Polyhedral divisors of Cox rings

Jarosław Wiśniewski, reporting a work with Klaus Altmann

Cox rings and MDS

e Let Z be a \mathbb{Q}-factorial projective variety over \mathbb{C} such that $\mathrm{Cl}(Z)$ is a lattice. We define

$$
\operatorname{Cox}(Z)=\bigoplus_{D \in \mathrm{Cl}(Z)} \Gamma(Z, \mathcal{O}(D))
$$

with multiplicative structure defined by a choice of divisors whose classes form a basis of $\mathrm{Cl}(Z)$.

Cox rings and MDS

e Let Z be a \mathbb{Q}-factorial projective variety over \mathbb{C} such that $\mathrm{Cl}(Z)$ is a lattice. We define

$$
\operatorname{Cox}(Z)=\bigoplus_{D \in \mathrm{Cl}(Z)} \Gamma(Z, \mathcal{O}(D))
$$

with multiplicative structure defined by a choice of divisors whose classes form a basis of $\mathrm{Cl}(Z)$.
e Assume $\operatorname{Cox}(Z)$ finitely generated and call Z a Mori Dream Space (or MDS). The $\mathrm{Cl}(Z)$-grading of $\operatorname{Cox}(Z)$ yields action of torus $\operatorname{Hom}_{\mathbb{Z}}\left(\mathrm{Cl}(Z), \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{\mathrm{rk}(\mathrm{Cl}(Z))}$ on the affine variety $\operatorname{Spec}(\operatorname{Cox}(Z))$.

polyhedral group

e Let T be an algebraic torus over \mathbb{C}. We get the mutually dual lattices, $M:=\operatorname{Hom}_{\text {algGrp }}\left(T, \mathbb{C}^{*}\right)$ and $N:=\operatorname{Hom}_{\mathrm{algGrp}}\left(\mathbb{C}^{*}, T\right)$.

polyhedral group

e Let T be an algebraic torus over \mathbb{C}. We get the mutually dual lattices, $M:=\operatorname{Hom}_{\text {algGrp }}\left(T, \mathbb{C}^{*}\right)$ and $N:=\operatorname{Homalgirp}^{\left(\mathbb{C}^{*}, T\right) \text {. }}$
e If $\sigma \subseteq N_{\mathbb{Q}}$ is a polyhedral cone, then we denote by $\operatorname{Pol}\left(N_{\mathbb{Q}}, \sigma\right)$ the Grothendieck group of the semigroup
$\operatorname{Pol}^{+}\left(N_{\mathbb{Q}}, \sigma\right):=\left\{\Delta \subseteq N_{\mathbb{Q}} \mid \Delta=\sigma+[\right.$ compact polytope $\left.]\right\}$
with respect to Minkowski addition. Via $a \mapsto a+\sigma$, the latter contains $N_{\mathbb{Q}}$. Moreover, $\operatorname{tail}(\Delta):=\sigma$ is called the tail cone of the elements of $\operatorname{Pol}\left(N_{\mathbb{Q}}, \sigma\right)$.

polyhedral divisors

e Let Y be a normal and semiprojective variety. By $\operatorname{CaDiv}(Y)$ and $\operatorname{Div}(Y)$ we denote the group of Cartier and Weil divisors on Y.

polyhedral divisors

e Let Y be a normal and semiprojective variety. By $\operatorname{CaDiv}(Y)$ and $\operatorname{Div}(Y)$ we denote the group of Cartier and Weil divisors on Y.

$$
\mathcal{D}=\sum_{i} \Delta_{i} \otimes D_{i} \in \operatorname{Pol}\left(N_{\mathbb{Q}}, \sigma\right) \otimes_{\mathbb{Z}} \operatorname{CaDiv}(Y)
$$

with D_{i} effective divisors and $\Delta_{i} \in \operatorname{Pol}^{+}\left(N_{\mathbb{Q}}, \sigma\right)$ is a polyhedral divisor on (Y, N) with tail cone $\sigma=\operatorname{tail}(\mathcal{D})$.

polyhedral divisors

e Let Y be a normal and semiprojective variety. By $\operatorname{CaDiv}(Y)$ and $\operatorname{Div}(Y)$ we denote the group of Cartier and Weil divisors on Y.

2

$$
\mathcal{D}=\sum_{i} \Delta_{i} \otimes D_{i} \in \operatorname{Pol}\left(N_{\mathbb{Q}}, \sigma\right) \otimes_{\mathbb{Z}} \operatorname{CaDiv}(Y)
$$

with D_{i} effective divisors and $\Delta_{i} \in \operatorname{Pol}^{+}\left(N_{\mathbb{Q}}, \sigma\right)$ is a polyhedral divisor on (Y, N) with tail cone $\sigma=\operatorname{tail}(\mathcal{D})$.
e Moreover, it is called semiample if the evaluations $\mathcal{D}(u):=\sum_{i} \min \left\langle\Delta_{i}, u\right\rangle D_{i}$ are semiample for $u \in \sigma^{\vee} \cap M$

p-divisors \rightarrow varieties

e For $u \in \sigma^{\vee}$ we get $\min \left\langle\Delta_{i}, u\right\rangle>-\infty$ and therefore \mathcal{D} defines a function $\sigma^{\vee} \rightarrow \operatorname{CaDiv}_{\mathbb{Q}}(Y)$ denoted by the same name. By abuse, $\mathcal{D}: M_{\mathbb{Q}} \rightarrow \operatorname{CaDiv}_{\mathbb{Q}}(Y)$ however $\Gamma\left(Y, \mathcal{O}_{Y}(\mathcal{D}(u))\right)=0$ makes sense for $u \notin \sigma^{\vee}$.

p-divisors \rightarrow varieties

e For $u \in \sigma^{\vee}$ we get $\min \left\langle\Delta_{i}, u\right\rangle>-\infty$ and therefore \mathcal{D} defines a function $\sigma^{\vee} \rightarrow \operatorname{CaDiv}_{\mathbb{Q}}(Y)$ denoted by the same name. By abuse, $\mathcal{D}: M_{\mathbb{Q}} \rightarrow \operatorname{CaDiv}_{\mathbb{Q}}(Y)$ however $\Gamma\left(Y, \mathcal{O}_{Y}(\mathcal{D}(u))\right)=0$ makes sense for $u \notin \sigma^{\vee}$.
e Semiample polyhedral divisors are called p-divisors. We get a structure of finitely generated \mathbb{C}-algebra on $\bigoplus_{u \in M} \Gamma\left(Y, \mathcal{O}_{Y}(\mathcal{D}(u))\right)$ and define

$$
X:=X(\mathcal{D}):=\operatorname{Spec} \bigoplus_{u \in M} \Gamma\left(Y, \mathcal{O}_{Y}(\mathcal{D}(u))\right)
$$

which is an affine variety with T action.

p-divisors \leftrightarrow varieties

e The variety $X(\mathcal{D})$ does not change if \mathcal{D} is pulled back via a birational modification $Y^{\prime} \rightarrow Y$ or if \mathcal{D} is altered by a polyhedral principal divisor from Y. P-divisors that differ by (a chains of) those operations are called equivalent.

p-divisors \leftrightarrow varieties

e The variety $X(\mathcal{D})$ does not change if \mathcal{D} is pulled back via a birational modification $Y^{\prime} \rightarrow Y$ or if \mathcal{D} is altered by a polyhedral principal divisor from Y. P-divisors that differ by (a chains of) those operations are called equivalent.
e Altmann, Hausen: The map $\mathcal{D} \mapsto X(\mathcal{D})$ yields a bijection between equivalence classes of p-divisors and normal, affine \mathbb{C}-varieties with an effective T-action.

p-divisors \leftrightarrow varieties

e The variety $X(\mathcal{D})$ does not change if \mathcal{D} is pulled back via a birational modification $Y^{\prime} \rightarrow Y$ or if \mathcal{D} is altered by a polyhedral principal divisor from Y. P-divisors that differ by (a chains of) those operations are called equivalent.
e Altmann, Hausen: The map $\mathcal{D} \mapsto X(\mathcal{D})$ yields a bijection between equivalence classes of p-divisors and normal, affine \mathbb{C}-varieties with an effective T-action.
e Task: Find description of $\operatorname{Cox}(\bullet)$ in terms of $\mathcal{D}_{\text {Cox }}$.

p-divisors \leftrightarrow varieties

e The variety $X(\mathcal{D})$ does not change if \mathcal{D} is pulled back via a birational modification $Y^{\prime} \rightarrow Y$ or if \mathcal{D} is altered by a polyhedral principal divisor from Y. P-divisors that differ by (a chains of) those operations are called equivalent.
e Altmann, Hausen: The map $\mathcal{D} \mapsto X(\mathcal{D})$ yields a bijection between equivalence classes of p-divisors and normal, affine \mathbb{C}-varieties with an effective T-action.
e Task: Find description of $\operatorname{Cox}(\bullet)$ in terms of $\mathcal{D}_{\text {Cox }}$.
e Motivation: Zariski decomposition, base point loci loci and multiplicities.

warnings

e Equivalent divisors define the same map $N_{\mathbb{Q}} \rightarrow \operatorname{CaDiv}_{\mathbb{Q}}(Y) / \operatorname{PDiv}(Y) \neq \operatorname{Pic}_{\mathbb{Q}}(Y)$ which we can extend to $N_{\mathbb{Q}} \rightarrow \operatorname{Pic}_{\mathbb{Q}}(Y)$.

warnings

e Equivalent divisors define the same map $N_{\mathbb{Q}} \rightarrow \operatorname{CaDiv}_{\mathbb{Q}}(Y) / \operatorname{PDiv}(Y) \neq \operatorname{Pic}_{\mathbb{Q}}(Y)$ which we can extend to $N_{\mathbb{Q}} \rightarrow \operatorname{Pic}_{\mathbb{Q}}(Y)$.
e When T is the Picard torus, then $N=\mathrm{Cl}(Y)$, hence we have a map $\mathrm{Cl}_{\mathbb{Q}}(Y) \rightarrow \operatorname{Pic}_{\mathbb{Q}}(Y)$. One may be tempted to think that this should be identity.

warnings

e Equivalent divisors define the same map $N_{\mathbb{Q}} \rightarrow \operatorname{CaDiv}_{\mathbb{Q}}(Y) / \operatorname{PDiv}(Y) \neq \operatorname{Pic}_{\mathbb{Q}}(Y)$ which we can extend to $N_{\mathbb{Q}} \rightarrow \operatorname{Pic}_{\mathbb{Q}}(Y)$.
e When T is the Picard torus, then $N=\mathrm{Cl}(Y)$, hence we have a map $\mathrm{Cl}_{\mathbb{Q}}(Y) \rightarrow \operatorname{Pic}_{\mathbb{Q}}(Y)$. One may be tempted to think that this should be identity.
e The effective grading of $\operatorname{Cox}(\bullet)$ is in the cone of effective divisors $\mathrm{Eff} \subset \mathrm{Cl}_{\mathbb{Q}}$ while the values of the expected p-divisor is in the cone of semi-ample divisors Nef \subset Pic $\mathbb{Q}_{\mathbb{Q}}$ hence $\mathcal{D}_{\text {Cox }}$ defines a map

$$
\mathrm{Cl}_{\mathbb{Q}} \supset \mathrm{Eff} \rightarrow \mathrm{Nef} \subset \mathrm{Pic}_{\mathbb{Q}}
$$

Zariski decomposition

e Let D be an effective \mathbb{Q} divisor on a surface S. Then $D=P+N$ where $P \in \operatorname{Nef}(S)$ and N is effective, if non-empty then supported on a contractible divisor transversal to P. Moreover for $n \geq 0$ we have

$$
\Gamma\left(S, \mathcal{O}_{S}(n D)\right)=\Gamma\left(S, \mathcal{O}_{S}(n P)\right)
$$

Zariski decomposition

e Let D be an effective \mathbb{Q} divisor on a surface S. Then $D=P+N$ where $P \in \operatorname{Nef}(S)$ and N is effective, if non-empty then supported on a contractible divisor transversal to P. Moreover for $n \geq 0$ we have

$$
\Gamma\left(S, \mathcal{O}_{S}(n D)\right)=\Gamma\left(S, \mathcal{O}_{S}(n P)\right)
$$

e If $\operatorname{Cox}(S)$ is finitely generated then $\mathcal{D}_{\mathrm{Cox}}([D])=[P]$.

Zariski decomposition

e Let D be an effective \mathbb{Q} divisor on a surface S. Then $D=P+N$ where $P \in \operatorname{Nef}(S)$ and N is effective, if non-empty then supported on a contractible divisor transversal to P. Moreover for $n \geq 0$ we have

$$
\Gamma\left(S, \mathcal{O}_{S}(n D)\right)=\Gamma\left(S, \mathcal{O}_{S}(n P)\right)
$$

e If $\operatorname{Cox}(S)$ is finitely generated then $\mathcal{D}_{\mathrm{Cox}}([D])=[P]$.
e

$$
\mathcal{D}_{\mathrm{Cox}}: \mathrm{Cl}_{\mathbb{Q}}(S) \supset \operatorname{Eff}(S) \rightarrow \operatorname{Nef}(S) \subset \operatorname{Pic}_{\mathbb{Q}}(S)
$$

is a piecewise linear retraction of cones.

\mathbb{P}^{2} blown-up in two points

MDS and SQM's

An MDS Z has finitely many small (iso in codim 1) \mathbb{Q}-factorial modifications Z_{i} (SQM's) [Hu, Keel]

MDS and SQM's

An MDS Z has finitely many small (iso in codim 1) \mathbb{Q}-factorial modifications Z_{i} (SQM's) [Hu, