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POLYHARMONIC HOMOGENIZATION, ROUGH POLYHARMONIC SPLINES

AND SPARSE SUPER-LOCALIZATION

Houman Owhadi1, Lei Zhang2 and Leonid Berlyand3

Abstract. We introduce a new variational method for the numerical homogenization of divergence
form elliptic, parabolic and hyperbolic equations with arbitrary rough (L∞) coefficients. Our method
does not rely on concepts of ergodicity or scale-separation but on compactness properties of the solution
space and a new variational approach to homogenization. The approximation space is generated by an
interpolation basis (over scattered points forming a mesh of resolution H) minimizing the L2 norm of the
source terms; its (pre-)computation involves minimizing O(H−d) quadratic (cell) problems on (super-
)localized sub-domains of size O(H ln(1/H)). The resulting localized linear systems remain sparse and
banded. The resulting interpolation basis functions are biharmonic for d ≤ 3, and polyharmonic for
d ≥ 4, for the operator − div(a∇·) and can be seen as a generalization of polyharmonic splines to
differential operators with arbitrary rough coefficients. The accuracy of the method (O(H) in energy
norm and independent from aspect ratios of the mesh formed by the scattered points) is established
via the introduction of a new class of higher-order Poincaré inequalities. The method bypasses (pre-
)computations on the full domain and naturally generalizes to time dependent problems, it also provides
a natural solution to the inverse problem of recovering the solution of a divergence form elliptic equation
from a finite number of point measurements.
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1. Introduction

Consider the partial differential equation

{

− div
(

a(x)∇u(x)
)

= g(x) x ∈ Ω; g ∈ L2(Ω), a(x) = {aij ∈ L∞(Ω)}
u = 0 on ∂Ω,

(1.1)

Keywords and phrases. Homogenization, polyharmonic splines, localization.

1 Corresponding author. California Institute of Technology, Computing and Mathematical Sciences, MC 9-94 Pasadena, CA
91125, USA. owhadi@caltech.edu
2 Shanghai Jiaotong University, Institute of Natural Sciences and Department of Mathematics, Key Laboratory of Scientific
and Engineering Computing (Shanghai Jiao Tong University), Ministry of Education, 800 Dongchuan Road, Shanghai 200240,
P.R. China. lzhang2012@sjtu.edu.cn
3 Pennsylvania State University, Department of Mathematics, University Park, PA, 16802, USA. berlyand@math.psu.edu

Article published by EDP Sciences c© EDP Sciences, SMAI 2014

http://dx.doi.org/10.1051/m2an/2013118
http://www.esaim-m2an.org
http://www.edpsciences.org


518 H. OWHADI ET AL.

where Ω is a bounded subset of R
d with piecewise Lipschitz boundary which satisfies an interior cone condition

and a is symmetric, uniformly elliptic on Ω and with entries in L∞(Ω). It follows that the eigenvalues of a are
uniformly bounded from below and above by two strictly positive constants, denoted by λmin(a) and λmax(a).
More precisely, for all ξ ∈ R

d and almost all x ∈ Ω,

λmin(a)|ξ|2 ≤ ξT a(x)ξ ≤ λmax(a)|ξ|2. (1.2)

In this paper, as in [15,69,70], we are interested in the homogenization of (1.1) (and its parabolic and hyperbolic
analogues in Sect. 8), but not in the classical sense, i.e., that of asymptotic analysis [14] or that of G or H-
convergence [37,65,80] in which one considers a sequence of operators − div(aǫ∇·) and seeks to characterize the
limit of solutions. We are interested in the homogenization of (1.1) in the sense of “numerical homogenization,”
i.e., that of the approximation of the solution space of (1.1) by a finite-dimensional space. This approximation
is not based on concepts of scale separation and/or of ergodicity but on strong compactness properties, i.e., the
fact that the unit ball of the solution space is strongly compactly embedded into H1

0(Ω) if source terms (g) are
in L2 (see [70], Appendix B).

In other words if (1.1) is “excited” by source terms g ∈ L2 then the solution space can be approximated by
a finite dimensional sub-space (of H1

0(Ω)) and the question becomes “how to approximate” this solution space.
The approximate solution space introduced in this paper is constructed as follows (see Sect. 2):

(1) Select a finite subset of points (xi)i∈N in Ω with N := {1, . . . , N}.
(2) Identify the nodal interpolation basis (φi)i∈N as minimizers of

∫

Ω

∣

∣ div(a∇φ)
∣

∣

2
subject to φi(xj) = δi,j

(where δi,j is the Kronecker delta defined by δi,i = 1 and δi,j = 0 for i �= j).
(3) Identify the approximate solution space as the interpolation space generated by the elements φi.

Note that we construct here an interpolation basis with N elements, which interpolates a given function using
its values at the nodes (xi)i∈N (analogously to e.g., the classical interpolation polynomials of degree N − 1).

Our motivation in identifying the interpolation elements through the minimization step (2) lies in observation
that the origin of the compactness of the solution space lies in the higher integrability of g. In Section 2 we will

show that one of the properties of the interpolation basis φi is that
∑

i wiφi minimizes
∫

Ω

∣

∣div(a∇w)
∣

∣

2
over

all functions w interpolating the points xi (i.e. such that w(xi) = wi). The error of the interpolation and the
accuracy of the resulting finite element method is established in Section 3 through the introduction of a new
class of higher order Poincaré inequalities.

The accuracy of our method (as a function of the locations of the interpolation points) will depend only on
the mesh norm of the discrete set (xi)i∈N , i.e., the constant H defined by

H := sup
x∈Ω

min
i∈N

|x − xi| (1.3)

Our method is meshless in its formulation and error analysis and the density of the interpolation points (xi)i∈N

can be increased near points of the domain where high accuracy is required. In the fully discrete formulation of
our method (Sect. 9), a will be chosen to be piecewise constant on a tessellation Th (of Ω) of resolution h ≪ H
and the points xi will be a subset of interior nodes of Th. More precisely, in numerical applications where a is
represented via constant values on a fine mesh Th of resolution h, H will be the resolution of a coarse mesh TH

having interior nodes xi (the nodes of TH will be nodes of Th but triangles of TH may not be unions of triangles
of Th) and the accuracy of our method will depend only on H (i.e., the accuracy will be independent from the
regularity of TH and the aspect ratios of its elements (tetrahedra for d = 3, triangles for d = 2)).

In Section 4 we show that our method also provides a natural solution to the (inverse) problem of recovering
u from the (partial) measurements of its (nodal) values at the sites xi. Although we restrict, in this paper,
our attention to d ≤ 3, we show, in Section 5, how our method can be generalized to d ≥ 4 by requiring that

g ∈ L2m(Ω) (for (d − 1)/2 ≤ m ≤ d/2) and obtaining the elements φi as minimizers of
∫

Ω

∣

∣ div(a∇φ)
∣

∣

2m
. The

resulting elements are 2m-harmonic in the sense that they satisfy
(

div(a∇·)
)2m

φi = 0 in Ω \ {xj : j ∈ N}.
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In that sense our method can be seen as a polyharmonic formulation of homogenization and a generalization
of polyharmonic splines [24, 43] to PDEs with rough coefficients (see Sect. 6, the basis elements φi can be seen
as “rough polyharmonic splines”). In Section 7 we show how the computation of the basis elements φi can be
localized to sub-domains Ωi ⊂ Ω and obtain a posteriori error estimates. Those a posteriori error estimates
show that if the localized elements φloc

i decay at an exponential rate away from xi (which we observe in our
numerical experiments in Sect 9) then the accuracy of the method remains O(H) in H1-norm for sub-domains
Ωi of size O

(

H ln(1/H)
)

, which we refer to as the super-localization property. We defer the proof and statement
of a priori error estimates to a sequel work. We give a short review of numerical homogenization in Section 10
and we discuss connections with classical homogenization in Section 10.4.

We discuss and compare the accuracy and computational cost of our method in Section 10.3. The linear
systems to be solved for the identification of the (super-)localized basis φloc

i are sparse and banded (by virtue
of this property, the computational cost of our method is minimal).

2. Variational formulation and properties of the interpolation basis

2.1. Identification of the interpolation basis

Let V be the set of functions u ∈ H1
0(Ω) such that div(a∇u) ∈ L2(Ω). Observe that V is the solution space

of (1.1) for g ∈ L2(Ω). By [36,81], solutions of (1.1) are Hölder continuous functions over Ω provided that their
source terms g belong to Ld/2+ε(Ω) for some ε > 0. It follows that if the dimension of the physical space is
less than or equal to three (d ≤ 3) then elements of V are Hölder continuous functions over Ω. For the sake of
simplicity, we will restrict our presentation to d ≤ 3 and show in Section 5 how the method and results of this
paper can be generalized to d ≥ 4.

Let ‖.‖V be the norm on V defined by

‖u‖V := ‖ div(a∇u)‖L2(Ω). (2.1)

It is easy to check that (V, ‖.‖V ) is a complete linear space; in particular, it is closed under the norm ‖.‖V .
Let (xi, i = 1, . . . , N) be a finite subset of points in Ω. Write N := {1, . . . , N} and define H as in (1.3)

(in practical applications, H > 0 will be a parameter determined by available computing power and desired
accuracy). For each i ∈ {1, . . . , N} define

Vi := {φ ∈ V | φ(xi) = 1 and φ(xj) = 0, for j ∈ {1, . . . , N} such that j �= i} (2.2)

and consider the following optimization problem over Vi:

{

Minimize
∫

Ω

∣

∣div(a∇φ)
∣

∣

2

Subject to φ ∈ Vi.
(2.3)

We will now show that (2.3) is a well posed (strictly convex) quadratic optimization problem and we will identify
its unique minimizer φi.

Remark 2.1. Observe that φi depends only on a, Ω and the locations of the points (xi)i∈N . Note that we do
not require the distribution of those points be uniform or regular (in particular, the density of points xi can be
adapted to the structure of a or increased in locations where higher accuracy is desired). In particular, in the
construction of φi, we do not use any tessellation, we just use the set of points (xi)i∈N .

Let G(x, y) be the Green’s function of (1.1). Recall that G is symmetric and that it satisfies (for y ∈ Ω)

{

− div
(

a(x)∇G(x, y)
)

= δ(x − y) x ∈ Ω;

G(x, y) = 0 for x ∈ ∂Ω,
(2.4)
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where δ(x − y) is the Dirac distribution centered at y. For i, j ∈ {1, . . . , N} define

Θi,j :=

∫

Ω

G(x, xi)G(x, xj) dx. (2.5)

Lemma 2.2. The integrals (2.5) are finite, well defined and for all i, j ∈ {1, . . . , N}, Θi,j is bounded by a
constant depending only on λmin(a), λmax(a) and Ω. The N × N matrix Θ is symmetric positive definite.
Furthermore for all l ∈ R

N ,

lT Θl = ‖v‖2
L2(Ω) (2.6)

where v is the solution of

{

− div
(

a(x)∇v(x)
)

=
∑N

j=1 ljδ(x − xj) for x ∈ Ω;

v(x) = 0 for x ∈ ∂Ω.
(2.7)

Proof. By Theorem 1.1. of [42], for d ≥ 3, the Green’s function is bounded by

G(x, y) ≤ Kd|x − y|2−d (2.8)

where Kd depends only on d, λmin(a) and λmax(a). For d = 2, we have (see for instance [84] and references
therein)

G(x, y) ≤ K2

(

1 + ln
diam(Ω)

|x − y|

)

(2.9)

where K2 depends only on λmin(a), λmax(a) and Ω. For d = 1, the Green function is trivially bounded by a
constant depending only on λmin(a), λmax(a) and Ω. It follows from these observations that for d = 1, 2, 3

∫

Ω

(

G(xi, y)
)2

dy ≤ K (2.10)

where the constant K is finite and depends only on λmin(a), λmax(a) and Ω. We deduce that the integrals
in (2.5) (and hence Θ) are well defined.

Let l ∈ R
N , write

v(x) :=

N
∑

i=1

G(x, xi)li. (2.11)

Observe that v is the solution of (2.7) and that ‖v‖2
L2(Ω) = lT Θl. Then, it follows that Θ is symmetric positive

definite. Indeed if Θ is not positive definite, then there would exist a non zero vector l ∈ R
N such that Θl = 0.

This would imply ‖v‖L2(Ω) = 0 which is a contradiction since the equation − div
(

a(x)∇v(x)
)

=
∑N

j=1 ljδ(x−xj)

has a non zero solution. �

Let P be the N × N symmetric definite positive matrix defined as the inverse of Θ, i.e.

P := Θ−1 (2.12)

Note that Lemma 2.2 (i.e. the well-posedness and invertibility of Θ) guarantees the existence of P .

Define

τ(x, y) :=

∫

Ω

G(x, z)G(z, y) dz. (2.13)
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Note that τ is symmetric and (see proof of Lem. 2.2) that for each y ∈ Ω, x → τ(x, y) is a well defined element
of V (in particular, it is Hölder continuous on Ω). Note also that for i, j ∈ N we have τ(xi, xj) = Θi,j and that

τ is the fundamental solution of
(

div(a∇·)
)2

in the sense that for y ∈ Ω

{

div
(

a∇
(

div(a∇τ(x, y))
)

)

= δ(x − y) for x ∈ Ω

τ(x, y) = div
(

a∇τ(x, y)
)

= 0 for x ∈ ∂Ω.
(2.14)

Proposition 2.3. Vi is a non-empty closed affine subspace of V . Problem (2.3) is a strictly convex optimization
problem over Vi. The unique minimizer of (2.3) is

φi(x) :=

N
∑

j=1

Pi,j τ(x, xj). (2.15)

Remark 2.4. It is important to note that in practical (numerical) applications each element φi would be
obtained by solving the quadratic optimization problem (2.3) rather than through the representation for-
mula (2.15).

Proof. Let us first prove that φi ∈ Vi. First observe that for all j ∈ {1, . . . , N},

− div
(

a(x)∇τ(x, xj )
)

= G(x, xj) (2.16)

and τ(x, xj) = 0 on ∂Ω. Noting that
∥

∥ div(a(x)∇τ(x, xj ))
∥

∥

2

L2(Ω)
= Θj,j we deduce from Lemma 2.2 that

τ(x, xj) ∈ V . We conclude from (2.15) that φi ∈ V . Now observing that

Θi,j = τ(xi, xj) (2.17)

we deduce (using the fact that P · Θ is the N × N identity matrix) that

φi(xj) = (P · Θ)i,j = δi,j . (2.18)

We conclude that φi ∈ Vi which implies that Vi is non empty (it is easy to check that it is a closed affine
sub-space of V ).

Now let us prove that problem (2.3) is a strictly convex optimization problem over Vi. Let v, w ∈ Vi such
that v �= w. Write for λ ∈ [0, 1],

f(λ) :=

∫

Ω

∣

∣

∣div
(

a∇(v + λ(w − v))
)

∣

∣

∣

2

. (2.19)

and we need to show that f(λ) is a strictly convex function. Observing that

f(λ) =

∫

Ω

∣

∣div(a∇v)
∣

∣

2
+ 2λ

∫

Ω

(div(a∇v))(div(a∇(w − v))) + λ2

∫

Ω

∣

∣div(a∇(v − w))
∣

∣

2
(2.20)

and noting that
∫

Ω

∣

∣ div(a∇(v − w))
∣

∣

2
> 0 (otherwise one would have v = w given that v and w are both

equal to zero on ∂Ω) we deduce that f is strictly convex in λ. We conclude that (see, for example, [32], p. 35,
Prop. 1.2) that Problem (2.3) is a strictly convex optimization problem over Vi and that it admits a unique
minimizer in Vi.

Let us now prove that φi is the minimizer of (2.3). Let v ∈ Vi with v �= φi. Write I(v) :=
∫

Ω
| div(a∇v)|2. We

have
I(v) = I(φi) + I(v − φi) + 2J(φi, v − φi) (2.21)
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with

J(φi, v − φi) =

∫

Ω

(div(a∇φi))(div(a∇(v − φi))). (2.22)

Note that (as before) I(v − φi) > 0 if v �= φi and using (2.16) and (2.15) we obtain that

− div(a(x)∇φi(x)) :=
N

∑

j=1

Pi,j G(x, xj) (2.23)

which leads to

J(φi, v − φi) =

N
∑

j=1

Pi,j

(

v(xj) − φi(xj)
)

= 0 (2.24)

where in the last equality we have used v(xj) − φi(xj) = 0 for all j ∈ {1, . . . , N}. It follows that I(v) > I(φi)
which implies that φi is the minimizer of (2.3). �

2.2. Variational properties of the interpolation basis

Write V0 the subset of V defined by

V0 :=
{

v ∈ V : v(xi) = 0, ∀i ∈ {1, . . . , N}
}

(2.25)

For u, v ∈ V , define the (scalar) product
〈

·, ·
〉

by

〈

u, v
〉

:=

∫

Ω

(div(a∇u))(div(a∇v)) (2.26)

The following theorem shows that the functions φi generate a linear space interpolating elements of V with
minimal

〈

., .
〉

-norm (see (2.28)).

Theorem 2.5. It holds true that

• The basis φi is orthorgonal to V0 with respect to the product
〈

·, ·
〉

, i.e.

〈

φi, v
〉

= 0, ∀i ∈ {1, . . . , N} and ∀v ∈ V0 (2.27)

• ∑

i wiφi is the unique minimizer of

〈

w, w
〉

=

∫

Ω

(

div(a∇w)
)2

(2.28)

over all w ∈ V such that w(xi) = wi.
• For all i ∈ {1, . . . , N} and for all v ∈ V ,

〈

φi, v
〉

=

N
∑

j=1

Pi,j v(xj) (2.29)

• For all i, j ∈ {1, . . . , N},
〈

φi, φj

〉

= Pi,j (2.30)



POLYHARMONIC HOMOGENIZATION, ROUGH POLYHARMONIC SPLINES AND SPARSE SUPER-LOCALIZATION 523

Proof. Equation (2.27) trivially follows from (2.29). (2.29) is a direct consequence of (2.23). (2.29) leads to
〈

φi, v
〉

= 0 for v ∈ V0. To prove that w =
∑

i wiφi is the unique minimizer of (2.28) over W :=
{

w ∈ V |
w(xi) = wi for all i ∈ {1, . . . , N}

}

we simply observe that if w′ is another element of W then w′ −w belongs to
V0 and for w′ �= w we have (from (2.27), using < w, w′ − w >= 0) that

〈

w′, w′
〉

=
〈

w, w
〉

+
〈

w′ − w, w′ − w
〉

>
〈

w, w
〉

. (2.31)

For (2.30), using (2.29) and writing IN the N × N identity matrix we have

〈

φi, φj

〉

=

N
∑

k=1

Pik φj(xk) =
(

P · IN

)

i,j
= Pi,j . (2.32)

�

Remark 2.6. It is easy to check that the orthogonality (2.27) implies that φi solves

⎧

⎪

⎨

⎪

⎩

div
(

a∇
(

div(a∇φi)
)

)

= 0 on Ω \ {xj | j ∈ N}
φi = div(a∇φi) = 0 on ∂Ω

φi(xj) = δi,j .

(2.33)

However, (2.33) alone cannot be used to uniquely identify φi as (2.15). This is due to the fact that the solution
of (2.33) may not be unique. As a counter-example consider Ω = (−1, 1), x1 = 0, N = {1} and a = Id. For
α ∈ R define

{

ψα(x) := α−1
2 x3 + 3

2 (α − 1)x2 + αx + 1 on [−1, 0]

ψα(x) := α+1
2 x3 − 3

2 (α + 1)x2 + αx + 1 on [0, 1]
(2.34)

then for any α ∈ R, ψα is a solution (2.33). Using the variational formulation of φi it is possible to show that to
enforce the uniqueness of the solution of (2.33) we also need to require that (see Prop. 7.6), for some c ∈ R

N ,

div
(

a∇
(

div(a∇φi)
)

)

=

N
∑

j=1

cjδ(x − xj) on Ω (2.35)

which in dimension one is equivalent to the continuity of div(a∇φi) across the coarse nodes (xj)j∈N . Note
that (2.35) implies that for all v ∈ V0

∫

Ω

div(a∇φi) div(a∇v) =

∫

Ω

v div
(

a∇
(

div(a∇φi)
)

)

= 0. (2.36)

3. From a higher order poincaré inequality to the accuracy

of the interpolation basis

In this section we introduce a new higher order Poincaré inequality and derive the accuracy of the interpolation
space computed in (2.3). This new class can be thought of as a generalization of Sobolev inequalities for functions
with scattered zeros (see [56, 58–60,66]) to operators with rough coefficients.

3.1. A Higher order Poincaré inequality

We will first present the new Poincaré inequality (Thm. 3.3). Analogous inequalities when a = Id can be
found in Theorem 1.1 of [66] and in [26] but the presence of the L∞ matrix a renders the proof much more
difficult and requires a new strategy based on the following lemma.
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Lemma 3.1. Let d ≤ 3 and B1 be the open ball of center 0 and radius 1. There exists a finite strictly positive
constant Cd,λmin(a),λmax(a) such that for all v ∈ H1(B1) such that div(a∇v) ∈ L2(B1) it holds true that

‖v − v(0)‖2
L2(B1) ≤ Cd,λmin(a),λmax(a)

(

‖∇v‖2
L2(B1)

+
∥

∥ div(a∇v)
∥

∥

2

L2(B1)

)

(3.1)

Proof. The proof is per absurdum. Note that since d ≤ 3 the assumptions v ∈ H1(B1) and div(a∇v) ∈ L2(B1)
imply the Hölder continuity of v in B1. Assume that (3.1) does not hold. Then there exists a sequence vn and
a sequence a′

n whose maximum and minimum eigenvalues are uniformly bounded by λmin(a) and λmax(a) (we
need to introduce that sequence because we want the constant in (3.1) to depend only d, λmin(a), λmax(a)) such
that

‖vn − vn(0)‖2
L2(B1) > n

(

‖∇vn‖2
L2(B1)

+
∥

∥ div(a′
n∇vn)

∥

∥

2

L2(B1)

)

(3.2)

Letting wn = vn−vn(0)
‖vn−vn(0)‖L2(B1)

we obtain that wn(0) = 0, ‖wn‖L2(B1) = 1 and

‖∇wn‖2
L2(B1) +

∥

∥ div(a′
n∇wn)

∥

∥

2

L2(B1)
<

1

n
(3.3)

Since

‖wn‖H1(B1) < 1 +
1

n
≤ 2 (3.4)

it follows that there exists a subsequence wnj
and a w ∈ H1(B1) such that wnj

⇀ w weakly in H1(B1) and
∇wnj

⇀ ∇w weakly in L2(B1). Using ‖∇wn‖L2(B1) ≤ 1/n we deduce that ∇w = 0 which implies that w is
a constant in B1. Since by the Rellich–Kondrachov theorem the embedding H1(B1) ⊂ L2(B1) is compact it
follows from (3.4) that wnj

→ w strongly in L2(B1) which (using ‖wn‖L2(B1) = 1) implies that ‖w‖L2(B1) = 1.

Now (3.4) together with the fact that
∥

∥ div(a′
n∇wn)

∥

∥

2

L2(B1)
is uniformly bounded and that d ≤ 3 implies that

wn is uniformly Hölder continuous on B(0, 1
2 ) (see for instance [82]). This implies that w is continuous in B(0, 1

2 )
and that w(0) = 0. This contradicts the fact that w is a constant in B1 with ‖w‖L2(B1) = 1. �

We also need the following lemma.

Lemma 3.2. Let f ∈ H1
0(Ω) and define Ω2H as the set of points in Ω at distance at most 2H from ∂Ω. There

exists a constant Cd,Ω such that

‖f‖L2(Ω2H ) ≤ Cd,ΩH‖∇f‖L2(Ω2H) (3.5)

Proof. The proof is analogous to Poincaré inequality. We observe that u = 0 on ∂Ω. Recalling that Ω is piecewise
Lipschitz continuous we cover ∂Ω ∪ Ω2H with a collection of charts and express u(x) as an integral from the
boundary (where u = 0) to x of ∇u(y) along a path of length bounded by a multiple of H . �

Theorem 3.3. Let f ∈ V0 (and d ≤ 3). It holds true that

‖∇f‖L2(Ω) ≤ CH
∥

∥ div(a∇f)
∥

∥

L2(Ω)
(3.6)

where the constant C depends only d, λmin(a), λmax(a) and Ω.

Proof. We have by integration by parts and the Cauchy−Schwartz inequality,

∫

Ω

(∇f)T a∇f = −
∫

Ω

f
(

div(a∇f)
)

≤ ‖f‖L2(Ω)

∥

∥ div(a∇f)
∥

∥

L2(Ω)
. (3.7)
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Therefore, using Young’s inequality we obtain that for any α > 0,
∫

Ω

(∇f)T a∇f ≤ 1

2αH2
‖f‖2

L2(Ω) +
αH2

2

∥

∥ div(a∇f)
∥

∥

2

L2(Ω)
. (3.8)

Now it follows from the definition (1.3) that there exists and index set N ′ ⊂ N such that: (i) for all i ∈ N ′,
B(xi, H) ⊂ Ω (where B(xi, H) is the ball of center xi and radius R) (ii) ∪i∈N ′B(xi, H) ∪ Ω2H = Ω (iii) and
that any x ∈ Ω is contained in at most K balls of (B(xi, H))i∈N ′ where K is a finite number depending only
on the dimension d. It follows from (ii) that

‖f‖2
L2(Ω) ≤

∑

i∈N ′

‖f‖2
L2(B(xi,H)) + ‖f‖2

Ω2H
. (3.9)

Observing that f(xi) = 0 we obtain from Lemma 3.1 and scaling that for each i ∈ N ′

‖f‖2
L2(B(xi,H)) ≤ Cd,λmin(a),λmax(a)

(

H2‖∇f‖2
L2(B(xi,H)) + H4

∥

∥ div(a∇f)
∥

∥

2

L2(B(xi,H))

)

(3.10)

Therefore (3.10) and (3.5) imply that

‖f‖2
L2(Ω) ≤Cd,ΩH2‖∇f‖2

L2(Ω2H )

+Cd,λmin(a),λmax(a)

∑

i∈N ′

(

H2‖∇f‖2
L2(B(xi,H)) + H4

∥

∥ div(a∇f)
∥

∥

2

L2(B(xi,H))

)

. (3.11)

Using (iii) we deduce that

‖f‖2
L2(Ω) ≤Cd,Ω,λmin(a),λmax(a)K

(

H2‖∇f‖2
L2(Ω) + H4

∥

∥ div(a∇f)
∥

∥

2

L2(Ω)

)

(3.12)

Combining (3.12) with (3.8) we obtain that
∫

Ω

(∇f)T a∇f ≤ αH2

2

∥

∥ div(a∇f)
∥

∥

2

L2(Ω)
+

1

α
Cd,Ω,λmin(a),λmax(a)

(

‖∇f‖2
L2(Ω) + H2

∥

∥ div(a∇f)
∥

∥

2

L2(Ω)

)

. (3.13)

which concludes the proof by taking α = 1
2λmin(a)Cd,Ω,λmin(a),λmax(a). �

3.2. Accuracy of the interpolation basis

Now let us use (3.6) to estimate the interpolation error.

Corollary 3.4. Let u ∈ V be the solution of (1.1) and uin(x) :=
∑N

i=1 u(xi)φi(x). It holds true that

‖u − uin‖H1
0(Ω) ≤ CH‖g‖L2(Ω) (3.14)

where the constant C depends only on λmin(a), λmax(a) and Ω.

Proof. Observing that u − uin ∈ V0(Ω) we deduce from Theorem 3.3 that
∫

Ω

|∇(u − uin)|2 ≤ CH2

∫

Ω

∣

∣g −
∑

i

u(xi) div(a∇φi)
∣

∣

2
dx (3.15)

≤ CH2

⎛

⎝

∫

Ω

g2 dx +

∫

Ω

(

∑

i

u(xi) div(a∇φi)

)2

dx

⎞

⎠ (3.16)

≤ CH2

(∫

Ω

g2 dx +

∫

Ω

(div(a∇u))
2

dx

)

(3.17)

≤ CH2‖g‖2
L2(Ω) (3.18)
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Note that in the third inequality, we have used the Lemma 2.5, which states that the linear combination of
φi minimizes ‖ · ‖V among all the functions in V (Ω) sharing the same values at the nodes {xi}. Note also
that through this paper, for the sake of clarity, we only keep track of the dependence of C and not its precise
numerical value (we will, for instance, write 2C/λmin(a) as C to avoid cumbersome expressions). �

3.3. Accuracy of the FEM with elements φi

The following theorem shows that the finite element method with elements φi achieves the optimal (see [15])
convergence rate O(H) in H1 norm in its approximation of (1.1).

Theorem 3.5. Let u be the solution of equation (1.1), and uH be the finite element solution of (1.1) over the
linear space spanned by the elements {φi, i = 1, . . . , N} identified in (2.3). It holds true that

‖u − uH‖H1
0(Ω) ≤ CH‖g‖L2(Ω) (3.19)

where the constant C depends only on λmin(a) and λmax(a).

Proof. The theorem is a straightforward consequence of Corollary 3.4 and of the fact that uH minimizes the
(squared) distance

∫

Ω
(∇u −∇uH)T a(∇u −∇uH) over the linear space spanned by the elements φi. �

Remark 3.6. Recall that the convergence rate of a FEM applied to (1.1) with piecewise linear elements can be
arbitrarily bad [11]. Recall also that the convergence rate of Theorem 3.5 is optimal [15] (this is related to the
Kolmogorov n-widths [61, 74, 85], which measure how accurately a given set of functions can be approximated
by linear spaces of dimension n in a given norm).

4. Recovering u from partial measurements

In this section we will show that our method provides a natural solution to the inverse problem of recovering
u from partial measurements. Consider the problem (1.1). In this inverse problem one is given the following
(incomplete) information: a(x) is known, g is unknown but we know that ‖g‖L2(Ω) ≤ M , u is unknown but its
values are known on a finite set of points {xj : j ∈ N} (through site measurements). The inverse problem is then
to recover u (accurately in the H1 norm). A solution of this inverse problem can be obtained by first computing

the minimizers of (2.3) (or their localized version (7.4)) and approximate u with uin(x) :=
∑N

i=1 u(xi)φi(x).
Corollary 3.4 can then be used to bound the accuracy of the recovery by

‖u − uin‖H1
0(Ω) ≤ CHM (4.1)

where the constant C depends only on λmin(a), λmax(a) and Ω. Note that the method is meshless.

5. Generalization to d ≥ 4

Although for the sake of simplicity we have restricted our presentation to d ≤ 3, the method and results of
this paper can be generalized to d ≥ 4 by introducing the space V m defined as the set of functions u ∈ H1

0(Ω)
such that

(

div(a∇·)
)m

u ∈ L2(Ω) where m is an integer m ≥ 1 and
(

div(a∇·)
)m

u is the m-iterate of the
operator

(

div(a∇·)
)

, i.e.

(

div(a∇·)
)1

u :=
(

div(a∇u)
)

and
(

div(a∇·)
)m

u :=
(

div(a∇·)
)m−1(

div(a∇u)
)

. (5.1)

Introducing ‖.‖V m as the norm on V m defined by

‖u‖V m :=
∥

∥

∥

(

div(a∇·)
)m

u
∥

∥

∥

L2(Ω)
. (5.2)
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The results of this paper can be generalized to d ≥ 4 by choosing m such that (d − 1)/2 ≤ m ≤ d/2, assuming
that g ∈ L2m(Ω) and using the interpolation basis defined as the minimizer of

{

Minimize ‖φ‖V m

Subject to φ ∈ V m
i .

(5.3)

where
V m

i := {φ ∈ V m | φ(xi) = 1 and φ(xj) = 0, for j ∈ {1, . . . , N} such that j �= i}. (5.4)

Note that the solutions of (5.3) are 2m-harmonic in the sense that they satisfy

(

div(a∇·)
)2m

φ(x) = 0 for x �= xj . (5.5)

Note that the solutions of (2.3) are bi-harmonic on Ω \ {xj : j ∈ N}.
For d = 1 one can also obtain an accurate interpolation basis by minimizing

∫

Ω ∇φa∇φ subject to the point-
wise interpolation constraints used in (5.4). By doing so one would obtain basis elements φi that are harmonic
in Ω \ {xj : j ∈ N} and recover a numerical homogenization method based on “harmonic coordinates” [8, 69].

Note also that the variation formulation (5.3) does not require the operator L := div(a∇·) to be self-adjoint
(but solely depends on the minimization of the L2 norm of L2mφ).

6. Rough polyharmonic splines

6.1. The elements φi as rough polyharmonic splines

The interpolation basis φi constructed in this work can be seen as a generalization of polyharmonic splines to
differential operators with rough coefficients. More precisely, as polyharmonic splines lead to an accurate inter-
polation of smooth functions (solutions of the laplace operator), the “rough polyharmonic splines” introduced
in this paper lead to an accurate interpolation of solutions of differential operators with rough coefficients. Note
also that as polyharmonic splines are m-harmonic in the sense that they satisfy ∆mφ = 0 away from the coarse

nodes, the solutions of (5.3) are 2m-harmonic in the sense that they satisfy
(

div(a∇·)
)2m

φ(x) = 0 away from
those coarse nodes. This generalization is challenging in several major ways due to the lack of regularity of
coefficients. In particular, the Fourier analysis toolkit is no longer available and the simple task of enforcing
clamped boundary conditions (trivial with smooth coefficients) becomes a significant difficulty with rough co-
efficients: consider, for instance, the problem of finding a function φ ∈ H1

(

B(0, 1)
)

that satisfies zero Neumann
and Dirichlet boundary conditions on ∂B(0, 1) and such that div(a∇φ) ∈ L2

(

B(0, 1)
)

. We will now give a short
review of polyharmonic splines.

6.2. Polyharmonic splines: a short review

Let X be a discrete (possibly finite) set of points of R
d. Let u be a real valued function defined on X .

Polyharmonic splines have emerged through the problem of interpolating u (from its known values on X) to
a real function φ defined on R

d (with φ(xj) = u(xj) for xj ∈ X). Let m be an integer strictly greater than
d/2. The idea behind polyharmonic splines is to seek the most “regular” interpolation by selecting φ to be a
minimizer of the semi-norm

⎛

⎝

∫

Rd

∑

α∈Nd, |α|=m

cα

(

∂αu

∂xα
(x)

)2

dx

⎞

⎠

1
2

(6.1)

over all functions φ in Hm(Rd) interpolating u on X , where the parameters cα are positive coefficients usu-
ally [25, 78] chosen to be equal to m!

α! to ensure the rotational invariance of the semi-norm (those coefficients are

also sometimes chosen to be equal to one [76,77]). Writing ∆ the Laplace operator on R
d (∆φ =

∑d
i=1

∂2φ
∂x2

i

) and

∆m the m-iterate of φ (∆1 = ∆ and ∆kφ = ∆(∆k−1φ)) the solutions of (6.1) satisfy ∆mφ = 0 on R
d\X and are



528 H. OWHADI ET AL.

therefore called m-harmonic splines. A Polyharmonic spline of order m is therefore also commonly defined [48]
as a tempered distribution φ on R

d that is 2m − d − 1 continuously differentiable and such that ∆mφ = 0 on
R

d \ X .
Polyharmonic splines can be represented via weighted sums of shifted fundamental solutions of ∆, (i.e. they

can be written [24] φ =
∑

xj∈X cjτ(x−xj)+pm−1(x) where τ is the fundamental solution of ∆m (∆mτ(x) = δ(x))

and pm−1 is a polynomial of degree at most m − 1).
When X forms a regular lattice of R

d the resulting splines are referred to as polyharmonic cardinal splines.
In this case (which has been extensively studied [52–54, 79]) it can be shown [75–77] that the basis elements
allowing for the interpolation of u can be expressed as ∆m

d τ (where τ is the fundamental solutions of ∆m and
∆d is the finite difference discretization of ∆ on Zd).

Polyharmonic splines can be traced back to the seminal work of Harder and Desmarais [43] on the interpolation
of functions of two variables based on the minimization of a quadratic functional corresponding to the bending
energy of a thin plate (we refer to [20] for a review) and the extension of this idea to higher dimensions in
the seminal work of Duchon [24–26] (built on earlier work by Atteia [7]). We also refer to the related work of
Schoenberg (d = 1) on cardinal spline interpolation [79], to [51] for L∞ radial basis functions interpolation error
estimates and to [57] for the rapid decay (locality) of polyharmonic splines.

7. Localization of the interpolation basis

7.1. Introduction of the localized basis

For each i ∈ {1, . . . , N} let Ωi be an open subset of Ω containing xi. Let N (Ωi) be the set of indices
corresponding to the interior nodes of the coarse mesh contained in Ωi, i.e.

N (Ωi) := {j ∈ {1, . . . , N} | xj ∈ Ωi}. (7.1)

Define

V (Ωi) :=
{

φ ∈ H1
0(Ω) | φ = 0 on ∂Ωi ∪ (Ω \ Ωi) and div(a∇φ) ∈ L2(Ωi)

}

(7.2)

and

Vi(Ωi) :=
{

φ ∈ V (Ωi) | φ(xi) = 1 and φ(xj) = 0, for j ∈ N (Ωi) such that j �= i
}

(7.3)

Consider the following optimization problem over Vi(Ωi):

{

Minimize
∫

Ωi

∣

∣div(a∇φ)
∣

∣

2

Subject to φ ∈ Vi(Ωi).
(7.4)

The proof of the following proposition is identical to that of Proposition 2.3 (Vi is simply replaced by Vi(Ωi)).

Proposition 7.1. Vi(Ωi) is a non-empty closed convex affine subspace of V (Ωi) under the norm ‖v‖2
V (Ωi)

:=
∫

Ωi

(

div(a∇v)
)2

. Problem (7.4) is a strictly convex (quadratic) optimization problem over Vi(Ωi) with a unique

minimizer denoted by φloc
i .

Remark 7.2. As in Proposition 2.3, the unique minimizer of (7.4) can be represented using the Green’s function
of the operator − div(a∇·) with Dirichlet boundary condition on ∂Ωi, i.e., we have for x ∈ Ωi

φloc
i (x) :=

∑

j∈N (Ωi)

P i,loc
i,j τ i,loc(x, xj) (7.5)
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with

τ i,loc(x, y) :=

∫

Ωi

Gi,loc(x, z)Gi,loc(z, y) dy (7.6)

where Gi,loc(x, y) is the Green’s function of − div(a∇) in Ωi with zero Dirichlet boundary condition, i.e. the
solution of (for y ∈ Ωi)

{

− div
(

a(x)∇Gi,loc(x, y)
)

= δ(x − y) for x ∈ Ωi;

Gi,loc(x, y) = 0 for x ∈ ∂Ωi,
(7.7)

and, writing Ni := |N (Ωi)| the number of coarse nodes xj that are contained in Ωi, P i,loc is the Ni×Ni positive
definite symmetric matrix, defined over N (Ωi), by P i,loc = (Θi,loc)−1 where Θi,loc is the Ni×Ni positive definite
symmetric matrix, defined over N (Ωi), by

Θi,loc
k,j :=

∫

Ωi

Gi,loc(x, xk)Gi,loc(x, xj) dx. (7.8)

Remark 7.3. It is important to note that in practical (numerical) applications each (localized) element φloc
i

is obtained by solving one (local, i.e. over Ωi) quadratic optimization problem (7.4) rather than through the
representation formula (7.5) (which would require solving Ni elliptic problems in Ωi corresponding to the values
of the local Green’s function).

7.2. Accuracy of the localized basis as a function of the norm of the difference between

the global and the localized basis

We introduce in this subsection lemmas that will be used to control the accuracy of the local basis (φloc
i )i∈N

in approximating solutions of (1.1) (i.e., the error associated with replacing the global basis (φi)i∈N with a
localized version (ϕi)i∈N ). Although (ϕi)i∈N is arbitrary in the following lemma, it is intended to be a localized
version of the global basis.

Lemma 7.4. Let (ϕi)i∈N be N elements of H1
0(Ω). For c ∈ R

N , c �= 0, define

v(x) :=

N
∑

i=1

ciφi(x) and w(x) :=

N
∑

i=1

ciϕi(x). (7.9)

It holds true that
‖v − w‖H1

0(Ω)
∥

∥ div(a∇v)
∥

∥

L2(Ω)

≤ CN max
i∈N

‖φi − ϕi‖H1
0(Ω) (7.10)

where the constant C is finite and depends only on λmin(a), λmax(a) and Ω.

Proof. We have, using (2.30),

‖v − w‖H1
0(Ω) =

(

cT Mc

cT Pc

)
1
2

∥

∥div(a∇v)
∥

∥

L2(Ω)
(7.11)

where M is the N × N matrix defined by

Mi,j :=

∫

Ω

(∇φi −∇ϕi)
T (∇φj −∇ϕj) (7.12)

and P is defined in (2.12). Note that since Θ is symmetric positive definite, there exists a symmetric positive
definite N × N matrix T such that Θ = T 2. Recalling that P = Θ−1, we obtain

sup
c∈RN , c �=0

cT Mc

cT Pc
= λmax(TMT ) ≤ λmax(M)λmax(Θ) (7.13)
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Using (2.5) we have for c ∈ R
N

cT Θc =

∫

Ω

(

N
∑

i=1

G(x, xi)ci

)2

dx. (7.14)

It follows from the Cauchy−Schwartz inequality that

cT Θc ≤
(

N
∑

i=1

c2
i

) (

N
∑

i=1

∫

Ω

(

G(x, xi)
)2

dx

)

. (7.15)

Using (2.10), we conclude that
λmax(Θ) ≤ NK (7.16)

where the constant K is finite and depends only on λmin(a), λmax(a) and Ω. To summarize we have obtained
that

‖v − w‖H1
0(Ω)

∥

∥ div(a∇v)
∥

∥

L2(Ω)

≤ CN1/2
(

λmax(M)
)

1
2 . (7.17)

We now need to control λmax(M). Since M is symmetric and positive its maximum eigenvalue is less or equal
than its trace. It follows that,

λmax(M) ≤
N

∑

i=1

Mi,i ≤ N max
i

Mi,i. (7.18)

Combining (7.18) with (7.17) we deduce (7.10). �

The following lemma bounds the accuracy of the localized basis (φloc
i )i∈N in approximating solutions of (1.1).

In particular, it shows that if maxi∈N ‖φi − φloc
i ‖H1

0(Ω) is sufficiently small then the accuracy of the localized
basis is similar to that of the global basis.

Lemma 7.5. Let u be the solution of equation (1.1), and uH,loc be the finite element solution of (1.1) over the
linear space spanned by the elements {φloc

i , i = 1, . . . , N} identified in (7.4). It holds true that

‖u − uH,loc‖H1
0(Ω) ≤ C‖g‖L2(Ω)

(

H + N max
i∈N

‖φi − φloc
i ‖H1

0(Ω)

)

(7.19)

where the constant C depends only on λmin(a), λmax(a) and Ω.

Proof. Let uin be the interpolation of the solution of (1.1) over the elements {φi, i = 1, . . . , N} identified in (2.3).
Let uin,loc be the interpolation of the solution of (1.1) over the elements {φloc

i , i = 1, . . . , N} identified in (7.4).
Using the triangle inequality we have

‖u − uin,loc‖H1
0(Ω) ≤ ‖u − uin‖H1

0
+ ‖uin − uin,loc‖H1

0(Ω). (7.20)

Using Corollary 3.4 and Lemma 7.4 we deduce that

‖u − uin,loc‖H1
0(Ω) ≤ CH‖g‖L2(Ω) + CN max

i∈N
‖φi − φloc

i ‖H1
0(Ω)

∥

∥ div(a∇uin)
∥

∥

L2(Ω)
. (7.21)

Using the minimization property given in Theorem 2.5 we have
∥

∥ div(a∇uin)
∥

∥

L2(Ω)
≤

∥

∥ div(a∇u)
∥

∥

L2(Ω)
= ‖g‖L2(Ω). (7.22)

We deduce that
‖u − uin,loc‖H1

0(Ω) ≤ C‖g‖L2(Ω)

(

H + N max
i∈N

‖φi − φloc
i ‖H1

0(Ω)

)

. (7.23)

We conclude the proof using the fact that uH,loc minimizes
∫

Ω(∇u − ∇v)a(∇u − ∇v) over all v in the linear
space spanned by the elements {φloc

i , i = 1, . . . , N}. �
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7.3. Identification of the difference between the global and the localized basis

In this subsection we will represent φi − φloc
i as the solution of a fourth order PDE. We will assume that

∂Ωi ∩ Ω is at some strictly positive distance from the set of coarse nodes, i.e. writing

δi := inf
x∈∂Ωi∩Ω, j∈N

‖x − xj‖ (7.24)

we assume that δi > 0. Although the construction of the localized basis ϕloc
i does not require δi to be strictly

positive our proof of the accuracy of the localized basis will require that δi is uniformly bounded from below
by some arbitrary power of H (i.e., C Hk for some C > 0 and k ≥ 1). More precisely, our (final and simplified)
a posteriori error estimates (Thm. 7.15) will be given under the assumption that mini∈N δi ≥ Hmin/10 where

Hmin := min
i,j∈N

‖xi − xj‖. (7.25)

and that the assumption that maxi∈N δi ≤ H ≤ 1 (we also make these assumptions to simplify our expressions,
note that there is no loss of generality here since Ω can be re-scaled to have a diameter bounded by 1).

Let f ∈ H−1(Ω) and consider the system of equations with unknowns c ∈ R
N and χ ∈ V0 (where V0 is

defined in (2.25))
⎧

⎪

⎨

⎪

⎩

div
(

a∇
(

div(a∇χ)
))

= f +
∑N

i=1 ciδ(x − xi) on Ω

χ = div(a∇χ) = 0 on ∂Ω

χ = 0 on {xj : j ∈ N}.
(7.26)

Proposition 7.6. Equation (7.26) admits a unique solution χ ∈ V0 given by

χ(x) = χ1(x) + χ2(x) (7.27)

where

χ1(x) =

∫

Ω

τ(x, y)f(y) dy (7.28)

and

χ2(x) = −
N

∑

k=1

N
∑

j=1

τ(x, xj)Pj,kχ1(xk). (7.29)

Proof. Noting that τ is the fundamental solution of (2.14) we obtain that (for c ∈ R
N ) χ is the unique solution

of
{

div
(

a∇
(

div(a∇χ)
)

)

= f +
∑N

i=1 ciδ(x − xi) on Ω

χ = div(a∇χ) = 0 on ∂Ω
(7.30)

if and only if

χ(x) =

∫

Ω

τ(x, y)f(y) dy +
N

∑

j=1

τ(x, xj)cj . (7.31)

The additional constraint
χ = 0 on {xj}j∈N (7.32)

is then equivalent to

χ1(xi) +

N
∑

j=1

τ(xi, xj)cj = 0 (7.33)

which (recalling that τ(xi, xj) = Θi,j and that P = Θ−1) admits the unique solution c = −P (χ1(xi))i∈N . Note
that χ1 has well defined values at the nodes (xj)j∈N since, by [36, 81], it is Hölder continuous over Ω. �
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Consider the equation
⎧

⎪

⎨

⎪

⎩

div
(

a∇
(

div(a∇χ)
)

)

= − div
(

a∇
(

div(a∇φloc
i )

)

)

+
∑N

i=1 ciδ(x − xi) on Ω

χ = div(a∇χ) = 0 on ∂Ω

χ = 0 on {xj : j ∈ N}.
(7.34)

We will show in the proof of Lemma 7.7 that (7.34) admits a unique solution. We will denote that solution by
χi and obtain (in Lem. 7.7) a representation formula for it.

Lemma 7.7. It holds true that
φi = φloc

i + χi (7.35)

where χi = χ1
i + χ2

i with (n is the unit surface vector oriented towards the exterior of Ωi)

χ1
i (x) :=

∫

∂Ωi∩Ω

τ(x, y)n · a∇
(

div(a∇φloc
i )

)

dy −
∫

∂Ωi∩Ω

G(x, y)n · a∇φloc
i dy (7.36)

and

χ2
i (x) := −

N
∑

k=1

N
∑

j=1

τ(x, xj)Pj,kχ1
i (xk). (7.37)

Proof.
Initial proof. Let f̄ be an arbitrary element of H−1(Ω) and χ̄ the solution of (7.30) and (7.32). We have (using
φi − φloc

i = 0 on {xj : j ∈ N})
∫

Ω

(φi − φloc
i )f̄ =

∫

Ω

(φi − φloc
i ) div

(

a∇
(

div(a∇χ̄)
)

)

. (7.38)

Integrating by parts we deduce that
∫

Ω

(φi − φloc
i )f̄ =

∫

Ω\∂Ωi

div
(

a∇(φi − φloc
i )

)

div(a∇χ̄) +

∫

∂Ωi∩Ω

div(a∇χ̄)n · a∇φloc
i . (7.39)

Integrating by parts again (using the continuity of div(a∇φloc
i ) across ∂Ωi ∩ Ω and the fact that χ̄ is null on

the nodes xj) we have
∫

Ω\∂Ωi

div
(

a∇(φi − φloc
i )

)

div(a∇χ̄) =

∫

∂Ωi∩Ω

χ̄ n · a∇div
(

a∇φloc
i

)

. (7.40)

Replacing χ̄ by the solution expressed in (7.27), i.e.

χ̄(x) =

∫

Ω

τ(x, y)f̄(y) dy −
N

∑

k=1

N
∑

j=1

τ(x, xj)Pj,k

∫

Ω

τ(xk, y)f̄(y) dy (7.41)

we obtain that
∫

Ω

(φi − φloc
i )f̄ = −

∫

y∈Ω

∫

x∈∂Ωi∩Ω

G(x, y)f̄(y)n · a∇φloc
i (x) dy dx

+

∫

y∈Ω

∫

x∈∂Ωi∩Ω

τ(x, y)f̄ (y)n · a∇div
(

a∇φloc
i (x)

)

dy dx

−
N

∑

k=1

N
∑

j=1

Pj,k

∫

y∈Ω

∫

x∈∂Ωi∩Ω

τ(x, xj)τ(xk , y)f̄(y)n · a∇div
(

a∇φloc
i (x)

)

dy dx

+
N

∑

k=1

N
∑

j=1

Pj,k

∫

y∈Ω

∫

x∈∂Ωi∩Ω

G(x, xj)τ(xk, y)f̄(y)n · a∇φloc
i (x) dy dx (7.42)

which leads us to (7.35).
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Alternate proof. For the sake of clarity we will now also give an intuitive proof of (7.35) based on a direct
application of Proposition 7.6. Note that since φloc

i and div(a∇φloc
i ) are continuous across ∂Ωi ∩ Ω we have

(using the representation formulae (2.15) and (7.5)) that

div

(

a∇
(

div
(

a∇(φi − φloc
i )

)

)

)

= f +

N
∑

i=1

ciδ(x − xi) (7.43)

where
f = n · a∇

(

div(a∇φloc
i )

)

δ∂Ωi∩Ω + div
(

a∇
(

n · a∇φloc
i δ∂Ωi∩Ω

)

)

(7.44)

and δ∂Ωi∩Ω is the Dirac (surface) distribution on ∂Ωi∩Ω. We conclude by using Proposition 7.6 and integrating
by parts. Note that although Proposition 7.6 requires f ∈ H−1(Ω), our initial proof shows that it can still be
applied here (with f ∈ H−3(Ω)) to show (7.35). Note that our assumption that ∂Ωi ∩ Ω (the support of f) is
at some strictly positive distance from the coarse nodes (xj)j∈N (i.e., δi > 0) implies χ1

i has well defined values
at the coarse nodes (xj)j∈N (since div(a∇χ1

i ) is in H1 in a neighborhood of those nodes). �

7.4. Reverse Poincaré inequality

The following lemma is a generalization of the classical Caccioppoli’s inequality (usually referred to as the
reversed Poincaré inequality, see [35] and Prop. 1.4.1 of [64]). We will remind its statement and proof for the
sake of completeness.

