k
=

ak
!d�1

(L+ (z))
2k

for all z 2 Cd: Using the Cauchy Schwarz inequality one obtains

(52)
akX
l=1

jYk;l (z)j �
p
ak

vuut akX
l=1

jYk;l (z)j2 �
akp
!d�1

(L+ (z))
k :

Now we de�ne L� (z) :=

r
jzj2Cd �

q
jzj4Cd � jq (z)j

2 for z 2 Cd: Then 0 � L� (z) � L+ (z)

and it is easy to see that

L+ (z)L� (z) = jq (z)j for all z 2 Cd:

In analogy to the Lie ball we de�ne the Lie annulus as the seteA (r0; r1) := �z 2 Cd; r0 < L� (z) and L+ (z) < r1
	
:

In [4, p. 95] it is shown that eA (r0; r1) is the harmonicity hull of the annular domain
A (r0; r1) : It can be shown that eA (r0; r1) is connected. On the other hand, the complement
of eA (r0; r1) in Cd is connected as well, in contrast to the fact that the complement of the
annular region A (r0; r1) in Rd consists of two connected components.
It is known that a polyharmonic function of in�nite order and type 0 can be extended

to a multi-valued analytic function on the harmonicity hull (see [2]) and to a single-valued
analytic function on ker( eA (r0; r1)); the kernel (in [4, p. 131] noyau) of the harmonicity hull
(see [4, p. 135] for details) which is clearly contained in the set eA (r0; r1) n q�1 ((�1; 0]) :
We present now our main result about analytical extendibility of polyharmonic func-

tions of in�nite order and type � < 1=2r1 on the annular region A (r0; r1).

Theorem 25. Let d > 1 be odd and let f : A (r0; r1) ! C be polyharmonic of in�nite
order and type � < 1=2r1: Then there exist analytic functions

f1 :
�
z 2 Cd;L+ (z) < r1

	
! C

f2 : fz 2 Cd; r0 < L� (z) � L+ (z) < 1=2�g ! C

such that

F (z) = f1 (z) +
�
z21 + � � �+ z2d

�(2�d)=2
f2 (z)

is an analytic extension of f: Here F is de�ned for all z 2 eA (r0; r1) n q�1 ((�1; 0]) :
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Proof. 1. Let us recall that f (x) =
P1

k=0

Pak
l=1 fk;l (r)Yk;l (�) for x = r�, and let �j (k) be

as in (42). By Theorem 23, each Fourier-Laplace coe¢ cient fk;l (r) can be expanded in a
series of type

P1
j=0 ak;l;jr

�j(k); and hence

(53) f (x) =
1X
k=0

akX
l=1

1X
j=0

ak;l;jr
�j(k)Yk;l (�) :

Moreover Yk;l (x) = rkYk;l (�) for x = r�: We consider even and odd indices j in (53) and
de�ne two functions f1 and f2 such that f (x) = f1 (x) + r2�df2 (x) ; where

f1 (x) =
1X
k=0

akX
l=1

1X
j=0

ak;l;2jr
2jYk;l (x) ;

f2 (x) =
1X
k=0

akX
l=1

1X
j=0

ak;l;2j+1r
�2k+2jYk;l (x) :

We shall show that f1 (x) can be analytically extended for all z with L+ (z) < r1 and that
f2 (x) can be analytically extended for all z with r0 < L� (z) and L+ (z) < 1=2�:
2. The function r2 = x21 + � � � + x2d has the analytic extension q (z) = z21 + � � � + z2d for

z = (z1; : : : ; zd) 2 Cd: The polynomial Yk;l (x) has the analytic extension Yk;l (z) :
Next we show that

F1 (z) :=
1X
k=0

akX
l=1

1X
j=0

ak;l;2jq (z)
j Yk;l (z)

converges absolutely for all z with L+ (z) � � for any 0 < � < r1: Since � < r1 and
� < 1=2r1; we can �nd v0 2 (log r0; log r1) such that � < ev0 < 1=2�: Choose " > 0 such
that 2ev0 (� + ") < 1:We use now (49) and the estimate jq (z)j � jzj2Cd � L2+ (z) � �2 and
we obtain

jF1 (z)j � C
1X
k=0

akX
l=1

1X
j=0

jYk;l (z)j e�kv0
[2 (� + ")]2j

1� 2ev0 (� + ")
�2j:

