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Polyhedral decompositions of

cubic graphs

G. Szekeres

To Paul Erdos,

for his five thousand million and sixtieth birthday

A polyhedral decomposition of a finite trivalent graph G is

defined as a set of circuits £ = {C^, C£, ..., Cm) with the

property that every edge of G occurs exactly twice as an edge

of some Cv . The decomposition is called even if every C^ is

a simple circuit of even length. If G has a Tait colouring by

three colours a, b, a then the {a, b), (b, a) and (e, a)

circuits obviously form an even polyhedral decomposition. It is

shown that the converse is also true: if G has an even

polyhedral decomposition then it also has a Tait colouring.

This permits an equivalent formulation of the four colour

conjecture (and a much stronger conjecture of Branko Grunbaum)

in terms of polyhedral decompositions alone.

1. Introduction

Gr'unbaum has conjectured ([2]) that for any triangulation of an

orientable surface it is possible to colour the edges by three colours in

such a fashion that the edges of each triangle have different colours. In

terms of the dual graph the conjecture states that a cubic graph (that is,

one in which each vertex is incident with exactly three edges) which is the
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graph of edges and vertices of a polyhedron on an orientable surface admits

an edge colouring by three colours. If the orientable surface is the

sphere, Grunbaum's conjecture is equivalent to the four colour conjecture

([5], p. 121), but for other surfaces there is no such connection between

face and edge colouring of polyhedra, and for instance the well known

configuration of seven mutually adjacent countries on the torus admits an

edge colouring by three colours.

Superficially it seems that Grunbaum's conjecture cannot be true. For

take any trivalent graph G which is not edge colourable by three colours

(such as the Petersen graph) and represent it on a suitable orientable

surface S . This can always be done in such a way (.142, p. 198) that the

components of its complement on S are simply connected domains. The dual

of G will supply a triangulation of S whose edges are not colourable by

three colours in the manner required by Grunbaum.

There are two ways in which this argument can go wrong. First, it may

happen that the circuit of edges which forms the boundary of a face is not

a simple circuit, that is, it goes through the same edge twice. Secondly,

two such circuits may have more than one edge in common. In terms of the

dual graph it means that the triangulation has loops and multiple edges

which are evidently not allowed in Grunbaum's conjecture. We call a map

on a surface proper if its dual is a triangulation without loops or

multiple edges.

If we admit multiple edges then Petersen's graph yields a counter-

example already on the torus. Represent the torus as the Cartesian plane

2
modulo the integral lattice Z ; then the following straight line

segments represent a triangulation:

[(0, 0 ) , (0, \)), [(0, 0 ) , (i, i)], [(0, 0 ) , (1, |) ] , [(0, 0 ) , (i, 0)],

[(|, 0 ) , (1, *.)], [(i, 0 ) , (|, 0)], [(i, 0 ) , (1, 2)], [(|, 0 ) , (I, 0)],

[(0, i ) , (0, 1)], [(*0, i ) , (i, 1)], [(0, i ) , (i, | ) ] , [(4., | ) , (i, 1)],

[({, | ) , (|, i)]5 [(2, -|), (i, |)], t(|, i), (i, |)] .

The triangulation has 5 vertices, 15 edges and 10 faces, and it can

be verified easily that it does not admit a Grunbaum type edge colouring,

either directly by testing all possibilities or by observing that its dual

is the Petersen graph, that is the graph of vertices and edges of the
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regular dodecahedron in which diametrically opposite points have teen

identified. It is well known that the Petersen graph does not admit edge

colouring by three colours. Of course this triangulation has several

multiple edges, for instance [(0, 0 ) , (0, |)] and [(0, 0 ) , (l, |)] join

the same pair of vertices on the torus.

On the other hand the Petersen graph can easily be shown to be the

graph of edges and vertices of a proper map on the protective plane (§3).

Questions of this kind, whether a trivalent graph is the graph of vertices

and edges of a proper map on a surface (orientab'le or not) can be

formulated in purely combinatorial terms, by means of certain circuit

decompositions (§2). In §4 we shall give an equivalent formulation of edge

colourability by three colours (and hence of the four colour and Grunbaum's

conjecture) by means of circuit decompositions alone.

2. Polyhedral decompositions

We follow mostly the terminology of Berge [7] and Tutte [7]. A graph

G consists of a finite set X of vertices {p, q, ..., x, y, ...} , a

finite set Y of arcs (directed edges) {a, B, y, ...} , and an incidence

mapping T : Y •+ X x X which associates with each arc Y two vertices, an

initial vertex p and a terminal vertex q . Elements of V are denoted

by (pY<?) where {p, q) t X * X , y € Y , and we shall interchangeably

speak of an arc y or an arc (pY<?) • We assume that T is symmetric,

that is, there is an involution 0" : Y •* Y which associates with every

| E T a reverse arc o(y) = y' # Y such that if ipyq) € T then

(qy'p) £ r . The couple (Y, Y1} is called an edge of T and written

[Y] = [Y1] ; P and q are called its end vertices. We admit multiple

edges, that is we do not assume V to be injective: we may have

(pa?) € T , (p&q) (. T with a / B . We also admit loops, that is, arcs

(pYp) with the same initial and terminal vertex; the reverse (pY'p)

then is also a loop, distinct from

Unless the contrary is explicitly stated, all graphs will be assumed

to be finite and trivalent (or cubic),- that is, each vertex is the initial

(hence terminal) vertex of exactly three arcs. Thus a graph on two

vertices p, q with six arcs (pap) , (pa'p) , (p&q) , (q&'p) ,

» (<7Y'<7) is trivalent according to this definition. Generally if
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(pap) is a loop then there is just one more arc ip&q) having p as an

initial vertex, and then [3] is an isthmus, that is an edge whose removal

disconnects the component of G in which the edge is situated. Hence a

cubic graph without an isthmus contains no loops.

A path C of length k > 1 is a sequence (pQa p a ... a,p,) such

that bi^iPi) € r f o r i = 1 k • We say that c^ or [pi_1*iPi)

is an arc of C , [a.] an edge of C , and p Q is the initial vertex,

p, the terminal vertex of C . An arc can be regarded as a path of

length 1 . The reverse C' of C is the path ipk
al • • • "o^i^Po^ •

C is called semisimple if consecutive edges Ca-_J > Ca-] a r e

distinct, and simple if any two edges [a.] , [a.] , i ± j are distinct.

i> J

This definition is at variance with Tutte ([7], pp. 29-30), but it should

be noted that in a cubic graph simplicity implies that p. f p . for

«- 3

0 < i < j < k . The path is called reentrant i f i t s i n i t i a l and terminal

vert ices coincide. An equivalence class of reentrant paths generated by

the relation {p^P-j • • • <*jj?k) ^ lP1
a2P2 ' "' V f c V J i S c a l l e d a

c i r c u i t and d e n o t e d IPJ/^TP-I • • • ^ P f e l ' i t i s s e m i s i m p l e i f

[a.] # [a-+1] f o r ^ = 1» . . . , fe , where [ \ + 1 l = [a-J • F o r instance in

the previous example the c i rcui t [pap&qyqf&'p] i s semisimple but not

simple.

F i r s t we show

LEMMA 1. Given a cubic graph G with incidence mapping T there is

an injection (hence subjection)

Lo ' r - r

such that

(i) LQ(paq) = (sBr) •* q = s ,

(ii) LQ(paq) = (q&r) => LQ(r$'q) * (qa'p) .

REMARK. Condition (ii) implies that g / a' ; for LQ(paq) = (qa'p)
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contradicts (ii) with 6 = a1 , 3' = a , r = p .

Proof. Consider the set A of all injections

L •. v* - r , r* c r ,

with properties (i) and (ii); in part icular L(paq) * (qa'p) for any

(paq) € T* . A is par t ia l ly ordered by L < £,, i f £„ i s an extension

of L. • Let L be a maximal element of A , T i t s domain; we want

to prove that F_ = F .

Firs t we note that i f (paq) £ T , (qbr) EF , 3 * a' , then either

(qfir) = L.ipaq) or (qa'p) = L (rg'q) . For suppose f i r s t that

(puq) ji T. . Then we must have LArQ'q) = (qa'p) ; for otherwise we

could extend L to £ € A with domain T* = T u (paq) by defining

L(paq) = (q&r) or Kpou?) = (qye) , y t & , y ^ « ' . depending on
whether or not LQ(ey'q) = (q&r) . Indeed i f (q&r) t LQ(8y'q) and

LQ(r&'q) + (qa'p) then L(paq) = (q&r) i s compatible with (ii) and with

inject ivi ty of L ; on the other hand i f LAsy'q) = (q&r) then

(<7Ys) i- LAr&'q) hence L(paq) = (qys) i s compatible with (ii) and

injec t iv i ty . In either case £„ can be properly extended, contrary to the

maximality of L. .

Suppose next that (pa?) € T , L (paq) = (qys) where Y is as

before. Then L (sy'q) t (qa'p) and L (r&'q) t (qya) since L i s

injective. Hence again LQ(r&'q) = (qa'p) since otherwise we could extend

LQ to I € A with domain r* = rQ u (r&'q) by defining

L(r&'q) = (qa'p) , which i s compatible with (ii) and in jec t iv i ty .

Hence ZL has the property that for every pair of arcs (poq) ,

(q&r) , 6 t a' , either LQ(paq) = (qto>) or LQ(r9>'q) = (qa'p) . This

implies for an arbitrary (paq) € T that if (q&r) , (qys) are the two

arcs distinct from (qa'p) with initial vertex q and (q&r) t L (paq)

then LArfi'q) = (qa'p) hence (qa'p) ±L (sy'q) , by injectivity.
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Therefore LQ(paq) = (qys) , (paq) I TQ hence T c TQ , TQ = T , and the

lemma is proved.

From the lemma it follows, by the remark preceding the proof, that

the orbits of L are semisimple circuits C^ , C , ..., C with the

following property:

Po. every y £ Y (or (pYq) £ F ) is contained in exactly one

Ck •

We call a family of semisimple circuits £ = {C., C~, ..., C } of G

a polyhedral decomposition if they have the property

Pi. every edge [y] occurs exactly twice in the circuits CV .

Thus the arc y itself may or may not appear in any C. ; if it does not

appear then y' appears twice. Note that in a polyhedral decomposition

any C. may be replaced by its reverse C1. .

We shall call the decomposition coherent if it has the more stringent

property Po. We have thus proved:

THEOREM 1. Every cubic graph has at least one coherent polyhedral

decomposition.

With every polyhedral decomposition £ of G there is associated a

characteristic

X(G, C) = V - E + F

where V is the number of vertices, E the number of edges of G , and F

the number of distinct circuits in £ . For example in the two-vertex

graph described earlier

C1 = [papBqyq&'p] , C2 = [pa'p] , C^ = [qy'q]

i s a coherent po lyhedra l decomposition with c h a r a c t e r i s t i c 2 - 3 + 3 = 2 .

The genus a s s o c i a t e d wi th a coherent £ i s g(G, £ ) = 1 - -|x(G, £) and

t h e genus of G i s def ined g(G) = min g{G, £ ) , t h e minimum taken for a l l

£
possible coherent polyhedral decompositions of G .

By interpreting the circuits of £ as the boundaries of 2-cells on
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a topological surface (with the obvious topology at the edges and vertices)

we find as a corollary of Theorem 1:

THEOREM 2. Every connected cubic graph G is the graph of vertices

and edges of a map on an orientable surface of genus g(G) .

This of course is a special case of the theorem of Petersen and Konig

[3], but the proof (in Hungarian) is not easily accessible and we preferred

to give an independent proof of Theorem 1, because of the importance of

polyhedral decompositions for all that follows.

For the purposes of Theorem 2 a map is understood to have simply

connected faces (countries) but an edge is not necessarily on the boundary

of two distinct countries nor have the boundaries of two countries

necessarily only one edge in common. A country may have a single edge [y]

for its boundary, namely when y is a loop.

The polyhedral decomposition is called simple if all circuits are

simple; a simple polyhedral decomposition is called proper if two distinct

circuits have at most one edge in common. For instance the boundaries of

the faces in the dual of a triangulation in Grunbaum's conjecture form a

proper coherent polyhedral decomposition.

Clearly the existence of a proper (coherent) polyhedral decomposition

of characteristic X is equivalent to G being the graph of vertices and

edges of a proper map on an (orientable) surface of characteristic X •

LEMMA 2. The nurriber of vertices in a cubic graph G is even. The

sum of lengths of the circuits in a polyhedral decomposition of G is

even.

The first statement is well known and follows from 2E = 3V where, as

before, E is the number of edges and V the number of vertices of G .

The second statement follows from Pi which requires that the sum of lengths

of the circuits be 2E .

LEMMA 3. If the cubic graph G has an isthmus then it has no simple

polyhedral decomposition. If G has no isthmus but has a pair of non-

adjacent edges whose removal disconnects G (-that is, is of connectivity

2 ), or if it has a double edge but not a triple edge, then it has no

proper polyhedral decomposition.
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For i f G has an isthmus [ y j then any c i rcui t C- which contains

{pyQq) must also contain (<?YQP) since no arc of CQ following y can

reach p again before reaching q . If [ y j > [Y2] a r e edges whose

removal disconnects G then any simple c i rcui t C, which contains (xY-,#)

must necessarily pass through the edge [Y2] i n order to get back to x .

If therefore C_ i s another simple c i rcui t through [Y..] , i t must also

pass through \y^\ » and s ° C. and C? have two edges in common.

Finally i f {xy,y) , [xy^j] ajce d is t inct arcs of G and [xyj>) ,

[yyyq] are the other two arcs adjoining x and y where p ? y ,

q # x , then any simple circuit containing (jpy'x) must also contain

(j/Y q̂O (hence contain ei ther [py^xy^y^q] or [py'^xy^y^q) ) . Similarly

any simple c i rcui t containing [xy^jp] must also contain [qy^y] • Hence

every two such c i rcu i t s have two edges in common.

I t i s an open question whether every cubic graph without an isthmus

has a polyhedral decomposition, or whether every cubic graph with

connectivity > 2 has a proper polyhedral decomposition. The Petersen

graph has both a simple coherent and a proper polyhedral decomposition;

th is wi l l be verif ied in §3.

3. Graphs with no proper coherent decomposition

Let P be the Petersen graph on the vertex set {0, 1, 2 9}

with edges (in obvious notation) [01], [12], [23], [31*], [ U0 ], [56], [67],

[78], [89], [95], [05], [17], [29], [36], [kB] . Then the following is a

simple coherent decomposition.:

Cx = [0123*10] , C2 = [36781*3] , C3 = [Ol»895O] ,

ck = [1765921] , c5 = [0563298710] .

This was the decomposition used in §1 to represent the Petersen graph on

the torus; it is of course not proper, C has more than one edge in

common with the other circuits of the decomposition.
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A typical proper polyhedral decomposition is

C^ = [01231*0] , C2 = [3678U3] , C3 = [295632] ,

ck = [178921] , c5 = [056710] , c6 = [0U8950] .

The decomposition is not coherent and i t s characteris t ic is 1 ; i t

represents a polyhedron on the projective plane obtained by identifying

opposite points on the regular dodecahedron.

We now show that P has no proper coherent decomposition. We cal l

two non-adjacent edges [ab], [ad] of P opposite i f the subgraph spanned

by a, b, a, d has no other edges in P . For instance [23] and [78]

are opposite because none of the edges [27], [28], [37], [38] , exist in
P .

THEOREM 3. Let H be a graph obtained from the Petersen graph P

by deleting a pair of opposite edges. Let G be any trivalent graph whiah

contains a subgraph isomorphic to H . Then G has no proper coherent

polyhedral decomposition.

In particular P itself has no proper coherent decomposition.

Because of the symmetries of the Petersen graph we may assume without loss

of generality that H is obtained from P by omitting the edges [23]

and [78] . We also denote by K the graph obtained from H by omitting

the set of vertices S = {2, 3, 7, 8} and replacing the set of edges

A = {[12], [29], [310, [36], [17], [67], [ W ] , [89]}

by the set B = {[16], [19], [H6], [1(9]} . Inspection shows that K is

isomorphic to the bipartite Kuratowski K- _ on the vertices 1, k, 5 and

0, 6, 9 •

Denote by Tv the set of arcs of K , by Tn the set of arcs of H ,
K ft

and. by O :?„•*•?„ an inclusion mapping defined as follows: If [at/] € A

where y € S then a(xy) = (xz) , o(yx) = (sx) , where s is the unique

vertex of K , distinct from x , for which [yz] (. A . If (xy) £ ?„ ,

x $ S , y $ S then we define a{xy) = (xy) . Note that given [xz] € B

there is a unique y 6 S such that [xy] € A , [yz] £ A , and hence

a{xy) = a(yz) = {xz) .

https://doi.org/10.1017/S0004972700042660 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042660


376 G. Szekeres

Suppose now that H i s embedded isomorphically in a t r iva len t G and

tha t G has a proper coherent decomposition £ = {c , C^, ... . , C } . By

Lemma 3, G has no double edges. We associate with £ a coherent

decomposition of K as follows. Suppose f i r s t that (xy) € I\, , [xy] ^ B

and l e t C\ be the (unique) circuit of £ which contains (xy) . Then

C. contains a path (xyz) and we define L (xy) = o(yz) . Suppose next

that [xz] € B ; then as we have remarked ea r l i e r , there is a unique

y € 5 suqh that [xy] € A , [yz] 6 A . Furthermore there is a unique

C. € £ containing the arc (yz) hence containing a path (yzt) , and we
0

define LAxz) = a(zt) . With this definition of Ln : Tv -*• T,. both
U U A A

conditions (i) and (ii) of Lemma 1 are sa t is f ied; the f i r s t one t r i v i a l l y ,

the second by vir tue of property Po of the circui ts C. . The orbits of

LQ form a coherent polyhedral decomposition of K ; th i s decomposition is

not necessarily proper, not even simple.

Let p, q, r denote the vertices 1, h, 5 in an arbitrary arrange-

ment, x, y, z the vert ices 0, 6, 9 in an arbitrary arrangement. Then

the only possible coherent decompositions of K are

1. [pxqyrzp] [pyqzrxp] [pzqxryp] ,

2. [pxqyp] [pyrsp] [pzqxryqzrxp] ,

3a. [pxqyrzpyqzrxpzqxryp] ,

3b. [pxqypzqxryqzrxpyrzp] .

In Case 1 there are two dist inct poss ib i l i t i e s :

[1O56U91] [1659UO1] [1950U61]

and

[161+9501] [1OU6591] [19^0561] .

By inser t ing the vert ices 2, 3, 7, 8 at the appropriate places we obtain

the following c i rcu i t s in H :

1.1 D1 = t210563lt892] , D2 = [765981*017] , D3 = [29501*36712] ,

1.2 D1 = [89501763U8] , D2 = [2101*36592] , D3 = [81*05671298] .
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It is sufficient to consider 1.1; for E has the dihedral group of

order 8 generated by the permutations (05)(l9|46)(2837) and

(27)(38)(69) for its group of symmetries, and either of these permutations

carries 1.1 into 1.2.

Each of the vertices 2, 35 1, 8 of S appears exactly twice in the

circuits D. , and exactly one of these occurrences represents in G a

vertex of entry (hence also of departure) of an arc from a vertex of G - H

in the original decomposition £ of G . We shall refer to such an

occurrence of the vertices 2, 3, 7> 8 in the circuits D. as a " vertex
Is

of entry" of the circuit. Note that in a D- there cannot be only one
It

vertex of entry since otherwise the corresponding circuit in G would not

be simple. Therefore there are either no vertices of entry in D. or

there are at least two. In the former case D. must appear as a circuit

in £ .

Now £L cannot be a circuit in £ since the subpath (210563) of

D is part of a circuit in £ and it has more than two vertices in

common with D- which is impossible in a proper decomposition. Hence 7

and 8 are vertices of entry in D^ and therefore they are not vertices

of entry in D and D- . But neither D nor D_ are circuits in Q_

since they have more than two vertices in common with the subpath (76598)

of D . Therefore 2 and 3 must be vertices of entry both in D and

D , which is impossible.

In Case 2 we have 18 distinct possibilities which after inserting

the vertices 2, 3, 7> 8 and taking into account the symmetries of H ,

reduce to 5 distinct cases:

2 . 1

2 . 2

2 .3

2.14

2.5

Dl

[101*3671]

[10143671]

[17631+8921]

[981+3659]

[O563l»O]

D2

[1765921]

[012950]

[012950]

[012950]

[012950]

D3

[l2981*0563li89501]

[1765981*05631*8921]

[101*365981*05671]

[lOl*8921763'*O567l]

[101*8921765981*3671] •
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Of these, Case 2.1 is ruled out because D and D^ both contain

only two vertices from 5 and 7 can only be vertex of entry in one of

them, therefore either D or V~ is a circuit of _C . But Z) contains

the paths (81*0563) and (895012) which have more than two vertices in

common with D. and £>„ .

In Case 2.2, D contains the path (81*05631*892) which is not

simple, therefore 3 is a vertex of entry of D . This implies that D

is a circuit of £ (since 3 in D is not vertex of entry), which is

impossible since it has more than two vertices in common with the subpath

(81*0563) of D .

In Case 2.3, 7 is a vertex of entry of D , by the same argument as

before, and therefore the subpath (21763) of D is part of a circuit in

£ , which is impossible since it has more than two vertices in common with

(7101+3) in D3 .

In Case 2.1*, 3 is a vertex of entry of D- hence D. is a circuit

of C. , which is impossible since it has more than two vertices in common

with the subpath (31*0567) of D .

Finally in Case 2.5, D and £> are circuits of £ since they have

only one vertex each froi^ 5 . flow one of tiie two occurrences of 7 in

D is not a vertex of entry and therefore either (367101*8) or (2176598)

is part of a circuit in £ . But the first of these paths has four

vertices in common with D , the second has four vertices in common with

D2 •

The last remaining cases are 3a and 3b; they are all equivalent under

the symmetries of H and we only have to consider

[101*3659217631*895012981*05671] .

Here 2 and 7 are vertices of entry in (89501298) and

(81*0567101*3) therefore (365921763) is part of a circuit in £ which is

clearly impossible if £ is to be proper. So we have verified Theorem 3

in all cases and the proof is complete.
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By a similar argument it can be shown that if E' is obtained from P

by deleting any two non-adjacent edges (not necessarily opposite, such as

[36] and [U8] ) then a trivalent G which contains an isomorphic copy

of E' has no proper coherent polyhedral decomposition.

Grunbaum's conjecture suggests a link between Tait colourability and

the existence of a proper coherent decomposition. A Tait colouring of a

graph is an edge colouring by three colours so that edges meeting' at a

vertex have distinct colours. Grunbaum's conjecture states that a cubic

graph which admits a proper coherent polyhedral decomposition always has a

Tait colouring. The result of Theorem 3 shows that the converse is not

true, not even if we assume that the graph contains no isthmuses or pairs

of edges whose removal disconnects the graph. Indeed H can easily be

shown to possess a Tait colouring and by joining two copies of ti via

edges between the corresponding vertices 2, 3, 7> 8 we obtain a cubic

graph with Tait colouring which does not admit a proper coherent

decomposition. We shall show somewhat more, namely that although E

itself has a Tait colouring, the colouring of the four edges emanating from

the vertices 2, 3, 7, 8 when E is embedded in a cubic graph is

restricted to two possibilities, each involving only two of the three

colours.