Lemma 7.8. Let D1, D2 be open subsets of D0 such that D2 ⊂ D1 (and such that D0 \ D1 is non-empty). If
v ∈ H1(D0) satisfies div(a∇v) = 0 in D1, and v = 0 on ∂D0, then

‖∇v‖L2(D2) ≤
C

dist(D2, D0 \ D1)
‖v‖L2(D1) +

(

∥

∥ div(a∇v)
∥

∥

L2(D1)
‖v‖L2(D1)

)
1
2

. (7.45)

Proof. The idea of the proof is as follows, choose η to be a differentiable function on D0 such that η = 1 on D2,
η = 0 on D0 \ D1, 0 ≤ η ≤ 1 and ‖∇η‖L∞(D0) ≤ C

dist(D2,D0\D1) . Using the fact that η2v = 0 on ∂D1 we obtain
that

∫

D1

∇(η2v)a∇v = −
∫

D1

η2v div(a∇v) (7.46)

which leads to
∫

D1

η2∇va∇v = −2

∫

D1

ηv∇ηa∇v −
∫

D1

η2v div(a∇v). (7.47)

Using the Cauchy−Schwartz inequality, the uniform bound on ∇η, and the uniform bound on a we deduce that

∫

D1

η2∇va∇v ≤ C

dist(D2, D0 \ D1)

(∫

D1

η2∇va∇v

)
1
2

‖v‖L2(D1) +
∥

∥ div(a∇v)
∥

∥

L2(D1)
‖v‖L2(D1). (7.48)

Writing
( ∫

D1
η2∇va∇v

)
1
2 , we conclude by using the fact that, for positive x, y, z, x ≤ y + z/x implies that

x ≤ y +
√

z and also using the fact that
∫

D2
∇va∇v ≤

∫

D1
η2∇va∇v. �

7.5. Bound on the maximum eigenvalue of P

In this subsection we will provide an upper bound on the maximum eigenvalue of P as defined in (2.12).

Proposition 7.9. Let Θ be defined as in (2.5), P as in (2.12), and Hmin as in (7.25). It holds true that

λmax(P ) ≤ C
N

H4
min

· (7.49)
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Proof. The definition (2.12) implies that the maximum eigenvalue of P is the inverse of the minimum eigenvalue
of Θ as defined in (2.5). Let l ∈ R

N such that ‖l‖ = 1. We wish to bound from below lT Θl. Write

v(x) :=

N
∑

j=1

G(x, xi)lj (7.50)

and observe that

lT Θl = ‖v‖2
L2(Ω). (7.51)

Since ‖l‖ = 1, there exists i ∈ N such that |li| ≥ 1/
√

N . Let Bρ be the intersection of Ω with the ball of
center xi and radius ρ. Let ρ = Hmin/8. Observing that v is harmonic in B7ρ \ Bρ we have using Caccioppoli’s
inequality (see Lem. 7.8) that

‖∇v‖L2(B5ρ\B4ρ) ≤
C

ρ
‖v‖L2(B6ρ\B3ρ). (7.52)

Using Green’s identity and (7.50) we have

∫

∂B5ρ

n · a∇v =

∫

B5ρ

div(a∇v) = −li. (7.53)

Let η be a smooth function equal to one on ∂B5ρ, zero on B4ρ and such that 0 ≤ η ≤ 1 and ‖∇η‖L∞(B5ρ) ≤ C/ρ.
Integrating by parts, we have

∫

∂B5ρ

n · a∇v =

∫

∂B5ρ

ηn · a∇v

=

∫

B5ρ\B4ρ

∇ηa∇v. (7.54)

Observing that

∣

∣

∣

∣

∣

∫

B5ρ\B4ρ

∇ηa∇v

∣

∣

∣

∣

∣

≤ C

ρ
‖∇v‖L2(B5ρ\B4ρ) (7.55)

we obtain from |li| ≥ 1/
√

N , (7.53) and (7.54) that

1√
N

≤ C

ρ
‖∇v‖L2(B5ρ\B4ρ). (7.56)

Combining (7.56) with (7.52) we deduce that

C
ρ2

√
N

≤ ‖v‖L2(B6ρ\B3ρ). (7.57)

Combining (7.57) with (7.51) we deduce that

lT Θl ≥ C
ρ4

N
(7.58)

which concludes the proof. �
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(a) Ωi (b) Ωδ
i

Figure 1. Ωi and Ωδ
i as defined in (7.62).

7.6. Pointwise estimates on solutions of elliptic equations with discontinuous coefficients

Write B(x, ρ) the Euclidean ball of center x and radius ρ and Ω(x, ρ) the intersection of B(x, ρ) with Ω.

Lemma 7.10. Let v ∈ H1(Ω) such that div(a∇v) ∈ L2(Ω), d ≤ 3 and x0 ∈ Ω. Then there exists a constant C
depending only on λmin(a) and λmax(a) such that

‖v‖L∞(Ω(x0,ρ)) ≤
(

C

ρd

∫

Ω(x0,2ρ)

v2

)
1
2

+ Cρ2− d
2

∥

∥ div(a∇v)
∥

∥

L2(Ω(x0,ρ))
. (7.59)

Proof. Lemma 7.10 is classical and we refer to [82] for its proof. The idea is to decompose v as v = v1 + v2

where v1 and v2 satisfy div(a∇v1) = div(a∇v) and div(a∇v2) = 0 on Ω(x0, ρ) with boundary conditions v1 = 0
and v2 = v on ∂Ω(x0, ρ). By the estimates on the L2-norm of the Green’s functions given in Lemma 2.2 (see
also [36, 81, 82])

‖v1‖L∞(Ω(x0,ρ)) ≤ Cρ2− d
2

∥

∥ div(a∇v)
∥

∥

L2(Ω(x0,ρ))
. (7.60)

Since v2 is harmonic we have (using for instance Thm. 5.1 of [82]),

‖v2‖L∞(Ω(x0,ρ)) ≤ C‖v2‖L2(Ω(x0,2ρ)). (7.61)

�

7.7. Control of the norm of the difference between the global and the localized basis

Write dist(x, A) the distance from a point x to a set A in Euclidean norm. Define for δ > 0

Ωδ
i :=

{

x ∈ Ωi | dist(x, ∂Ωi ∩ Ω) < δ
}

. (7.62)

See Figure 1 for an illustration of Ωi and ωδ
i when ∂Ωi ∩ ∂Ω �= ∅.

Lemma 7.11. We have for δi ≤ 1

∥

∥χ1
i

∥

∥

L∞(Ω)
≤Cδ−2

i

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) + Cδ
− 5

2

i

∥

∥φloc
i

∥

∥

L2

(

Ω
3δi
4

i

) . (7.63)
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Proof. Let η be a smooth function equal to 1 on Ω̄
δi
4

i , 0 on Ωi \ Ω
δi
2

i and such that 0 ≤ η ≤ 1 and such that

sup
x∈Ωi

|∇η(x)| ≤ C

δi
(7.64)

for some constant C independent from H and δi. Let χ1
i be the function defined in (7.36). Noting that η = 1

on ∂Ωi ∩ Ω, τ(x, y) = 0 and G(x, y) = 0 for y ∈ ∂Ω we have

χ1
i (x) =

∫

∂Ωi

τ(x, y)n · ηa∇
(

div(a∇φloc
i )

)

dy −
∫

∂Ωi

G(x, y)n · ηa∇φloc
i dy. (7.65)

We deduce, after integration by parts and using the fact that div
(

a∇
(

div(a∇φloc
i )

)

)

= 0 on Ω
δi
2

i , that

χ1
i (x) =

∫

Ωi

∇τ(x, y)ηa∇
(

div(a∇φloc
i )

)

dy +

∫

Ωi

τ(x, y)∇ηa∇
(

div(a∇φloc
i )

)

dy

−
∫

Ωi

∇G(x, y)ηa∇φloc
i dy −

∫

Ωi

G(x, y)∇ηa∇φloc
i dy

−
∫

Ωi

G(x, y)η div(a∇φloc
i ) dy. (7.66)

Noting (by integration by parts) that

−
∫

Ωi

∇G(x, y)ηa∇φloc
i dy = −φloc

i (x)η(x) +

∫

Ωi

∇G(x, y)a∇ηφloc
i dy

≤
∣

∣φloc
i (x)η(x)

∣

∣ + C
∥

∥∇ηφloc
i

∥

∥

L∞

(

Ω
δi
2

i

)

∥

∥∇G(x, y)
∥

∥

L1

(

Ω
δi
2

i

) (7.67)

and observing that the L2 norms of ∇τ(x, y), τ(x, y), G(x, y) and the L1 norm of ∇G(x, y) are bounded by a
constant C depending only on λmin(a), λmax(a) and Ω (see proof of Lem 2.2, Eq. (2.13), [42,84] and references
therein) we deduce that

∥

∥χ1
i

∥

∥

L∞(Ω)
≤Cδ−1

i

∥

∥

∥∇
(

div(a∇φloc
i )

)

∥

∥

∥

L2

(

Ω
δi
2

i

) + Cδ−1
i

∥

∥∇φloc
i ‖

L2

(

Ω
δi
2

i

)

+ C‖ div(a∇φloc
i )‖

L2

(

Ω
δi
2

i

) + Cδ−1
i

∥

∥φloc
i ‖

L∞

(

Ω
δi
2

i

) . (7.68)

Since
(

div(a∇φloc
i ) is harmonic on Ω

3δi
4

i we obtain from Caccioppoli’s inequality (i.e. Lem. 7.8 with D0 = Ωi,

D2 = Ω
δi
2

i and D1 = Ω
3δi
4

i ) that

∥

∥

∥∇
(

div(a∇φloc
i )

)

∥

∥

∥

L2

(

Ω
δi
2

i

) ≤ Cδ−1
i

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) . (7.69)

Therefore

∥

∥χ1
i

∥

∥

L∞(Ω)
≤ Cδ−2

i

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) + Cδ−1
i

∥

∥∇φloc
i ‖

L2

(

Ω
δi
2

i

) + Cδ−1
i

∥

∥φloc
i ‖

L∞

(

Ω
δi
2

i

) . (7.70)
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Similarly, using the reverse Poincaré inequality (Lem. 7.8 with D0 = Ωi, D2 = Ω
δi
2

i and D1 = Ω
3δi
4

i ) and Young’s
inequality (|ab| ≤ ǫ

2a2 + 2
ǫ b2) we obtain that

∥

∥∇φloc
i ‖

L2

(

Ω
δi
2

i

) ≤ Cδ−1
i

∥

∥φloc
i

∥

∥

L2

(

Ω
3δi
4

i

) + δi

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) . (7.71)

Therefore

∥

∥χ1
i

∥

∥

L∞(Ω)
≤ Cδ−2

i

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) + Cδ−2
i

∥

∥φloc
i

∥

∥

L2

(

Ω
3δi
4

i

) + Cδ−1
i

∥

∥φloc
i ‖

L∞

(

Ω
δi
2

i

) . (7.72)

Now to control ‖φloc
i ‖

L∞

(

Ω
δi
2

i

) note that on Ω
δi
2

i , φloc
i can be decomposed as φloc

i = v1 + v2 where v1 and v2

satisfy div(a∇v1) = div(a∇φloc
i ) and div(a∇v2) = 0 on Ω

δi
2

i with boundary conditions v1 = 0 and v2 = φloc
i on

∂Ω
δi
2

i . We therefore obtain that

∥

∥φloc
i ‖

L∞

(

Ω
δi
2

i

) ≤ ‖v1‖
L∞

(

Ω
δi
2

i

) + ‖v2‖
L∞

(

Ω
δi
2

i

) . (7.73)

By [36,81] (one can also use the bounds on the Green’s function given in the proof of Lem. 2.2) we have

‖v1‖
L∞

(

Ω
δi
2

i

) ≤ C
∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
δi
2

i

) . (7.74)

Since v2 is harmonic we have,
‖v2‖

L∞

(

Ω
δi
2

i

) ≤ C‖φloc
i ‖

L∞(∂Ω
δi
2

i )
. (7.75)