Since �e�v0 < 1 and 2ev0 (� + ") < 1; the series
P1

j=0 [2 (� + ") �]2j converges and there
exists a constant C1 such that

jF1 (z)j � C1

1X
k=0

akX
l=1

jYk;l (z)j e�kv0 � C1

1X
k=0

e�kv0
akp
!d�1

(L+ (z))
k

where we have used (52). Since L+ (z) � � and �e�v0 < 1; we see that the last sum
converges.
3. It remains to show that

F2 (z) =

1X
k=0

akX
l=1

1X
j=0

ak;l;2j+1q (z)
�k+j Yk;l (z)
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converges compactly in fr0 < L� (z) and L+ (z) < 1=2�g : Let �0 and �1 be positive num-
bers such that r0 < �0 and �1 < 1=2�; and assume that L� (z) � �0 and L+ (z) � �1:
Choose v0 such that r0 < ev0 < �0, so ev0=�0 < 1. Moreover we can assume that ev0 < 1=2�
in view of our general assumption r0 < 1=2�: Then there exists " > 0 such that

(54) 2ev0 (� + ") < 1 and 2 (� + ") �1 < 1:

The estimate (50) gives

jF2 (z)j � C

1X
k=0

akX
l=1

1X
j=0

e(k+d)v0
[2 (� + ")]2j+1

1� 2ev0 (� + ")
jq (z)j�k+j jYk;l (z)j :

Since jq (z)j � L2+ (z) � �21; we estimate

jF2 (z)j � C
1X
k=0

akX
l=1

e(k+d)v0 jq (z)j�k jYk;l (z)j
1X
j=0

1

�1

[2 (� + ") �1]
2j+1

1� 2ev0 (� + ")
:

The last series converges since 2 (� + ") �1 < 1; and is bounded by a constant, say C1:
Further (52) implies

jF2 (z)j � CC1

1X
k=0

e(k+d)v0
akp
!d�1

(L+ (z))
k

jq (z)jk
:

Recall that L+ (z)L� (z) = jq (z)j , so we can estimate L+ (z) = jq (z)j = 1=L� (z) � 1=�0:
Hence

jF2 (z)j � CC1

1X
k=0

edv0
akp
!d�1

�
ev0

�0

�k
and this series converges since ev0=�0 < 1: The proof is complete. �

Let us illustrate the theorem for the case of a harmonic function f on the annular region
A (r0; r1) : Then f is of type 0 and the conclusion is that we can decompose f as a sum
f1 (x) + jxj2�d f2 (x) ; where f1 (z) is analytic on the Lie ball and f2 (z) is analytic for all
z with L� (z) > r0:

7. Analytic extensions of polyharmonic functions of infinite order for
even dimension

In this section we assume that the dimension d is an even number. Let k 2 N0 be �xed.
Then the exponents �2j (k) = k + 2j and �2j+1 (k) = �k � d + 2 + 2j may be equal and
the description of the exponential space E(�0;:::;�n) de�ned in (14) is di¤erent from the odd
case. Clearly ek;2j (v) := e�2j(k)v are solutions and for odd indices 2j + 1 we obtain the
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solutions

ek;2j+1 (v) := e�2j+1(k)v if �2j+1 (k) =2fk + 2l; l 2 N0g
ek;2j+1 (v) := v � e�2j+1(k)v if �2j+1 (k)2fk + 2l; l 2 N0g

Then, for suitable coe¢ cients dj; the fundamental function �n (v) is an exponential poly-
nomial of the form

(55) �n (v) =
nX
j=0

djek;j (v) =
1

2�i

Z
�r

evz

(z � �0) � � � (z � �n)
dz:

If f is polyharmonic of in�nite order and type � and v0 2 (log r0; log r1) then, using
Theorem 20, the series

(56) fk;l (e
v) = efk;l (v) = 1X

n=0

nX
j=0

D(n) efk;l (v0) � dj � ek;j (v � v0)

converges for v in a neighborhood of v0: Now one may try to formulate results analogous
to those given in Sections 5 and 6 where the system e�j(k)v for j 2 N0 is now replaced
by ek;j (v) for j 2 N0. A quick inspection of the proofs shows that one only needs an
appropriate estimate for the coe¢ cients dj which in the odd case have been equal to
1=q0n (�j) for j = 0; : : : ; n: Below we shall show that the coe¢ cients dj in (56) satisfy the
estimate

