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Abstract. The polyhedral model is known to be a powerful framework
to reason about high level loop transformations. Recent developments
in optimizing compilers broke some generally accepted ideas about the
limitations of this model. First, thanks to advances in dependence analy-
sis for irregular access patterns, its applicability which was supposed to
be limited to very simple loop nests has been extended to wide code re-
gions. Then, new algorithms made it possible to compute the target code
for hundreds of statements while this code generation step was expected
not to be scalable. Such theoretical advances and new software tools al-
lowed actors from both academia and industry to study more complex
and realistic cases. Unfortunately, despite strong optimization potential
of a given transformation for e.g., parallelism or data locality, code gen-
eration may still be challenging or result in high control overhead. This
paper presents scalable code generation methods that make possible the
application of increasingly complex program transformations. By study-
ing the transformations themselves, we show how it is possible to ben-
efit from their properties to dramatically improve both code generation
quality and space/time complexity, with respect to the best state-of-the-
art code generation tool. In addition, we build on these improvements
to present a new algorithm improving generated code performance for
strided domains and reindexed schedules.

1 Introduction

Compiler performance has long been quantified through the number of processed
code lines per time unit. Compile time used to be (almost) linear in the code
length. In order to find the best possible optimizations, present day compilers
must rely on higher complexity methods. A striking example is the polyhedral
model. Many advances in program restructuring have been achieved through
this model which considers each instance of a statement as an integer point in
a convenient space [17]. Most of the underlying methods, as data dependence
analysis [9, 23], transformation computation [21, 12] or code generation [16, 25]
exhibit worst-case exponential complexity.

It is not easy to conclude about the scalability of such techniques. The lit-
erature is full of algorithms with high complexity which present a very good
practical behavior (the simplex algorithm is probably the most famous [7]). Poly-
hedral code generation has an intrinsic worst-case complexity of 3nρ polyhedral
operations (themselves associated with NP-complete problems), where n is the
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number of statements, and ρ the maximum loop depth. Nevertheless, input pro-
grams are not randomly generated. Most of the time, human-written codes show
simple control, loop nests with low depth and which enclose few statements.
Such properties make it possible to regenerate, through the whole source-to-
polyhedra-to-source framework, well known benchmark codes with hundreds of
statements per static control compute kernel (in the SPECfp2000 benchmarks)
in an acceptable amount of time [3].

Complex transformations may be automatically computed by a given opti-
mizing compiler [5, 21, 4, 12] or discovered by a programmer with the help of
an optimization environment [22, 6]. Their application diminishes the input pro-
gram regularity and lead to a challenging code generation problem. The challenge
may come either from the ability to compute any solution (because of a com-
plexity explosion) or from the ability to find a satisfactory solution (because of
a high resulting control overhead). To solve these problems in practice, a new
experiment-driven study was necessary, starting from the best state-of-the-art
code generation tool [3]. We analyzed in depth a complex optimizing transfor-
mation sequence of the SPECfp2000 benchmark Swim that has been found by an
optimization expert with the help of the URUK framework [6]. Our goal was to
find properties of the transformations themselves that may be exploited to defer
the complexity problem, and to improve the generated code quality.

To validate our approach, we studied and applied our methods to other com-
plex problems that have been submitted by various teams from both industry
and academia. Each of them uses its own strategy to compute transformations,
which encourage the search for common transformation properties. QR has been
provided by Reservoir Labs Inc. which develop the high level R-Stream compiler
[14]. Classen has been submitted by the FMI laboratory of the University of Pas-
sau which develop the high level parallelization tool LooPo [19, 12]. DreamupT3
has been supplied by the RNTL Project DREAM-UP between Thales Research,
Thomson R&D and École des Mines de Paris [13]. General properties of these
reference problems are shown in Figure 1. They proved to be quite different,
spanning all typical sources of complexity in polyhedral code generation: each
benchmark has its own reason to be challenging, e.g. high statement number for
Swim, deep loop nests for Classen, big values that need multi-precision arith-
metic to be to manipulated with DreamupT3.

The paper is organized as follows. Section 2 introduces the polyhedral rep-
resentation and transformation model, then presents the associated code gen-
eration problem. Section 3 positions our paper among related works. Section 4
investigates algorithmic scalability challenges and our solutions, driven by

Reference problems
Properties Swim QR Classen DreamupT3

Statement number 199 10 8 3
Maximum loop depth 5 3 8 2
Number of parameters 5 2 1 0

Scheduling dimensionality 11 7 7 1
Maximum coefficient value 60 5 4 1919

Fig. 1. General properties of reference problems
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experimental evaluations of the four reference benchmarks. Section 5 addresses
additional code generation challenges associated with code size reduction and
efficiency; in particular, it presents the first modulo-condition elimination tech-
nique that succeeds for a large class of real-world schedules while avoiding code
bloat due to multi-versioning.

2 Overview of the Polyhedral Framework

This section presents both a quick overview of the polyhedral framework and
notations we use throughout the paper. A more formal presentation of the model
may be found in [24]. One usually distinguishes three steps: one first has to
represent an input program in the formalism, then apply a transformation to
this representation, and finally generate the target (syntactic) code.

Our introductory example is a polynomial multiplication kernel. The syn-
tactic form is shown in Figure 2(a). It only deals with control aspects of the
program, and we refer to the two computational statements (array assignments)
through their names, S1 and S2. To bypass the limitations of such representa-
tion (e.g. weak data dependence analysis, restriction to simple transformations),
the polyhedral model is closer to the execution itself by considering statement
instances. For each statement we consider the iteration domain, where every
statement instance belongs. The domains are described using affine constraints
that can be extracted from the program control. For example, the iteration do-
main of statement S1, called DS1, is the set of values (i) such that 2 ≤ i ≤ n
as shown in Figure 2(b); a matrix representation is used to represent such con-
straints: A · x + Ap · p ≥ 0, where A is the iteration matrix, x is the iteration
vector (composed of the loop counters), Ap is the parameter matrix and p is the
parameter vector (composed of the unknown constants and the scalar 1). In our
example, DS1 is characterized by
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Fig. 2. A polynomial multiplication kernel and its polyhedral domains

In this framework, a transformation is a set of affine scheduling functions
written θ(x) = T · x + Tp · p. Each statement has its own scheduling function
which maps each run-time statement instance to a logical execution date. In our
polynomial multiplication example, an optimizer may notice a locality problem
and discover a good data reuse potential over array z, then suggest θS1(i) = (i)
and θS2

�
i
j

�
= (i + j + 1) to achieve better locality (see e.g., [4] for a method to
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compute such functions). The intuition behind such transformation is to execute
consecutively the instances of S2 having the same i+ j value (thus accessing the
same array element of z) and to ensure that the initialization of each element
is executed by S1 just before the first instance of S2 referring this element. A
transformation is applied in the polyhedral model by using the transformation
formula shown in Figure 3(a) [3], where t is the time-vector, i.e. the vector of
the scheduling dimensions. The resulting polyhedra for our example are shown
in Figure 3(b) with the additional dimension t.
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Fig. 3. General transformation formula and its application

Once the transformation has been applied in the polyhedral model, one needs
to generate the target code. The best syntax tree construction scheme consists
in a recursive application of domain projections and separations [25, 3]. The final
code is deduced from the set of constraints describing the polyhedra attached to
each node in the tree. In our example, the first step is a projection onto the first
dimension t, followed by a separation into disjoint polyhedra as shown on the
top of Figure 4(a). This builds the first loop level of the target code (the loops
with iterator t shown in Figure 4(b)). The same process is applied onto the first
two dimensions (on the bottom of Figure 4(a)) to build the second loop level
and so on. The final code is shown in Figure 4(b) (the reader may care to verify
that this solution does exploit at its best the temporal reuse of array z). Note
that the separation step for two polyhedra needs three operations: DS1 − DS2,
DS2−DS1 and DS2∩DS1, thus for n statements the worst-case complexity is 3n.

3 Related Work

The history of code generation in the polyhedral model shows a constant growth
in transformation complexity, from basic schedules for a single statement to gen-
eral affine transformations for wide code regions. In their seminal work, Ancourt
and Irigoin limited transformations to unimodular functions (the T matrix pre-
sented in Section 2 has determinant 1 or −1) and the code generation process
was applicable for only one domain at once [1]. Several works succeeded in re-
laxing the unimodularity constraint to invertibility (the T matrix has to be
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(a) Projections an separations (b) Target code

Fig. 4. Target code generation

invertible), enlarging the set of possible transformations [8, 20]. A further step
has been achieved by Kelly et al. by considering more than one domain and
multiple scheduling functions at the same time [16]. All these methods relied on
the Fourier-Motzkin elimination method [27] to build the target code. Quilleré et
al. showed how to use polyhedral operations based on the Chernikova Algorithm
[18] instead, to benefit from its practical efficiency to handle bigger problems
[25]. Recently, a new transformation policy has been proposed to allow general
non-invertible, non-uniform, non-integral affine transformations [3]. Such free-
dom allowed to apply polyhedral techniques to much larger programs with very
sophisticated transformations, and led to novel complexity, scalability and code
quality challenges we discuss in this paper.