Using Lemma 7.10 we obtain that for x0 ∈ ∂Ω
δi
2

i ∩ Ωi and ρ = δi/8,

‖φloc
i ‖L∞(B(x0,ρ)∩Ωi) ≤

(

C

ρd

∫

B(x0,2ρ)∩Ωi

(φloc
i )2

)
1
2

+ Cρ2− d
2

∥

∥div(a∇φloc
i )

∥

∥

L2(B(x0,ρ)∩Ωi)
. (7.76)

Combining (7.76) with (7.75) we deduce that

‖v2‖
L∞

(

Ω
δi
2

i

) ≤ Cδ
− d

2
i ‖φloc

i ‖
L2

(

Ω
3δi
4

i

) + δ
2− d

2
i

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) . (7.77)

Using (7.73) we deduce that (for δi ≤ 1 and d ≤ 3)

∥

∥φloc
i ‖

L∞

(

Ω
δi
2

i

) ≤ Cδ
− d

2

i ‖φloc
i ‖

L2

(

Ω
3δi
4

i

) + C
∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) . (7.78)

Combining (7.78) and (7.72) we deduce (7.63) for δi ≤ 1. �

Lemma 7.12. Let χ2
i be defined as in (7.37). We have

‖∇χ2
i ‖L2(Ω) ≤ N

∥

∥χ1
i

∥

∥

L∞(Ω)
max
j∈N

√

Pjj . (7.79)
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Proof. We have

χ2
i (x) := −

N
∑

k=1

φk(x)χ1
i (xk). (7.80)

Using
‖∇φk‖L2(Ω) ≤ C

∥

∥ div(a∇φk)
∥

∥

L2(Ω)
(7.81)

we deduce that

‖∇χ2
i ‖L2(Ω) ≤ C

N
∑

k=1

√

Pkk

∣

∣χ1
i (xk)

∣

∣

L∞(Ω)
. (7.82)

�

Lemma 7.13. We have for 0 < δi ≤ 1

∥

∥∇χ1
i ‖L2(Ω) ≤ Cδ−3

i

⎛

⎜

⎝

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) +
∥

∥φloc
i

∥

∥

L2

(

Ω
3δi
4

i

)

⎞

⎟

⎠
. (7.83)

Proof. Using
∫

Ω

∇va∇v = −
∫

Ω

v div(a∇v) (7.84)

we obtain from (7.36) that
∫

Ω

∇χ1
i a∇χ1

i ≤ I1 + I2 (7.85)

with

I1 =

∫

x∈Ω

∫

y∈∂Ωi∩Ω

χ1
i (x)G(x, y)n · a∇

(

div(a∇φloc
i )

)

dy (7.86)

and

I2 = −
∫

∂Ωi∩Ω

χ1
i (y)n · a∇φloc

i dy. (7.87)

Defining η as in the proof of Lemma 7.11 we have (since η = 1 on ∂Ωi ∩ Ω and χ1
i = 0 on ∂Ω)

I2 = −
∫

∂Ωi

χ1
i (y)η n · a∇φloc

i dy. (7.88)

Integrating by parts, we obtain

I2 = −
∫

Ωi

ηχ1
i div(a∇φloc

i ) −
∫

Ωi

η∇χ1
i a∇φloc

i −
∫

Ωi

χ1
i∇ηa∇φloc

i . (7.89)

Using Young’s inequality we obtain
∣

∣

∣

∣

∫

Ωi

η∇χ1
i a∇φloc

i

∣

∣

∣

∣

≤ 1

4

∫

Ω

∇χ1
i a∇χ1

i + C‖∇φloc
i ‖2

L2

(

Ω
δi
2

i

) . (7.90)

Therefore

|I2| ≤ ‖χ1
i ‖L∞(Ω)

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
δi
2

i

) + Cδ−1
i ‖χ1

i ‖L∞(Ω)‖∇φloc
i ‖

L2

(

Ω
δi
2

i

)

+ C‖∇φloc
i ‖2

L2

(

Ω
δi
2

i

) +
1

4

∫

Ω

∇χ1
i a∇χ1

i . (7.91)
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Similarly we have

I1 =

∫

x∈Ω

∫

y∈∂Ωi

χ1
i (x)G(x, y)η n · a∇

(

div(a∇φloc
i )

)

dy (7.92)

which, after integration by parts, leads us to

I1 =

∫

x∈Ω

∫

y∈Ωi

χ1
i (x)G(x, y)η div

(

a∇
(

div(a∇φloc
i )

)

)

dy

+

∫

x∈Ω

∫

y∈Ωi

χ1
i (x)G(x, y)∇ηa∇

(

div(a∇φloc
i )

)

dy

+

∫

x∈Ω

∫

y∈Ωi

χ1
i (x)∇yG(x, y)ηa∇

(

div(a∇φloc
i )

)

dy. (7.93)

Using the fact that η div
(

a∇
(

div(a∇φloc
i )

)

)

= 0 (since the support of η does not contain any coarse nodes),

and using the bounds the L2-norm of G (see proof of Lem. 2.2) as well as
∫

y∈Ωi

(∫

x∈Ω

χ1
i (x)∇yG(x, y)

)2

≤ C‖χ1
i ‖2

L∞(Ω) (7.94)

we obtain that

I1 ≤ C(1 + δ−1
i )‖χ1

i ‖L∞(Ω)

∥

∥

∥a∇
(

div(a∇φloc
i )

)

∥

∥

∥

L2

(

Ω
δi
2

i

) . (7.95)

Combining (7.85), (7.91) and (7.95), we have obtained that
∫

Ω

∇χ1
i a∇χ1

i ≤C‖χ1
i ‖L∞(Ω)

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
δi
2

i

) + C‖∇φloc
i ‖2

L2

(

Ω
δi
2

i

)

+ C(1 + δ−1
i )‖χ1

i ‖L∞(Ω)

∥

∥

∥∇
(

div(a∇φloc
i )

)

∥

∥

∥

L2

(

Ω
δi
2

i

)

+ Cδ−1
i ‖χ1

i ‖L∞(Ω)‖∇φloc
i ‖

L2

(

Ω
δi
2

i

) . (7.96)

Therefore, using Young’s inequality, we have obtained that
∥

∥∇χ1
i ‖L2(Ω) ≤C(1 + δ−1

i )‖χ1
i ‖L∞(Ω) +

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
δi
2

i

) + C‖∇φloc
i ‖

L2

(

Ω
δi
2

i

)

+
∥

∥

∥∇
(

div(a∇φloc
i )

)

∥

∥

∥

L2

(

Ω
δi
2

i

) . (7.97)

We deduce (7.83) by using (7.63), (7.69) and (7.71) to bound ‖χ1
i ‖L∞(Ω), ‖∇φloc

i ‖
L2

(

Ω
δi
2

i

) and

∥

∥

∥∇
(

div(a∇φloc
i )

)

∥

∥

∥

L2

(

Ω
δi
2

i

) in (7.97). �

Combining Lemmas 7.7, 7.12 and 7.13 with Proposition 7.9 we deduce the following lemma.

Lemma 7.14. For 0 < δi ≤ 1, it holds true that

∥

∥∇(φi − φloc
i )

∥

∥

L2(Ω)
≤ CN2H−4

minδ
−3
i

(

∥

∥ div(a∇φloc
i )

∥

∥

L2

(

Ω
3δi
4

i

) +
∥

∥φloc
i

∥

∥

L2

(

Ω
3δi
4

i

)

)

. (7.98)
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7.8. A posteriori error estimates

Theorem 7.15. Let u be the solution of equation (1.1), and uH,loc be the finite element solution of (1.1) over the
linear space spanned by the elements {φloc

i , i = 1, . . . , N} identified in (7.4). Assume that mini∈N δi ≥ Hmin/10
(where δi is defined in (7.24) and Hmin in (7.25)) and that maxi∈N δi ≤ H ≤ 1. It holds true that

‖u − uH,loc‖H1
0(Ω) ≤ C‖g‖L2(Ω)(H + E) (7.99)

where the constant C depends only on λmin(a), λmax(a) and Ω, and

E = H−7−3d
min max

i∈N

(

∥

∥ div(a∇φloc
i )

∥

∥

L2(ΩH
i )

+
∥

∥φloc
i

∥

∥

L2(ΩH
i )

)

(7.100)

where ΩH
i is defined in (7.62).

Proof.
Theorem 7.15 is a straightforward consequence of Lemmas 7.14 and 7.5 and the inequality N ≤ CH−d

min. �

Remark 7.16. Observe that there is no loss of generality in requiring that mini∈N δi ≥ Hmin/10 and that
maxi∈N δi ≤ H ≤ 1. Note also that mini∈N δi ≥ Hmin/10 corresponds to the condition that the minimum
distance between ∂Ωi∩Ω and the set of coarse nodes is at least Hmin/10. Although we need this assumption for
the simplicity of the proof, numerical experiments suggest that it is not needed for convergence with an optimal
rate.

Remark 7.17. Numerical experiments show that
∥

∥div(a∇φloc
i )

∥

∥

L2(ΩH
i )

+
∥

∥φloc
i

∥

∥

L2(ΩH
i )

decays exponentially

fast as a function of ni where ni is the minimum number of (coarse) edges (i.e., number of layers of triangles)
separating xi from ∂Ωi ∩ Ω. Hence if ni is of the order of ln(1/H) we can derive a posteriori error estimates
from the posterior observation that E ≤ H . A priori estimates can be derived by bounding the exponential
decay of

∥

∥ div(a∇φloc
i )

∥

∥

L2(ΩH
i )

+
∥

∥φloc
i

∥

∥

L2(ΩH
i )

as a function of the number of layers of triangles surrounding each

node xi (work in progress). These a priori error estimates would guarantee ‖u − uH,loc‖H1
0(Ω) ≤ C‖g‖L2(Ω)H

provided that mini∈N dist(xi, ∂Ωi ∩ Ω) ≥ C∗H ln 1
H for some constant C∗ depending on λmin(a) and λmax(a).

We refer to this property as super-localization. Note that each (super-localized) basis function φloc
i is the solution

of a sparse/banded/nearly diagonal linear system. This property is essential in keeping the computational cost
minimal (see Sect. 10.3). Note also that since ΩH

i is defined as a layer of thickness H near the portion of the
boundary of Ωi that is contained in Ω (see Fig. 1) ΩH

i remains at distance O(niH) from xi even when xi is
close to the boundary of Ω (and there are no “boundary effects” impacting the accuracy of the method).

Note also that because of the exponential decay of
∥

∥ div(a∇φloc
i )

∥

∥

L2(ΩH
i )

+
∥

∥φloc
i

∥

∥

L2(ΩH
i )

we do not require H

of the same order as Hmin. In particular, one can increase interpolation points in local regions where high
accuracy is required without loss of accuracy provided that Hmin remains bounded from below by a power of H .

8. On time dependent problems

As shown in Sections 4 and 5 of [70] the accuracy of the basis elements φi and φloc
i remains unchanged when

those elements are used to approximate the solutions of the parabolic and hyperbolic equations associated with
− div(a∇), i.e., for equations of the form

{

∂tu(x, t) − div
(

a(x)∇u(x, t)
)

= g(x, t) (x, t) ∈ ΩT ; g ∈ L2(ΩT ),

u = 0 on ∂ΩT ,
(8.1)

and
⎧

⎪

⎨

⎪

⎩

ρ(x)∂2
t u(x, t) − div

(

a(x)∇u(x, t)
)

= g(x, t) (x, t) ∈ ΩT ; g ∈ L2(ΩT ),

u = 0 on ∂ΩT ,

∂tu = 0 on Ω × {t = 0}.
(8.2)
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(a) Primal and dual

mesh

(b) xi and Ωi with

l = 1
(c) Ωi with l = 2 (d) Ωi with l = 3

Figure 2. Mesh details.

More precisely the solutions of (8.1) and (8.2) are approximated, via finite element methods, using the linear
space spanned by the interpolation basis φloc

i as test and solution space. Note that the approximate solutions
are of the form

uH(x, t) =
∑

i

ci(t)φ
loc
i (x). (8.3)

We refer to Sections 4 and 5 of [70] for precise statements and proofs.

9. Numerical implementation and experiments

9.1. Implementation

Our method is, in its formal description, meshless in the sense that only the locations of the points (xj)j∈N

are needed to construct the rough polyharmonic splines φi or φloc
i as solutions of the minimization problem (2.3)

or (7.4).

For numerical implementation, we need to formulate and solve the problem in the full discrete setting.
Although, for the sake of conciseness we have provided an error analysis only in the continuum setting, this
analysis can be extended to the fully discrete setting without major difficulties.

We will now describe the implementation of our method in the discrete setting. Let TH be a tessellation
of Ω of resolution H with nodes {xi}. Assume that h ≪ H and that Th is obtained by repeated refinements
of TH . Note that the accuracy of our method is independent from the regularity of TH or the aspect ratios of
its elements (triangles for d = 2).