(57) jdjj �
2n

(n� 2)! ;

which is a little bit weaker than in the odd case but still good enough to prove convergence
of the involved sums. We shall leave the details to the reader and formulate only one result
for the even case:

Theorem 26. Let d be even and let f : A (r0; r1)! C be polyharmonic of in�nite order
and type � < 1=2r1: Then there exist analytic functions

f1 : fz 2 Cd;L+ (z) < r1g ! C;
f2 : fz 2 Cd; r0 < L� (z) and L+ (z) < 1=2� and q (z) =2 (�1; 0]g ! C

such that
F (z) = f1 (z) +

�
z21 + � � �+ z2d

�(2�d)=2
f2 (z)

is an analytic extension of f:

Now we proceed to the estimate of the coe¢ cients dj: They can be computed by the
partial fraction decomposition of the integrand in formula (55). The next result addresses
this problem:
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Proposition 27. Let �0; : : : ; �s and �1; : : : ; �r be distinct real numbers, n := 2r + s+ 1;
and de�ne

Qn (z) = (z � �0) � � � (z � �s) (z � �1)
2 � � � (z � �r)

2 :

Then the coe¢ cients aj and cj in the partial fraction decomposition

1

Qn (z)
=

sX
j=0

aj
z � �j

+
rX
j=1

bj
z � �j

+
rX
j=1

cj

(z � �j)
2

are non-zero and are given by

aj0 = lim
z!�j0

z � �j0
Qn (z)

and cj0 = lim
z!vj0

(z � �j0)
2

Qn (z)
:

If j�j0 � �jj � 2 for all j = 1; : : : s; and j�j0 � �jj � 2 for all j = 1; : : : ; r with j 6= j0 then

jbj0 j � (n� 1) jcj0j :

Proof. It is easy to see that 1 = limz!�j0 aj0Qn (z) = (z � �j0) and 1 = limz!�j0 cj0Qn (z) = (z � �j0)
2 :

Further bj0 can be computed by residue theory:

(58) bj0 = res�j0
1

Qn (z)
=

d

dz

(z � �j0)
2

Qn (z)
(�j0) :

Let us de�ne Pj0 (z) = Qn (z) = (z � �j0)
2 : Clearly

Pj0 (�j0) = lim
z!vj0

Qn (z)

(z � �j0)
2 =

1

cj0
:

Then (58) is equivalent to

bj0 =
d

dz

1

Pj0
(�j0) = � [Pj0 (�j0)]

�2 P 0j0 (�j0) = �
1

Pj0 (�j0)

P 0j0 (�j0)

Pj0 (�j0)
:

Moreover
P 0j0 (�j0)

Pj0 (�j0)
=

sX
j=0

1

�j0 � �j
+ 2

rX
j 6=j0

1

�j0 � �j
:

Since j�j0 � �jj � 2 and j�j0 � �jj � 2; we see that����P 0j0 (�j0)Pj0 (�j0)

���� � 1

2
(s+ 1) + r =

1

2
(s+ 1 + 2r) =

1

2
n � n� 1:

It follows that

jbj0j �
n� 1

jPj0 (�j0)j
= (n� 1) jcj0j :

The proof is complete. �
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We can order the real and distinct numbers �0; : : : ; �s; �1; : : : ; �r according to their
values, say �0 < � � � < �s+r: Clearly j�j � �kj � � := 2 for all k 6= j: The exponents �j
have either multiplicity mj = 1 or mj = 2; and m0 + � � �+ms+r = n: Then

lim
z!�j

Qn (z)

(z � �j)
mj
= (�j � �0)

m0 � � � (�j � �j�1)
mj�1 (�j � �j+1)

mj+1 � � � (�j � �s+r)
ms+r :

The proof of Proposition 21 shows that �k+l � �k � l � �: Thus

lim
z!�j

���� Qn (z)

(z � �j)
mj

���� � �m0jm0 � � ��mj�11mj�1 � �mj+11mj+1 � � ��ms+r (s+ r � j)ms+r =: Aj:

The factor � = 2 occurs n �mj times in the integer Aj; which is greater or equal than
n� 2: Since ml � 1 for l = 0; 1; : : : ; s+ r; we have clearly a factor

j! (s+ r � j)! = j! (n� r � 1� j)! � j! (n� r � j)!

in the expression Aj. Further ml = 2 for at least r � 1 di¤erent factors in Aj which are
non-zero integers; so the product of these number is bigger or equal to l! (r � 1� l)! for
some natural number l 2 f1; : : : ; r � 1g : Thus we conclude that

jAjj � 2n�2j! (n� r � j)!l! (r � 1� l)! = 2n�2
(n� r)!�
n�r
j

� (r � 1)!�
r�1
l

� :

Since
�
n�r
j

�
� 2n�r and

�
r�1
l

�
� 2r�1; we obtain

jAjj � 2�1 (n� r)! (r � 1)! = 2�1 (n� 1)!�
n�1
r�1
� � (n� 1)!

2n
:

It follows that jajj � 2n= (n� 1)! and jcjj � 2n= (n� 1)!. Further jbjj � (n� 1) jcjj and
we conclude that jdjj � 2n= (n� 2)!:

8. Appendix: Estimate of derivatives of odd order

In this section we collect and prove some results about linear di¤erential operators
which are needed in the paper. The following version of Rolle�s theorem is well known
and the short proof is included for convenience of the reader.

Theorem 28 (Rolle�s Theorem). Let f : [a; b] ! R be continuous and di¤erentiable on
(a; b) : For � 2 R de�ne the di¤erential operator D�f := df=dx � �f: If e��af (a) =
e��bf (b) ; then there exists � 2 (a; b) with D�f (�) = 0:

Proof. De�ne g (x) := e��xf (x) : Then g (a) = g (b) : By the theorem of Rolle there exists
� 2 (a; b) with g0 (�) = 0: Now g0 (x) = f 0 (x) e��x � �f (x) e��x = e��xD�f (x) : So
g0 (�) = 0 implies that D�f (�) = 0: �
The following result is an analog of the mean value theorem which is indeed a conse-

quence when we let � go to 0:
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Theorem 29. Let f : [a; b] ! R be continuous on [a; b] and di¤erentiable on (a; b) ; and
let � 6= 0 be a real number. Then there exists � 2 (a; b) with

e�af (b)� e�bf (a)

e�b � e�a
� = D�f (�) :

Proof. De�ne for � 6= 0 a function  by

 (x) = f (x)� f (b)� e�(b�a)f (a)

e�b � e�a
�
e�x � e�a

�
:

Then  (a) = f (a) and  (b) = e�(b�a)f (a) ; so e��b (b) = e��af (a) = e��a (a) :
By Theorem 28 there exists � 2 (a; b) with D� (�) = 0: Note that D�

�
e�x � e�a

�
=

�e�x � �
�
e�x � e�a

�
= �e�a; so we have

0 = D� (�) = D�f (�)�
f (b)� e�(b�a)f (a)

e�b � e�a
�e�a:

This gives the statement in the theorem. �

We need the following simple lemma.

Lemma 30. Let � 6= 0 be a real number and a < b: Then�����e�a + e�b

e�a � e�b

���� � 2ej�j(b�a)b� a

Proof. Recall that ex � 1 � x for all x � 0: In the �rst case suppose that � > 0. Then
� (b� a) � 0 and

e�b � e�a = e�a
�
e�(b�a) � 1

�
� e�a� (b� a) :

Further e�a � e�b since � > 0. Hence

�
e�a + e�b

e�b � e�a
� �

2e�b

e�a� (b� a)
= 2

e�(b�a)

b� a
:

For � < 0 we argue very similarly: e�a � e�b = e�b
�
e��(b�a) � 1

�
� e�b j�j (b� a) :

Further e�b � e�a since � < 0 and

e�a + e�b

e�a � e�b
� 2e�a

e�b j�j (b� a)
= 2

e�(a�b)

j�j (b� a)
= 2

ej�j(b�a)

j�j (b� a)
:

�

Next we want to give an estimate of �rst derivative D�0f in terms of f and the second
derivative D�0�1f: For the case �0 = �1 = 0 this is a well-known result (see [37, Theorem
2.4]) and its extension to exponential polynomials is not di¢ cult:
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Theorem 31. Let �0; �1 be real numbers and f : [a; b]! C be twice continuously di¤er-
entiable. Then the following estimate holds:

jD�0f (a)j � 4
e(j�0j+j�1j)(b�a)

b� a
max fjf (a)j ; jf (b)jg+ 2 max

t2[a;b]
jD�1D�0f (t)j (b� a) ej�1j(b�a):

Proof. Assume at �rst that �0 and �1 are not zero and that f is real-valued. We apply
Theorem 29 to f and � = �0; so there exists �1 2 (a; b) such that

e�0af (b)� e�0bf (a)

e�0b � e�0a
�0 = D�0f (�1) :

Then Lemma 30 yields the estimate

jD�0f (�1)j �
e�0a + e�0b

je�0b � e�0aj j�0jmax fjf (a)j ; jf (b)jg

� 2e
j�0j(b�a)

b� a
max fjf (a)j ; jf (b)jg :

Now apply Theorem 29 to the interval [a; �1] for � = �1 and the function D�0f: Then
there exists �2 2 (a; �1) � (a; b) such that

e�1aD�0f (�1)� e�1�1D�0f (a)

e�1�1 � e�1a
�1 = D�1D�0f (�2) :

Thus e�1�1D�0f (a) = e�1aD�0f (�1)�
�
e�1�1 � e�1a

�
=�1 �D�1D�0f (�2) and

jD�0f (a)j � e�1(a��1) jD�0f (�1)j+ jD�1D�0f (�2)j
��1� e�1(a��1)

��
j�1j

:

We estimate����e�1(a��1) � 1�1

���� � 1X
n=1

j�1 (a� �1)jn

j�1jn!
�

1X
n=1

j�1jn�1

n!
(b� a)n

� (b� a)

1X
n=1

j�1jn�1

(n� 1)! (b� a)n�1 = (b� a) ej�1j(b�a):

Thus

jD�0f (a)j � 2ej�1j(b�a)
ej�0j(b�a)

b� a
max fjf (a)j ; jf (b)jg+ jD�1D�0f (�2)j (b� a) ej�1j(b�a):

Next consider the case that f is complex-valued. Decompose f into its real and imaginary
part, say f = f1 + if2 with real-valued functions f1; f2: Then

(59) jD�0f (a)j � jD�0f1 (a)j+ jD�0f2 (a)j :
Now estimate each summand in (59) as above. Since jfj (t)j � jf (t)j and jD�1D�0fj (t)j �
jD�1D�0f (t)j (note that D�1D�0f1 is the real part of D�1D�0f); we obtain the estimate
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with the factor 2: The case of arbitrary real numbers �0 and �1 follows from a continuity
argument. �
Theorem 32. Let �m;m 2 N0 be real numbers and f 2 C1 [x0; x0 + ] with  > 0:
Assume that 0 < 2� < : Then the estimate��D(2m+1)f (x)

�� � 2max�2
�
; �

�
e(j�2mj+j�2m+1j)��

max
t2[x0;x0+2�]

��D(2m)f (t)
��+ max

t2[x0;x0+2�]

��D(2m+2)f (t)
���

holds for all x 2 [x0; x0 + �] :

Proof. We use the estimate in Theorem 31

jD�0f (a)j � 4e(j�0j+j�1j)(b�a)
max fjf (a)j ; jf (b)jg

b� a
+ 2 max

t2[a;b]
jD�1D�0f (t)j (b� a) ej�1j(b�a)

for the function

D(2m)f (t) =

�
d

dt
� �0

�
� � �
�
d

dt
� �2m�1

�
f (t)

for the exponents �0 := �2m and �1 := �2m+1, and for a = x and b := x + � where it is
assumed that x 2 [x0; x0 + �]. It follows that t 2 [x; x+ �] is in [x0; x0 + 2�] : Then����� d

dx
� �2m

�
D(2m)f (x)

���� � 4

�
e(j�2mj+j�2m+1j)� max

t2[x0;x0+2�]

��D(2m)f (t)
��

+ 2� max
t2[x0;x0+2�]

��D(2m+2)f (t)
�� ej�2m+1j�:

Using the trivial inequality ej�2m+1j� � e(j�2mj+j�2m+1j)� the statement follows. �
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