4 Code Generation Scalability

This section analyzes three important properties of affine schedules used in real-
world program generation problems, then for each property, proposes an algo-
rithmic solution to improve scalability.

4.1 Scalar Dimensions

There are many ways to specify a given transformation (or a given sequence of
transformations) using affine schedules. Basically we can divide them in two fam-
ilies. The first kind, mono-dimensional schedules, describe the execution order
thanks to functions with only one dimension. The second kind, multi-dimensional
schedules, use several dimensions to express the ordering. Most of the time,
the original domains are parametric, i.e., are bounded by (statically) unknown
constants. For the first kind, this variety amounts to manipulating non-affine
expressions. This is not the case with multi-dimensional schedules, when using
at least as many dimensions as the original domain [10]. Moreover, using addi-
tional dimensions to explicitly order different statements onto a given dimension
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makes transformation manipulation easier [15, 6]. As a result, multi-dimensional
schedules with more dimensions than original domains are quite often used to
specify transformations. Figure 5 shows an example of a loop interchange trans-
formation applied to the example in Figure 2(a) that may be achieved thanks to
different schedules. ρ(S) is the depth of the original statement, i.e., the number
of dimensions of its original iteration domain.

Scheduling policy θS1 θS2
Mono-dimensional (i) (n + j ∗ n + i)
ρ(S)-dimensional (i) (n + j, i)T

(2 ∗ ρ(S) + 1)-dimensional (0, i, 0)T (1, j, 0, i, 0)T

for(i=2; i<=n; i++)
z[i] = 0; /* S1 */

for(j=1; j<=n; j++)
for(i=1; i<=n; i++)

z[i+j] += x[i]*y[j]; /* S2 */

(a) Possible schedules for loop interchange (b) Target code

Fig. 5. Loop interchange for polynomial multiplication using different schedules

Unified transformation frameworks like UTF [15] or URUK [6] are good ex-
ample of multi-dimensional schedule policies. Both ask for (2ρ(S)+1) dimensions
which allow them to be much more flexible. Nevertheless, using additional dimen-
sions has a cost. In time: we will see that each dimension needs costly polyhedral
operations (projection/separation/sorting). In space: each dimension implies (1)
a new column in the constraint matrix, (2) as many rows as new constraints and
(3) a new level in the generated code tree.

Most of the time, additional dimensions are scalar, i.e. they are constant for
every scheduling functions. Because polyhedral operations on such dimensions
are trivial, we systematically remove them from the constraint matrix, storing
the scalar values in ad-hoc vectors. In the following, scalar dimensions will be
implicitly stripped away from the schedule matrices. Polyhedral operations as
usual with the additional provision that, before each separation step, we order
the polyhedra according to the appropriate scalar vector components. Further
steps of the code generation algorithm are applied onto lists of polyhedra having
the same values for these components.

This optimization benefits from schedule properties without impacting ex-
pressiveness. It may dramatically reduce the number of polyhedral operations,
improving both time and space complexity. Moreover, it also reduces the cost
(in time and space) of every single polyhedral operation, by reducing matrix
size. In practice, the actual benefits depend on the transformation policy: the
more the constant scalar dimensions, the better the results. Also, this step has a
very low complexity and thus does not degrade computation time even in worst

Time Space
Benchmark Scalar ratio Original(s) Scalar(s) Speedup Original(KB) Scalar(KB) Reduction
Swim 6/11 41.20 10.33 3.99× 17480 8128 2.15×
QR 4/7 19.47 2.44 7.98× 3012 988 3.05×
Classen 3/7 1.12 0.69 1.62× 1092 672 1.62×
DreamupT3 0/1 0.49 0.49 1.00× 160 160 1.00×

Fig. 6. Experimental results for scalar dimension removal
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case scenarios. Figure 6 shows the results when applying this optimization to
our reference code generation problems. The scalar ratio gives the number of
scalar dimensions with respect to the total number of dimensions, showing that
the different teams which provided their problems do use scalar dimensions. This
results into significant time and space improvement, except for the last program.

4.2 Node Fusion

When specifying transformations for a program with many statements, often
is the case the processing is similar for several statements, at least for some
dimensions. For instance, applying a given transformation (same schedules) to
some statements of a given loop nest (same domains) allow to consider only one
statement block. The modified version of the Quilleré algorithm [3] is given in
Figure 7 and exploits the similarities of the transformations on certain dimen-
sions for different statements.

CodeGeneration: builds an AST (Abstract Syntax Tree) scanning a list of polyhedra
Input:
node: flat AST holding the domains to scan
context: static context (known constraints met by the parameters)
depth: the nesting level

Output: An AST scanning the polyhedra in the lexicographic order

AST ←
while node has successors

1 Intersect node.domain with the context
2 Project intersected domain on the depth outermost dimensions and on parameters
3 node ← node.next

if nodes have scalar values at depth and they are different
4 Sort nodes according to their scalar values at depth
5 worklist ← partition nodes by scalar values

foreach job in worklist
6 fusedlist ← Fuse nodes of job with the same projected intersected domain
7 separatedlist ← Apply Quilleré’s separation step to fusedlist
8 sortedlist ← Sort separatedlist according to the lexicographic order

foreach ASTnode in sortedlist
if ASTnode.domain dimensionality > depth

9 ASTnode.inner = CodeGeneration(ASTnode.node, context, depth+1)
10 Enqueue ASTnode to AST

return AST

Fig. 7. Code generation algorithm

Steps 4 and 5 create work-lists that fully take advantage of the detection
of scalar dimensions described in Section 4.1. Step 6 examines nodes of each
job of the work-list and tries to fuse them into sub-work-lists to reduce the
number of elements given to the Quilleré algorithm as much as possible. Node
fusion occurs at current depth on the projected domains and is guaranteed to
exploit similarities between schedules at each nesting level independently. The
complexity gain of Steps 4, 5 and 6 is difficult to quantify as it depends on the
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shape of the generated code itself and transformation similarities across different
statements.

Considering a simple case with n statements in a loop nest level that can be
blocked into c chunks of sc statements with same scalar components. Suppose
each chunk can further be blocked into bc blocks of lbc ≤ sc statements with same
projected domain. This translates to

∑
bc

(Quilleré (lbc)) instead of Quilleré (n)
which stands for a call to the Quilleré separation algorithm that has a worst-case
complexity of 3n. Furthermore, Step 8 also benefits from the reduction above
and allows for

∑
bc

(Sort (lbc)) instead of Sort (n) which stands for a call to a
function sorting n polyhedra that also has an exponential worst case complexity.
Experimental results are summarized in Figure 8. As expected, this technique is
quite useful for large problems like Swim.

Time Space
Benchmark Original(s) Fused(s) Speedup Original(KB) Fused(KB) Reduction
Swim 41.20 5.90 6.98× 17480 5048 3.46×
QR 19.47 19.17 1.02× 3012 2992 1.01×
Classen 1.12 1.03 1.09× 1092 1060 1.03×
DreamupT3 0.49 0.49 1.00× 160 160 1.00×

Fig. 8. Experimental results on node fusion

4.3 Domain Iterators

It is well known that code generation is easier when restricting the problem
to invertible schedules [29, 25]. CLooG was the first tool to seamlessly manage
non-invertible schedules, at the cost of additional recursion steps, polyhedral
projections and larger matrix sizes in Quilleré’s algorithm [2, 3]. For scalability
reasons, we propose to detect non-singularity conditions and refine the recursive
AST traversal automatically. Indeed, when considering invertible transforma-
tions, the value of the original domain iterators (used, e.g., in the statement
bodies) according to the target space iterators can be efficiently obtained via
matrix inversion (instead of recursive polyhedral projections).

Let θ(x) = T · x + Tp · p be a schedule transformation where T is invertible,
and consider an iteration domain D : A ·x+Ap ·p ≥ 0. The transformed domain
T (see Figure 3(a)) can be broken down into two distinct components:

– a polyhedron to scan (Figure 9) obtained by projecting T on time iterators
and parameters only;

– an inverted scatter matrix (ISM) that associates, locally to each statement,
the expression of the domain iterators as invertible functions of time iterators
and parameters. When T is non-unimodular, T−1 has rational coefficients.
Let (di,j) be the denominators of T−1, by taking λi = lcm(di,•) we define Λ =
Diag (λi) as the diagonal matrix where the diagonal element of the ith line
is λi. The left multiplication of the matrix representation of T (Figure 3(a))
by (ΛT−1 | 0) yields an integral matrix, the ISM in Figure 10.
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The benefits brought to the separation algorithm are threefold and contribute
to possibly exponential complexity gains:

– it is straightforward to write domain iterators as expressions of time itera-
tors and parameters from Figure 10 instead of performing costly polyhedral
projections on each domain iterator;

– the column number of each polyhedron to scan is reduced by the number of
domain iterators (potentially half the original size if there are no parameters);

– the height of the generated AST is reduced on each path to every statement
by the same amount above. However the paths subject to reduction are
linear and save no branches from the original AST but still save polyhedral
projections.

The Swim benchmark has invertible schedules only (this is a strong assump-
tion of the URUK framework [6]), but this is not the case for the other bench-
marks. We could therefore evaluate this optimization to Swim only, yielding 36%
reduction in code generation time and 57% reduction in memory usage. We are
working on extending this domain iterator elimination technique to all kinds of
non-invertible schedules, combining Gaussian elimination steps with polyhedral
projections.

4.4 If Conditional Hoisting

Under complex transformation sequences, the top-down part of Quilleré’s code
generation algorithm [25] yields if conditionals that greatly hamper the qual-
ity of the generated code and thus, its execution time. Figure 11 exhibits this
behavior on a basic example: generating a code for scanning the polyhedra of Fig-
ure 11(a) using the algorithm in Figure 7 would lead to the code in Figure 11(b).
This figure shows internal guards leading to a high control-overhead.

The approach presented in [25] for removing inner if conditionals and gen-
erating the better code in Figure 11(c) consists of a backtracking call to the
separation procedure. Although it proved successful at performing its primary
task, its side effects can yield unnecessary computation and code bloating. The
aforementioned algorithm lacks the capability of factorizing similar conditionals.
Examine a node at depth d after the separation phase. Assume the separation
has generated an inner conditional c which depends only on the i, i < d, first
dimension iterators. During the backtracking called on depth d, the algorithm
in [25, 3] performs separation regardless of the condition c. Therefore, costly
polyhedral operations have been made while only a separation at depth i was
necessary. Focusing only on conditionals also avoids to version triangular loops
which may not execute only for specific values of the outer loop counters. For
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Fig. 11. Removing internal guards with if-hoisting

instance, in Figure 11(c) the j-loop does not iterate for i = n − 1; removing this
negligible control overhead would increase code size by 50%.

Our solution boils down to a depth-first traversal of the AST, fetching all
the conditionals of subsequent domains for the current nesting level, factoriz-
ing them by performing polyhedral separation (intersection and difference) on
conditionals relevant to the current depth only, and intersecting these newfound
conditionals with the current domain, duplicating the underlying AST structure.
The algorithm, which intervenes as a post pass after separation guarantees no
unnecessary cuts are performed and therefore avoids unnecessary code explosion.
Figure 12 shows the duplication factor results on the four reference benchmarks,
i.e., the number of computational statements in the generated code divided by
the number of statements in the polyhedral representation, a reasonable met-
ric for code quality [2]. These results show strong code size reductions can be
achieved through our improved if-hoisting phase. The relatively low duplication
factor for Swim (2.5) is also a very good indication of the applicability and scal-
ability of polyhedral techniques to larger optimization and parallelization prob-
lems. Eventually, to better isolate the effect of this optimization, the last row
(Figure 12) reports results for the simple one-statement matrix multiplication,
applying three-dimensional tiling and shifting through the URUK framework [6].
It incurs major (yet unavoidable) code bloat, but our technique reduces it by a
factor of 2.5.

Benchmark Original dup. factor if-hoisting dup. factor Reduction
Swim 2.5 2.5 1
QR 107 35 3
Classen 11.5 9.6 1.2
DreamupT3 23.3 4 5.8
MxM 175 69 2.5

Fig. 12. Experimental results with if-hoisting
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5 Code Quality

Beyond code generation performance, addressing real-world problems raises gen-
erated code quality issues that may not directly emerge from smaller, academic
examples. This section investigates two of them: extending code generation to
implement a smarter loop unrolling strategy, and building on this extension
to achieve a major step in code generation for strided domains and reindexed
schedules.

5.1 Enabling Strip-Mining for Unrolling

In most cases, loop unrolling can be implemented as a combination of strip-
mining and full unrolling [28]. Strip-mining itself may be implemented in several
ways in a polyhedral setting. Following our earlier work in [6] and calling b
the strip-mining factor, we choose to model a strip-mined loop by dividing the
iteration span of the outer loop by b instead of leaving the bounds unchanged
and inserting a non-unit stride b:

for(i=�(x); i<=u(x); i++)
strip-mine(b)

−→
for(t1=

⌈
�(x)

b

⌉
; t1<=

⌊
u(x)

b

⌋
; t1++)

for(t2=max(�(x),b*t1); t2<=min(u(x),b*t1+b-1); t2++)

This design preserves the convexity of the polyhedra representing the trans-
formed code, alleviating the need for specific stride-recognition mechanisms
(based, e.g., on the Hermite normal form).

In Figure 13(b) we can see how strip-mining by a factor of 2 the original
code of Figure 13(a) yields an internal loop with non-trivial bounds. It can be
very useful to unroll the innermost loop to exhibit register reuse (a.k.a. register
tiling), relax scheduling constraints and diminish the impact of control on useful
code. However, unrolling requires to cut the domains so that min and max con-
straints disappear from loop bounds. Our method is adapted the one presented
for hoisting if conditionals; the difference lies in the selection of conditionals. For
the purpose of if-hoisting (see Section 4.4), we just had to pick the constraints
that did not concern the node at current depth. Here we focus on finding con-
ditionals (lower bound and upper bound) for the current depth, such that their
difference is a non-parametric constant : the unrolling factor. Hoisting these con-
ditionals actually amounts to splitting the outer strip-mined loop into a kernel
part where the inner strip-mined loop will be fully unrolled, and a remainder part

for(t1=M; t1<=N; t1++)
S1(i = t1);

for(t1=M/2; t1<=(N+1)/2; t1++)
for(t2=max(M,2*t1);

t2<=min(N,2*t1+1); t2++)
S1(i = t2);

if(M%2==1)
S1(i = M);

for(t1=(M+1)/2; t1<=(N-1)/2; t1++)
S1(i = 2*t1);
S1(i = 2*t1+1);

if(N%2==0)
S1(i = N);

(a) Original code (b) Strip-mining of 2 (c) Separation & unrolling

Fig. 13. Strip-mining and unrolling transformation
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(not unrollable) spanning at most as many iterations as the strip-mining factor.
In our example, the conditions associated with a constant trip-count (equal to
2) are t2>=2*t1 and t2<=2*t1+1 and are associated with the kernel, separated
from the prologue where 2*t1<M and from the epilogue where 2*t1+1>N. This
separation leads to the more desirable form of Figure 13(c).

Finally, instead of implementing loop unrolling in the intermediate represen-
tation of our framework, we delay it to the code generation phase and perform
full loop unrolling in a lazy way, avoiding the added (exponential) complexity
on the separation algorithm. This approach relies on a preliminary strip-mine
step that determines the amount of partial unrolling.

5.2 Removing Modulo Conditions

When the transformed domains T (see Figure 3(a)) are Z-polyhedra (a.k.a.
lattice polyhedra), the generated code shows modulo conditions. The modulo
guards guarantee that only the iterations that belong to the original domain
are scanned in the generated code. For instance, if the ISM of a statement S
(see section 4.3) that gives the value of the original domain iterators (e.g., i)
according to the transformed space iterators (e.g., t) gives 2i = t, the execution
of the statement S will be guarded with if (t%2 == 0). This situation happens
either when the transformation matrices T are not unimodular or when the
original domains D are Z-polyhedra, e.g., in some kinds of strip-mined loops1.
Both cases boil down to the same code generation problem. For space reasons, we
will only detail our solution in the case of invertible, non-unimodular schedules.

The consequence of generating modulo guards is to introduce a high con-
trol overhead. Many works focused on finding solutions to avoid them. The first
idea was to compute an appropriate loop stride. At first it was done using the
Hermite Normal Form [20, 29, 8, 26], but this was limited to only one domain,
then by considering the transformation expression itself [16, 2], but some guards
cannot be removed in this way. More recent methods suggest to use strip-mining
for one domain [11], or to find equivalent transformations with convenient ad-
ditional dimensions when this is possible [12], or to unroll the loops according
to a convenient unroll factor in the case where modulo guards depend on only
one loop counter [12]. Here we give a general algorithm to drastically reduce the
number of modulo guards inside the loops and even void them all in the loop
kernels.

Consider a simple example with two statements, where S1 has the one-
dimensional schedule 2t1 − 5 and S2 has the one-dimensional schedule 3t1. In
other words, the rate of S1 is 50% higher than S2 and is shifted ahead by 5 itera-
tions. This example is derived from the low-level scheduling and code generation
for a software-pipelined FIR filter, where one functional unit (a multiplier in S1)
is needed at a 50% higher rate than a another one (an adder in S2), and S2
depends on S1. Due to the combined reindexing (factors 2 and 3 in the schedule)
and shifting (by 5 iterations), traditional techniques to avoid modulo expressions
cannot be applied [2], and existing code generators yield the inefficient code of
1 Although one may express strip-mining with convex polyhedra only, see Section 5.1.
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(...)
// software pipeline kernel
for (t1=5; t1<=2*N-2; t1++)
if ((t1-5)%3 == 0)
S2(i = (t1-5)/3);

if (t1%2 == 0)
S1(i = t1/2);

(...)

Fig. 14. Traditional code genera-
tion

// prologue
S2(0);
// kernel code with S1 and S2 synchronized modulo 6
for (t1=1; t1<=floord(N-4,3); t1++)
S1(i = 3*t1); S2(i = 2*t1-1); // t2%6 = 0
S1(i = 3*t1+1); // t2%6 = 2
S1(i = 3*t1+2); // t2%6 = 3
S2(i = 2*t1); // t2%6 = 4

// epilogue
for (t1=ceild(N-3,3); t1<=floord(N-1,3); t1++)
for (t2=6*t1; t2<=2*N-2; t2++)
if ((-t2+5)%3 == 0)
S2(i = (t2-5)/3);

if (-t2%2 == 0)
S1(i = t2/2);

Fig. 15. Our solution for the software-pipelined
kernel

Figure 14. Our technique eliminates modulo expressions completely from the
kernel part (the hot path) of the generated code, without code bloat, and gen-
erates the much more efficient version in Figure 15. On this simple example,
our technique achieves a 67% reduction in generated code execution-time, with
respect to the more naive one with modulo expressions.

In the general case, the main problem resides in the lower bound of the
scattered domain [8, 26, 29] whose value modulo the stride factor must be known
in order to exhibit a regular pattern in the loop body. This lower bound can
be viewed as a pattern alignment synchronization barrier for S1 and S2. Indeed,
parametric schedules with non-unit stride factors may generate as many different
loop body patterns as the least common multiplier of these strides; notice these
patterns are not identical (in general) up to loop body “rotations”. The only
solution to thoroughly eliminate modulo conditions is multi-versioning, but it
results in severe code bloat for stride factors over 2 or 3.

Our approach consists in forcing pattern synchronization by strip-mining the
original loop by a factor that is yet to determine. This amounts to extracting
a prologue and an epilogue from the unrollable kernel, yielding the much more
efficient solution of Figure 15. Using this method, the prologue and epilogue still
contain internal modulo conditions whereas the kernel (where the vast majority
of the execution time is spent) can be unrolled. This approach is effective on a
large class of “well-behaved” schedules. We will argue at the end of this section
that the other “ill-behaved” schedules are intrinsicly code-bloating if modulo
expression elimination is to be attempted.

The previous case having the sole purpose of stating the problem simply, we
now outline the general algorithm. This step takes place after the separation, if-
hoisting, and lazy unrolling steps. From the Inverse Scatter Matrix (ISM) shown
in Figure 10, we can derive that the ith original loop iterator xi corresponding
to a given statement S can be expressed thanks to the ith line of its ISM for-
mula: λi · xi =

(∑
j (ki,j · tj) + C

)
, where C is the constant parametric part. It

follows, a modulo condition that rules the execution of S is
(∑

j (ki,j · tj) + C
)
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mod λi = 0. Let us first assume that C is known at compile time. The point is
to statically determine the values of (ki,j · tj) mod λi for all i and j to be able
to remove all the modulo guards. For that purpose, for each node of the AST at
depth j, the time dimension tj will be unrolled by the least common multiplier
over all statements under this node (at depth j) of

lcmj = lcm
{i|ki,j �=0}

(
λi/ gcd(ki,j , λi)

)
.

Unrolling by this factor yields as many instances of tj for which we statically
know the value modulo λi. For a given loop node at depth d, the least common
multiplier of all such unrolling factors yields the global unrolling factor lcmj

that is necessary for static elimination of all internal modulo conditions. To
enable unrolling, a new time dimension is introduced by strip-mining by lcmj .
This new dimension scans the same points as the old time dimension, with the
additional property that its first iteration is divisible by lcmj , thus achieving the
required synchronization of all statements to a statically known pattern. Building
on the strip-mining method introduced in Section 5.1, the strip-mined loop is
actually split into a prologue, a so-called zero-aligned kernel, and an epilogue.
By construction, the zero-aligned kernel has the important property that its
outer strip-mined loop scans multiples of lcmj only. Thanks to this property,
and having fully unrolled the inner strip-mined loop, we may statically evaluate
the remainder of the division of the inner strip-mined loop’s iterator by lcmj .
Applying this systematically to all depths where lcmj is greater than 1 allows
all modulo conditions to be removed from the zero-aligned kernel only.