Let Wh(Ω) be the set of piecewise linear functions on Th with zero Dirichlet boundary condition on ∂Ω. For
∀u ∈ Wh(Ω), we can define gu, which approximates − div a∇u on Ω. gu is piecewise constant on the dual mesh
of Th, and can be defined by the following finite volume formulation,

gu(yi) =
1

|Vi|

∫

Ω

∇1Vi
a∇u (9.1)

where Vi is the dual Voronoi cell associated with the node yi of Th and 1Vi
is the characteristic function which

equals to one on Vi and zero elsewhere.

Figure 2a shows the primal (finite element) mesh and its dual mesh used for the numerical implementation
in this paper: the red dots are the nodes xi of the triangulation TH . In Figure 2a, the red square around each
yi is the Voronoi cell Vi associated with the node yi, and the dual mesh is composed of such cells.
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With this definition, the local basis φloc
i,h can be readily computed through the variational formulation (9.2).

⎧

⎪

⎨

⎪

⎩

Minimize
∫

Ω
|gφ|2 dx

Subject to

{

φ ∈ Wh(Ωi), φ = 0 on ∂Ωi ∪ Ω\Ωi

φ(xj) = δij , j ∈ N .

(9.2)

9.2. A two dimensional example

In this example we consider Ω = (0, 1)× (0, 1) and

a(x) :=
1

6

(

1.1 + sin(2πx/ǫ1)

1.1 + sin(2πy/ǫ1)
+

1.1 + sin(2πy/ǫ2)

1.1 + cos(2πx/ǫ2)
+

1.1 + cos(2πx/ǫ3)

1.1 + sin(2πy/ǫ3)

+
1.1 + sin(2πy/ǫ4)

1.1 + cos(2πx/ǫ4)
+

1.1 + cos(2πx/ǫ5)

1.1 + sin(2πy/ǫ5)
+ sin(4x2y2) + 1

)

, (9.3)

where ǫ1 = 1
5 ,ǫ2 = 1

13 ,ǫ3 = 1
17 ,ǫ4 = 1

31 ,ǫ5 = 1
65 .

Note that a, as defined by (9.3), corresponds to the one used in [69] (Example 1 of Sect. 3) and [63]. The
number of coarse nodes is N = Nc × Nc with Nc = 32. The (regular) coarse mesh TH = T 0 is obtained by first
(uniformly) subdividing Ω into Nc × Nc rectangles, then partitioning each rectangle into two triangles along
the direction (1, 1). We can further refine the mesh to obtain T 1, T 2, . . . , T k. Global equations are solved on
a fine triangulation with 66 049 nodes and 131 072 triangles. We compute localized elements φloc

i on localized
sub-domains Ωl

i defined by adding l layers of coarse triangles around xi. More precisely Ω1
i is the union of

triangles sharing xi as a node and Ωl+1
i is the union of Ωl

i with coarse triangles sharing a node with a triangle
contained in Ωl

i. We refer to Figures 2b, 2c and 2d for an illustration of Ωl
i with l = 1, 2, 3.

We refer to Figure 3 for the results of our numerical experiment. Figure 3a shows φi (one element of the
global basis in dimension two). Figure 3b shows a slice of φi along the x-axis. Figure 3c shows ‖φi −φloc

i ‖ in L2,
H1, and L∞ norms in the log scale as a function of the number of layers l = 1, . . . , 8 used in the localization.
Note that ‖φi − φloc

i ‖ decays exponentially fast with l and that the decay rate is nearly independent from the
choice of the norm. Figures 3e and 3f show ‖u − uH,loc‖L2(Ω) and ‖u − uH,loc‖H1(Ω) in log-scale as a function
of the number of layers l = 1, . . . , 8 (defining the size of localized sub-domains) for different values of (coarse)
mesh resolution H = 1/4, 1/8, 1/16, 1/32. Note that as the number of layers increases, ‖u − uH,loc‖ decreases
first and then quickly saturates around O(H).

9.3. Wave equation

In this example we consider a and Ω as defined in Section 9.2 and we compute the solutions of wave equa-
tion (8.2) up to time T = 1. The initial condition is u(x, 0) = 0 and ut(x, 0) = 0. The boundary condition is
u(x, t) = 0, for x ∈ ∂Ω. The density ρ is uniformly equal to one and we choose g = sin(πx) sin(πy). Figures 4a
and 4b show u(x, T ) and uH,loc(x, T ) with T = 1. uH,loc(x, T ) is computed over the approximate solution
space spanned by the localized basis elements φloc

i obtained by choosing Ωi as the union of 3 layers of triangles
around xi (hence, we choose l = 3). The resolution of the fine mesh is h = 1/80. The resolution of the coarse
mesh is H = 1/10. Figure 4c shows approximation error ‖u− uH,loc(., T )‖ in L2, H1, and L∞ norms in the log
scale as a function of the number of layers l = 1, . . . , 8.

9.4. A one dimensional example

In this example we consider Ω = (0, 1) and

a(x) := 1 +
1

2
sin

(

K
∑

k=1

k−α(ζ1k sin(kx) + ζ2k cos(kx))

)

(9.4)
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Figure 3. Two dimensional example (9.3).

where {ζ1k} and {ζ2k} are two independent random vectors with independent entries uniformly distributed in
[− 1

2 , 1
2 ]. This example is taken from [45, 63] and it has no scale separation. Note that a has an algebraically

decaying (Fourier energy) spectrum, i.e.,
〈

|â(k)|2
〉

≃ |k|−α, (9.5)

where
〈

·
〉

denotes ensemble averaging, and â(k) is the Fourier transform of the coefficients a(x). We choose
K = 20 in the numerical experiment.

The coarse nodes (xj)j∈N correspond to N = dc = 80 points uniformly distributed in (0, 1). More-precisely,
those points correspond to the nodes of a coarse mesh of (0, 1) and the distance between two successive points
is H = 1/81. The fine mesh is then obtained by refining (bisecting) the coarse mesh 3 times. Local bases are
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Figure 4. Wave equation of Section 9.3.

computed on intervals with l layers, where l = 1, . . . , 8. More precisely our localized sub-domains (over which
the elements φloc

i are computed) are Ωi = (xi − l/81, xi + l/81) ∩ Ω for l = 1, . . . , 8.

We refer to Figure 5 for the results of our numerical implementation. Figure 5a shows the local basis φloc
i for

the node i = 40 for various degrees of localization (i.e., for l = 1, . . . , 8). Figure 5b shows the global basis in
the log scale (i.e., log10(10−9 + |φ40|)) and illustrates the exponential decay of φi(x) away from xi. Figure 5c
shows φi − φloc

i , the difference between the global and the local basis, at node i = 40, for various degrees of
localization (i.e., for l = 1, . . . , 8), and illustrates the decay of this difference with respect to the number of
layers l defining Ωi. Figure 5d shows − div(a∇φi) for i = 40. Figure 5e shows − div(a∇φi) for i = 40 in the log
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Figure 5. One dimensional example (9.4).
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scale (i.e., log10(10−9 + | div a∇φi|)). Figures 5d and 5e illustrate the exponential decay of − div(a∇φi)(x) away
from xi. Figure 5f shows the matrix Θi,j , as defined in (2.5), as a function of (i, j) (two dimensional surface
plot). Similarly Figure 5g shows the matrix Pi,j , as defined in (2.12), as a function of (i, j). Figure 5h shows P
in the log scale and illustrates the exponential decay of the entries of P away from the diagonal.

Analogy with polyharmonic splines. Note that as H ↓ 0 the matrix Θ shown in Figure 5f converges towards

τ(x, y) the fundamental solution of the operator L =
(

div(a∇·)
)2

. Note also that since P−1 = Θ, P is, in fact

(in analogy with [75–77]), a discrete approximation of the operator L (i.e.
∑N

j=1 Pi,ju(xj) can be thought of as
an approximation of Lu(xi)). Note the localization of P (near its diagonal) as shown in Figure 5g. Note also

since φi(x) =
∑N

j=1 Pi,jτ(x, xj), φi is obtained by applying the discrete version of L against the fundamental

solution of L and in that sense the elements φi or φloc
i (see Fig. 5a) are approximations of masses of Diracs.

10. On numerical homogenization

10.1. Short overview

As mentioned in the introduction the field of numerical homogenization concerns the numerical approximation
of the solution space of (1.1) with a finite-dimensional space. This problem is motivated by the fact that standard
methods (such as finite-element method with piecewise linear elements [11]) can perform arbitrarily badly
for PDEs with rough coefficients such as (1.1). Although some numerical homogenization methods (described
below) are directly inspired from classical homogenization concepts such as periodic homogenization and scale
separation [14], oscillating test functions, G or H-convergence and compensated compactness [37, 65, 80] and
localized cell problems [73], one of the main objectives of numerical homogenization is to achieve a numerical
approximation of the solution space of (1.1) with arbitrary rough coefficients (i.e., in particular, without the
assumptions found in classical homogenization, such as scale separation, ergodicity at fine scales and ǫ-sequences
of operators). Numerical homogenization methods differ in (computational) cost and assumptions required for
accuracy and by now, the field of numerical homogenization has become large enough that it is not possible to
give a complete review in this short paper. For the sake of completeness, we will quote below the non exhaustive
list of numerical homogenization methods discussed in [70]:

− The multi-scale finite element method [31, 44, 45, 87] can be seen as a numerical generalization of this idea
of oscillating test functions found in H-convergence. A convergence analysis for periodic media revealed a
resonance error introduced by the microscopic boundary condition [44,45]. An over-sampling technique was
proposed to reduce the resonance error [45].

− Harmonic coordinates play an important role in various homogenization approaches, both theoretical and
numerical. These coordinates were introduced in [49] in the context of random homogenization. Next, har-
monic coordinates have been used in one-dimensional and quasi-one-dimensional divergence form elliptic
problems [8, 10], allowing for efficient finite dimensional approximations. These coordinated have been used
in [13, 71, 72] to establish the anomalous diffusion of stochastic processes evolving in media characterized
by an infinite number of scales with no scale separation and unbounded contrast and provide a proof of
Davies’ conjecture [71] on the behavior of the heat kernel in periodic media. The connection of these co-
ordinates with classical homogenization is made explicit in [3] in the context of multi-scale finite element
methods. The idea of using particular solutions in numerical homogenization to approximate the solution
space of (1.1) appears to have been first proposed in reservoir modeling in the 1980s [19, 86] (in which a
global scale-up method was introduced based on generic flow solutions (i.e., flows calculated from generic
boundary conditions)). Its rigorous mathematical analysis has been done only recently [69] and is based on
the fact that solutions are H2-regular with respect to harmonic coordinates (recall that they are H1-regular
with respect to Euclidean coordinates). The main message here is that if the right hand side of (1.1) is in L2,
then solutions can be approximated at small scales (in H1-norm) by linear combinations of d (linearly inde-
pendent) particular solutions (d being the dimension of the space). In that sense, harmonic coordinates are
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(simply) good candidates for being d linearly independent particular solutions. The idea of a global change
of coordinates analogous to harmonic coordinates has been implemented numerically in order to up-scale
porous media flows [19,29,30]. We refer, in particular, to a recent review article [19] for an overview of some
main challenges in reservoir modeling and a description of global scale-up strategies based on generic flows.

− In [27, 33], the structure of the medium is numerically decomposed into a micro-scale and a macro-scale
(meso-scale) and solutions of cell problems are computed on the micro-scale, providing local homogenized
matrices that are transferred (up-scaled) to the macro-scale grid. See also [1,2,34]. We also refer to [38] for
convergence results on the Heterogeneous Multiscale Method in the framework of G and Γ -convergence.

− More recent work includes an adaptive projection based method [68], which is consistent with homogenization
when there is scale separation, leading to adaptive algorithms for solving problems with no clear scale sepa-
ration; finite difference approximations of fully nonlinear, uniformly elliptic PDEs with Lipschitz continuous
viscosity solutions [21] and operator splitting methods [4, 5].

− We refer to [16, 17] (and references therein) for recent results on homogenization of scalar divergence-form
elliptic operators with stochastic coefficients. Here, the stochastic coefficients a(x/ε, ω) are obtained from
stochastic deformations (using random diffeomorphisms) of the periodic and stationary ergodic setting.

− We refer to [12] for a detailed study of the fluctuation error (error in approximating the limiting probability
distribution of the random part of the difference between heterogeneous and homogenized solutions) of
MsFEM and HMM in the context of stochastic homogenization and a rigorous assessment of the behavior of
those multiscale algorithms in non-periodic situations. In particular, [12] shows that savings in computational
cost based on scale separation may come at the price of amplifying the variances of these fluctuations.