LEMMA 4. Let E be as in Theorem 3, G the graph obtained from E

by inserting four new vertices p, q, r, s and four new edges

Dra] = [2p-] , [Y2] = [3q] , [Y3] = [7r] , [ Y J = [8s] . Then in any

Tait colouring of G , the edges [Y-] •> ^ = 1> 2, 3, U receive two

distinct colours. Furthermore, the colours assigned to [Y,] and fyj

are distinct and the colours assigned to [Y»] and [y, ] are distinct.

Proof. Let a, b, c be the three colours. The circuit [017650]

receives, apart from a permutation of colours and cyclic permutation of

edges, the successive colours ababc . An easy enumeration shows that only

four of the five cyclic permutations are feasible; they yield the

following Tait colourings of E .
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[01] [17] [76] [65] [50] [63] [3h] [Uo] [12] [29] [95] [98] [8k]

a

b

a

b

a

a

b

a

b

a

a

b

a

b

a

a

b

a

b

a

a

a

b

a

b

a

a

b

a

a

a

a

b

a
a

0

a

b

b

a

a

a

a

b

b

a
a

a

a

b

b

a

The corresponding four possibility for [V.] a r e

'Z'

[YJ [Y2] [Y3]

a a a a

a b b a

a a a a

b a a b

which proves the lemma. For instance [Y-,] = [2p] must have a colour

d i s t inc t from [12] and [29] and this uniquely determines i t in a l l four

cases. Similarly for [Y2] , [Y3] and [y^] .

I t can be shown that Lemma k i s also valid for H' , obtained from P

by deleting the non-opposite edges [36] and [1+8] , with [Y,] = [3p] ,

[Y2] = [6q] , [Y 3 ] = [hr] , [ y j = [88] .

Lemma h permits the construction of a cubic graph Q with 50

ver t ices and 75 edges which does not admit Tait colouring. Q consists

of five subgraphs H. on the disjoint vertex sets X. = {x. .; 0 £ j S 9} ,

i = 1, 2, 3 , **, 5 , each isomorphic to H through the vertex assignment

j -*• x. • , 0 - j 2 9 > and the following ten edges between the H. :

(1) [*i2, *i+1J . \?iV x i + 2 8 ] , i = 1, 2, 3, U, 5

where the first subscripts are modulo 5 • There is exactly one edge

linking each pair of subgraphs H. and there is no ambiguity if we write
If

[i, i+ l ] for [xi2, xi+1j , [i, i42] for [x^, x ^ g ] .

THEOREM 4 . Q has no Tait colouring.

For suppose that Q has a Tait colouring. Then by Lemma k, the
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following pairs of edges must receive distinct colours:

(2) {[i, i+1], [i, i-1]} , {[£, i+2], [i, i-2]} , i 5 i 5 5 •

Furthermore, the colouring of the four edges [ij] incident with a given

H. must be identical in pairs. We show that these conditions are

contradi ctory.

By condition (2), consecutive edges in the sequence [12], [23], [3^],

f+5], [51] must receive distinct colours. We may assume, by symmetry,

that the sequence of colours is ababo . This sequence determines uniquely

the pair of colours that the four edges [ij] with given i may receive.

In particular [13] and [35] may only receive a, b or b, a and

similarly [ik], [2k] may only receive a, b or b, a . But [13] and

[ik] may only receive a, a or c, a , a contradiction.

4. Even decompositions

We consider now cubic graphs with a Tait colouring by three colours

a, b, a . Such a graph obviously cannot have a loop. Furthermore, the

{ab), {bo), (ca) circuits form a simple polyhedral decomposition in which

all circuits are of even length. Let us call such a decomposition even;

thus every cubic G which has a Tait colouring has an even polyhedral

decomposition. The main result of this section is that the converse is

also true.

THEOREM 5. Let the cubic graph G have an even polyhedral

decomposition £ = \c , C_, ..., C } ; then G has a Tait colouring by

three colours a, b, c and a mapping x : £ -»• {a, b, c} such that no edge

of C, (. £ receives the colour TC, .

We call this the Tait colouring induced by £ .

As a corollary we obtain

THEOREM 6. Necessary and sufficient for G to have a Tait colouring

is that G possesses an even polyhedral decomposition.

Proof of Theorem 5. We may assume that G is connected. It follows

from Lemma 3 that if G has an even decomposition then it has no isthmuses

hence no loops. How the only cubic graph on two vectices and without loops
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is the t r iple edge with vertices p , q and arcs (paq), (p3<?), (pyq) and

their reverses. This graph obviously has a Tait colouring. Hence we may-

assume that G has more than two vertices and that the theorem is true for

graphs with fewer vertices than G .

We f i rs t consider the case when G has a double edge, that i s , arcs

(xay), (x&y) , a ^ 3 . Let the other two arcs with in i t ia l vertices x

and y be {xy-f) , [yy2q] • Let £ = {C± Ĉ } be an even

decomposition. One of the circuits, say C , contains (pY-Jx) (if C

contains [xy.p] then we replace i t by i ts reverse] . Since C. is

simple, the only possibility (apart from an interchange of a and 3 ) is

that C, = [py'xayy2ql/p] where (qllp) is a simple path of odd length,

avoiding x and y . Another circuit, say C^ , contains [qyly) > i t

must have the form C2 = \_qy2y$'xy^?Vq~\ where (pVq) is again a simple

path of odd length, avoiding x and y . Finally there must also be a

circuit C_ = [x&ya'x] in .C (again replacing i t by i ts reverse if

necessary).

Now le t G* be the cubic graph obtained from G by removing

x, y, [a], [3], [ Y J , [Y2] and inserting the new arcs (py*q), (qy*'p)

Then C* = [py*qUp] , <?* = [qy*'pVq] , C*. = C\+1 for j > 3 form an

even decomposition g* = {C*, C* C*-1^ °f G* ' B y t n e i n d u c t i o n

hypothesis C* induces a Tait colouring in G* . Suppose that [Y*] is

a e-.edge, C? an (ao) circuit, C* a (be) circuit, then take [Y,]

and [Y2] to be c-edges, [a] an a-edge, [3] a Z?-edge, al l other

edges of G receiving the same colour as in G* . This will clearly yield

a Tait colouring for G , induced by £ .

Next we assume that G has no double edges but contains a triangle

with edges [ a j , [ag] , [a3] , corresponding to arcs [xa^y] , (i/c^s) ,

(sa^x) . Let (x3,p) , (i/3p<?), (33-,̂ ) b e the other three arcs with in i t ia l

vertices x, y, z where p, q, r are not necessarily distinct. Since

[xa ya. sa x] is not admissible as a circuit of an even decomposition, the
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only possibility (apart from trivial renumberings and reversals) for

circuits through the vertices x, y, z is

Cx =• [p^xa^a^z^rUp] , CV, =

where (rl/p), (pVq), (qWr) are paths of even length (possibly of zero

length if the vertices p, q, r are not distinct).

Let G* be obtained from G by removing x, y, z and all edges

indicent with them, and inserting a new vertex t and three new edges

[y*], [y|] > [Y|] ' corresponding to the arcs (tY*p), [ty*q] , (*Y**0 .

Then C* = [qVqy*'ty£>] , C* = [qWry*' ty*q] , C* = [rUpy*'ty*r] ,

C*. = C. for J > 3 form an even decomposition £* = {C* C* C^} of

G* . By the induction hypothesis, C,* induces a Tait colouring; let

[Y*] receive colour a , [Y*] colour b , [Y*] colour a . Then C*

is an (ab) circuit, V an (ab) path starting with a i-edge, ending

with an a-edge. Similarly C4 is a (be) circuit, W a (be) path

starting with a c-edge, ending with a £>-edge, C* is a (oa) circuit,

U a (aa) path starting with an a-edge, ending with a e-edge. There-

fore we obtain a Tait colouring for G , induced by £ , if [gj , [a,]

receive a , and [g ] , [OL] receive a .

Finally we assume that G has no loops, double edges or triangles.

Let £ = {(?,, Cp C } be an even decomposition of G . We call an

edge [Y] a canal of C-, € £ if (pyq) £ T and p, q are non-

consecutive vertices of C, , that is, p, q are vertices of C, but [YJ

is not an edge of C, . We shall first prove (without making use of the

induction hypothesis) that Theorem 5 is true if every edge is a canal of

some Cp .

(l) Each vertex of G appears in exactly three distinct circuits.

For if p is a vertex of C, then there are exactly two arcs in C,

which have p as initial or terminal vertex (since C, is simple) , and
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there are altogether six such arcs (since G is cubic).

(2) An edge [y] is canal of at most one C, . For 'if (pY<?) € T

then (pyq) and (qy'p) appear in two distinct circuits (since all

circuits are simple) and p and q may only appear in a single other

circuit C, , by (l).

(3) If all vertices of C. are endvertices of canals of C. then

C. must pass through all vertices of G . For the subgraph spanned by the

vertices of C. is trivalent, hence a component of G . It must therefore

be the whole of G since G is connected.

(U) If all edges of G are canals of some C, then £ has just

three circuits C , C?, C_ , each passing through every vertex of G . For

let 2X. be the length of C. and p. the number of canals of C. ,

i = 1, 2, m . Clearly u. £ X. . The number of edges of G which

m
are canals is y = \ p. since each is canal of exactly one C. , by (2).

• £ = 1

m
Hence u £ £ A. , equality only if all vertices of C. are endvertices

v=l % %

of canals of C. for every i . But \ X. is the total number of edges

in G (since each edge appears in exactly two circuits), hence if all

edges are canals then each C. passes through all vertices of G , by (3).