RemoveModuloGuards: removes modulo conditionals from loop kernels
Input:
node: AST root node
depth: the depth of the modulo conditional

Output: an AST without modulo conditionals in loop nest kernel

nodelist ← empty list
while node has successors
if node is a for loop

1 compute lcmdepth
if lcmdepth > 1

2 kernel.inner ← new time dimension between tdepth and tdepth+1 with constraints
lcmdepth × tdepth ≤ tnew ≤ lcmdepth × tdepth +(lcmdepth −1)

3 Update all the statement informations (domains and ISMs) with the new dimension
4 Strip-mine and partition node.domain in prologue, zero-aligned kernel, and epilogue
5 Enqueue prologue, kernel and epilogue to nodelist
6 Unroll kernel with respect to tnew
7 RemoveModuloGuards(kernel.inner.inner, depth+2)

else
8 RemoveModuloGuards(node.inner, depth+1)

else node is a statement
9 Prune node off the AST if needed

node ← node.next

return nodelist

Fig. 16. RemoveModuloGuards Algorithm
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The algorithm in Figure 16 describes how to introduce new time dimensions
and unroll them so as to eliminate modulo conditions. Step 9 is actually not
trivial. When reaching the leaves of the AST, we need to determine which modulo
guards have been simplified, which ones are still necessary and which ones have
become unfeasible. Having strip-mined (and unrolled) by the factor lcmdepth, we
have forced newly created time iterators on the path to the innermost kernel
to be divisible by λi. If all the components of an ISM line i are divisible by λi,
then the modulo condition is always true and needs not to be printed. If all the
components are divisible by λi but not the constant part, the modulo condition
is always false and the statement should be pruned. In the last case, the modulo
condition for line i needs to be printed, but at least its expression simpler (and
faster to evaluate) than it would have been without strip-mining and unrolling.

Had we wished to fully unroll and had we used versioning, we could have
generated an unreasonable number of versions (up to the factorial of lcmdepth).
Our algorithm manages to fully unroll the kernel only, where most computation
time is spent, while the prologues and epilogues (with modulo conditions) hold
at most lcmdepth − 1 iterations.

When the value of constant parametric shift component C modulo lcmdepth
is not statically known, it is impossible to statically determine an interleaving
pattern. Synchronizing the values of time iterators modulo lcmdepth does not help
and even leads to the insertion of internal modulo conditions. Nonetheless, one
can argue on the interest of schedules that do not exhibit a regular pattern: the
interleaving of statements itself totally changes with the values of parameters,
hence is intrinsincly tied to multi-versioning.

6 Putting It All Together

Let us combine all the previous optimizations and summarize the total improve-
ments in code generation time, memory usage and generated code size. To further
stress the scalability of our tool, we added a more complex optimization of the
Swim benchmark, called Swim+, in its most general setting with 5 parameters
(without context).

Time Space Code size
Benchmark Orig.(s) Opt.(s) Speedup Orig.(KB) Opt.(KB) Reduction Orig.(Lines) Opt.(Lines) Reduction
Swim 41.20 2.41 17.09× 17480 2380 7.34× 830 764 1.09×
Swim+ 1219.67 21.62 56.41× 322624 22180 14.55× 17791 12041 1.48×
QR 19.47 2.42 8.05× 3012 988 3.05× 4733 1432 3.33×
Classen 1.12 0.25 4.48× 1092 272 4.01× 130 105 1.24×
DreamupT3 0.49 0.20 2.45× 160 160 1.00× 382 68 5.62×

Fig. 17. Summary of experimental results

7 Conclusion

The polyhedral model is a powerful framework to reason about high level loop
transformations. Recently, new algorithms made it possible to compute the tar-
get code for hundreds of statements while this code generation step was expected
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not to be scalable. Unfortunately, these improvements allowed the exploration of
larger, more complex optimization and parallelization problems, which in turn
raised several scalability and code quality challenges.

We presented scalable code generation methods that make possible the ap-
plication of complex program transformations to real-world computation kernels
with up to 199 statements. By studying the transformations themselves, we show
how it is possible to benefit from their properties to dramatically improve both
code generation quality and space/time complexity. Moreover, building on these
algorithmic improvements, we proposed a new algorithm to generate more effi-
cient (conditional-free) code for strided domains and reindexed schedules.

We believe these improvements — implemented in the latest versions of the
CLooG [3] and WRaP-IT/URUK [6] frameworks — will initiate an other vir-
tuous cycle towards allowing polyhedral techniques to bring dramatic improve-
ments in the effectiveness of optimizing and parallelizing compilers.
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