10.2. On localization

The numerical complexity of numerical homogenization is related to the size of the support of the basis
elements used to approximate the solution space of (1.1). The possibility to compute such bases on localized
sub-domains of the global domain Ω without loss of accuracy is therefore a problem of practical importance. We
refer to [9,22,28,55,70] for recent localization results for divergence-form elliptic PDEs. The strategy of [22] is to
construct triangulations and finite element bases that are adapted to the shape of high conductivity inclusions
via coefficient dependent boundary conditions for the subgrid problems (assuming a to be piecewise constant and
the number of inclusions to be bounded). The strategy of [28] is to solve local eigenvalue problems, observing that
only a few eigenvectors are sufficient to obtain a good pre-conditioner. Both [22,28] require specific assumptions
on the morphology and number of inclusions. The idea of the strategy is to observe that if a is piecewise constant
and the number of inclusions is bounded, then u is locally H2 away from the interfaces of the inclusions. The
inclusions can then be taken care of by adapting the mesh and the boundary values of localized problems or by
observing that those inclusions will affect only a finite number of eigenvectors.

The strategy of [9] is to construct Generalized Finite Elements by partitioning the computational domain
into to a collection of preselected subsets and compute optimal local bases (using the concept of n-widths [74])
for the approximation of harmonic functions. Local bases are constructed by solving local eigenvalue problems
(corresponding to computing eigenvectors of P ∗P , where P is the restriction of a-harmonic functions from ω∗

onto ω ⊂ ω∗, P ∗ is the adjoint of P , and ω is a sub-domain of Ω surrounded by a larger sub-domain ω∗). The
method proposed in [9] achieves a near exponential convergence rate (in the number of pre-computed bases
functions) for harmonic functions. Non-zero right hand sides (denoted by g) are then taken care of by finding
(for each different g) particular solutions on preselected subsets with a constant Neumann boundary condition
(determined according to the consistency condition). The near exponential rate of convergence observed in [9]
is explained by the fact that the source space considered in [9] is more regular than L2 (see [9]) and requires the
computation of particular (local) solutions for each right hand side g and each non-zero boundary condition,
the basis obtained in [9] is in fact adapted to a-harmonic functions away from the boundary).

The strategy of [70] is to use the transfer property of the flux-norm introduced in [15] (and the strong
compactness of the solution space [70]) to identify the global basis and then (inspired by an idea stemming
from classical homogenization [39, 40, 73, 88]) localize the computation of the basis to sub-domains of size
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O(
√

H ln(1/H)) (without loss of accuracy) by replacing the operator − div(a∇·) with the operator 1
T ·− div(a∇·)

in the computation of this basis with a well chosen T balancing the created exponential decay in the Green’s
function with the deterioration of the transfer property. We also refer to [83] for a generalization of the transfer
property to Hilbert triple settings and a different approach to localization for hyperbolic initial-boundary value
problems based on the observation that weak solutions of symmetric hyperbolic systems propagate at finite
speed.

In [41], it is shown that for scalar elliptic problems with L∞ coefficients, there exists a local (generalized) finite
element basis (AL basis) with O

(

(log 1
H )d+1

)

basis functions per nodal point, achieving the O(H) convergence
rate. Although the construction provided in [41] involves solving global problems with specific right hand sides,
its theoretical result supports the possibility of constructing localized bases.

The strategy of [55] is to introduce a modified Clément interpolation IH (in which the interpolation of u is
not based on its nodal values but on volume averages around nodes), and writing V f the kernel of IH (i.e.,
the set of functions u such that IHu = 0), identify V ms

H as the orthogonal complement of V f with respect to
the scalar product defined by a(u, v) =

∫

Ω ∇u a∇v. The finite element basis φi is then identified by projecting
nodal piecewise linear elements onto IH . The work [55] shows that the computation of φi can be localized to
sub-domains of size O(H ln 1

H ) without loss of accuracy. The main differences between the strategy of [55] and
ours are as follows: (1) The identification of the space V f in [55] and the related projections lead to saddle point
problems (even after localization) whereas the method proposed here leads to localized elliptic linear systems
(which ensures the fact that the computational cost of our method remains minimal and plays an important
role in its stability, which we observe numerically, in the high contrast regime) (2) The interpolation of solutions
in [55] is not based on nodal values but on volume averages around nodes whereas our interpolation of solutions
is based on nodal values (which allows for an accurate estimation of solutions from point measurements and the
introduction of homogenized linear systems defined on nodal values) (3) The accuracy of our method does not
depend on the aspect ratios of the triangles of the mesh formed by the interpolation points.

We refer to Section 10.3 for a description of the computational cost of our method.

10.3. Computational cost

Write dlf the number nodes of the fine mesh contained in the local domain Ωi (dlf is the number of
nodes/degrees of freedom of Th∩Ωi). Write df the number of interior nodes of the fine mesh Th and dc the num-
ber of interior nodes of the coarse mesh TH . Then the cost for solving local basis φloc

i , introduced in this paper,
is O(dlf dc) (because each φloc

i is the solution of a banded/nearly diagonal linear system), and the cost for con-
structing the global stiffness matrix is O(dlf (dlfdc/df )dc) = O(d2

lf d2
c/df ). Notice that dlfdc/df is the number of

local domains which overlap with Ωi. Therefore, the overall cost is O(dlfdc+d2
lfd2

c/df ) = O(dlfdc(1+dlfdc/df )),

and the dominant part is O(d2
lfd2

c/df).

For quasi-uniform triangulations Th and TH , we have df ∼ h−d and dc ∼ H−d. For the method introduced
in this paper, to achieve O(H) accuracy in H1 norm, we need dlf ∼ (H log(1/H))−d. Therefore the overall cost

of (pre-)computing of all the localized basis elements φloc
i is C1 ∼ ( log(1/H)

h )d.

10.4. Connections with classical homogenization theory

We will now describe connections between classical homogenization theory [14, 46, 62, 65], our previous
work [15, 70] and the present paper. Recall that in classical homogenization theory [65] one considers situa-
tions where the conductivity a depends on a (small) parameter ǫ (i.e., a := a(x, ǫ)) and one is interested in
approximating the solution uǫ of (1.1) in the limit where ǫ converges towards zero by a function ûε that is easier
to compute or simpler to represent.

In periodic homogenization [14, 46, 67], where the conductivity a(x, ǫ) is assumed to be of the form aper(x
ǫ )

(and aper is assumed to be periodic in its argument), this approximation can be achieved by observing that uǫ

converges, as ǫ ↓ 0, towards the solution u0 of − div(â∇u0) = g (with zero Dirichlet boundary condition) and
where â is a constant (effective, homogenized) conductivity determined by solving the so called (periodic) cell
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problems div
(

aper(ei + ∇χi)
)

= 0 over one period of aper (i ∈ {1, . . . , d}, the vectors ei form an orthonormal
basis of R

d and aper is invariant under translation by ei). u0 is much simpler to compute than uǫ because its
variations are at the O(1)-scale (referred to as the coarse scale) in contrast to the oscillations of uǫ that are at
the ǫ-scale (referred to as the fine scale).

However the convergence of uǫ towards u0 is limited to the L2-norm, which does not control the derivatives.
Since in most applications (e.g., computing stresses in elasticity and currents in electromagnetism) the approx-
imation of derivatives is required, an important corrector problem arose: find an approximation of the form
ûε(x) = u0(x) + ǫu1(x) that approximates the solution uǫ(x) of the original problem in H1 norm. Solving this
problem was an essential step in the development of periodic homogenization. It turned out that the corrector
term ǫu1(x) admits an explicit representation via the solution of the cell problems χi(

x
ǫ ) and the zero order

approximation u0(x) of the form ǫ
∑d

i=1 χi(
x
ǫ )∂iu0(x). Thus the corrector term contains both fine and coarse

scales. The concept of the cell problem played the key role in periodic homogenization since it is pivotal for both
identifying the effective conductivity and an H1-norm approximation of the solution of the original problem.
Namely it allows to construct both the homogenized PDE and the corrector term. The advantage of computing
ûǫ rather than directly computing uǫ comes from the fact that computing of χi(y), i = 1, . . . , d and u0(x) is less
expensive than computing uǫ.

The question of how far these ideas and concepts can be extended beyond periodic homogenization lead
to development stochastic homogenization, i.e. the extension of the theory to coefficients of the form a =
{aij(

x
ǫ , ω)}, where ω is an atom of a probability space and these coefficients are assumed to be stationary and

ergodic. While there is no periodic cell in this problem, the generalized cell problem was successfully introduced
in [49, 73] and the homogenized problem was derived in terms of these problems analogously to the periodic
case, that is the objective of identifying the homogenized PDE was achieved. However, the construction of the
corrector terms turned out to be a much harder problem and by now it is only partially resolved [6,12,18,47,50].
It is also worth mentioning that stochastic homogenization, as it currently stands, is non-local in the sense that a
deterministic and compactly supported perturbation of a = {aij(

x
ǫ , ω)} does not affect (in the limit where ǫ ↓ 0)

the value of the effective conductivity nor the cell problems since these are defined taking averages (perturbations
that leave the statistical properties of the random coefficient unchanged do not affect the homogenization result).

Many practical problems such as study of oil reservoirs, biological tissues, etc. contain multiple scales that
are not necessarily well-separated. Again, one can ask to which extent the ideas and concepts of classical
homogenization can be used in such problems. These questions, which one can address in the context of the
model problem (1.1), are challenging because if coefficients a(x) are just L∞ functions, then they have “no
structure” (no translational invariance as in the periodic and ergodic cases).

However the present work shows that, although there is no direct analog of the parameter ǫ, one can still
develop a generalization of most of the concepts and objectives of classical homogenization. First observe that
the linear space spanned by the basis elements φi (or φloc

i with support of size O(H ln 1
H )) constitutes a finite

dimensional approximation of the solution space of (1.1) and this finite-dimensional approximation is made
possible by the (strong) compactness of the solution space (in H1-norm) when g ∈ L2(Ω). Note that the
requirement that g belongs to L2(Ω) is also present in classical homogenization and the notion of compactness
is also present in the (weaker) form of compactness by compensation [65]. Write S the stiffness matrix associated
with the elements φloc

i defined by Si,j :=
∫

Ω ∇φloc
i a∇φloc

j and observe that if ϕi are piecewise linear nodal basis
elements on a (coarse) mesh with vertices (xi)i∈N and if c∗ the N -dimensional vector solution of the linear

system
∑N

j=1 Si,jcj =
∫

Ω
φloc

i g then the distance between u (the solution of (1.1)) and ū :=
∑N

i=1 c∗i ϕi is at

most CH‖g‖L2(Ω) in L2 norm (this can be obtained in a straightforward manner by writing uH the finite element

solution of (1.1) over (φloc
i )i∈N , i.e. uH :=

∑N
i=1 c∗i φ

loc
i , applying the triangle inequality to u−ū = u−uH+uH−ū,

and Thm. 1.1 of [66] to uH − ū). In that sense, S can be viewed as a homogenized linear system, generalizing
the concept of an homogenized PDE, and its entries can be seen as localized effective (edge) conductivities [23]
generalizing the concept of effective conductivity. Furthermore noting that, although ū does not constitute a
good approximation of the derivatives of u, the distance between u and uH is at most CH‖g‖L2(Ω) in H1
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norm, we deduce that the elements φloc
i −ϕi can be interpreted as generalized correctors. That is we define the

generalize corrector as an H1 approximation of the exact solution which is constructed out of standard solutions
that solve generalized cell problems and therefore does not depend on the RHS of the original equation. Several
ways of introducing such problems were proposed in [15, 70] and the present paper. Of course in the present
work the notion of corrector is superfluous since Rough Polyharmonic Splines directly lead to an H1-accurate
approximation of the solution space. It should also be noted that the elements (φloc

i )i∈N provide an explicit
representation allowing for the identification of the (local) effect of a local perturbation of a on the solution and
on effective conductivities.
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[88] V.V. Yurinskĭı, Averaging of symmetric diffusion in a random medium. Sibirsk. Mat. Zh. 27 (1986) 167–180.

http://people.bath.ac.uk/rm257/MA6000A/notes.pdf
http://people.bath.ac.uk/rm257/MA6000A/notes.pdf

	Introduction
	Variational formulation and properties of the interpolation basis
	Identification of the interpolation basis
	Variational properties of the interpolation basis

	From a higher order poincaré inequality to the accuracy of the interpolation basis
	A Higher order Poincaré inequality
	Accuracy of the interpolation basis
	Accuracy of the FEM with elements i

	Recovering u from partial measurements
	Generalization to d4
	Rough polyharmonic splines
	The elements i as rough polyharmonic splines
	Polyharmonic splines: a short review

	Localization of the interpolation basis
	Introduction of the localized basis
	Accuracy of the localized basis as a function of the norm of the difference between the global and the localized basis
	Identification of the difference between the global and the localized basis
	Reverse Poincaré inequality
	Bound on the maximum eigenvalue of P
	Pointwise estimates on solutions of elliptic equations with discontinuous coefficients
	Control of the norm of the difference between the global and the localized basis
	A posteriori error estimates

	On time dependent problems
	Numerical implementation and experiments
	Implementation
	A two dimensional example
	Wave equation
	A one dimensional example

	On numerical homogenization
	Short overview
	On localization
	Computational cost
	Connections with classical homogenization theory

	References