Is

From here it follows, by (l), that there are only three circuits

c1, c2, c3 .

We now show t h a t i f a l l edges are canals then £ = {(7. , C^, C }

induces a Ta i t c o l o u r i n g . Let C^ = [po
a
1P1 ••• a

2k
P2k) ' P0 = P2k '

where by (U), X = {p , p , . . . , p^A i s t h e s e t of v e r t i c e s of G .

Since a l l edges a re c a n a l s , C. must have k canals {y^\ , . . . , [Y^J and

each [y.] i s an edge of both £„ and C_ . They are separa ted by edges

of C. , exac t ly h a l f of the edges [a."] appearing in C~ and the o ther
1 t7 *-
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half in C_ . Clearly [a.] and [<*..,] cannot appear simultaneously in
J 3 3' -1-

C? ; for they are not consecutive edges, by the basic property of

polyhedral decompositions, and the vertex p . cannot appear more than once
3

since C^ is simple. Hence if say C_ contains [a ] then i t must
contain exactly the [a.] with odd j and C contains the [a 7\ with

3 J 3
even j . Colouring the [a.] with odd 3 by a , those with even j by

3

b , and the [y-] by o , we obtain a Tait colouring induced by £ , and

Theorem 3 is proved for this C_ .

The last remaining case to be considered is when G has no double
edges or triangles, but has an edge [y] which is not a canal of any C,

in the even decomposition £ = {c , C_, , C } . Let {xyy) € T , and

(a;o,p), [x&.q], (j/oy?), [ya^] the arcs in T distinct from (xyy) or

iyy'x) with init ial vertices x or y . Since G has no triangles,
p, q, r, 6 are distinct from each other and from x, y . Let

C. = [pa'xyya^rUp] , <?„ = [sS^yy'xB qVs] be the two circuits containing

Y (where if necessary we replace C. or <?„ by their reverses). Here

(rUp), (qVs) are paths of odd length avoiding a , a , & , & .

Since each edge appears twice, there must be a circuit
C, = fofi^xa. pWq] in £ (distinct from C , C ) where {pWq) is of even

length. Clearly W must avoid 32 since otherwise [y] would be a canal

of C_ with end vertices x and y . Hence we must have a circuit

C. = lra^&28Tr] , distinct from the other three, in which (sTr) is of

even length.

Let G* be*obtained from G be deleting x, y, JjaJ , [ a j , [3 J >

[fjj and inserting the arcs (pY?*"] > (<7Yos) a n d their reverses. Then

C = [ r ^ y r ] , C* = 0?KSY*'<?] » C* = {pWqy^sTry^'p} , « = Ci+1 for

1* < i < m-1 form an even decomposition C* = {C*, C*, . . . . C*_ } of G* .

By the induction hypothesis £* induces a Tait colouring; let C* be an
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(ab) circuit. Since W, T have even length, \y*\ and [y*\ obtain

distinct colours; we may assign a to \y*] , b to [y|] . Then W, T

are (ab) paths, W starting with a fc-edge and ending with an a-edge,
T starting with an a-edge and ending with a 2>-edge. The colouring of
C* and C* is now forced: U is an (ac) path, 7 is a (bo) path,

both of odd length and starting and ending with a e-edge.

To obtain a Tait colouring in G , retain al l colourings form G* for
the common edges and assign a to [a ] , [by , b to Q5, J, [j3pj , and

a to [y] • This will obviously produce a Tait colouring induced by £ ,
and Theorem 5 is fully proved.

We mention the following consequence of Theorem 5 which is a
reformulation of Theorem 1 in [6J.

THEOREM 7. Let £ = '{c., ..., C } be an even polyhedral decompos-

ition of the trivalent graph G , x *^e characteristic of the decompos-

ition. Let \i be the number of edges on which line twc circuits which

contain the edge have the same orientation. Then y = X (mod 2) .

In terms of maps on surfaces we can formulate the result as follows:
Suppose that a map on a (non-orientable) surface of characteristic x has
the property that

(i) each vertex has degree three, and

(ii) every country has an even number of neighbours.

Provide the boundary of each country with an orientation and let ]i be the
number of edges which obtain the same orientation from the two countries
adjacent to the edge. Then y = X (mod 2) .

If the surface is orientable and the countries are coherently oriented
then ]i = 0 and the theorem merely states the well known fact that the
characteristic is even.

In view of Theorem 6, the four colour conjecture can be given the
following equivalent formulation:

Every trivalent graph which has a proper coherent polyhedral
decomposition of genus 0 has an even polyhedral decomposition.
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Grunbaumis conjecture can be stated as follows:

Every trivalent graph which has a proper coherent polyhedral

decomposition has an even polyhedral decomposition.
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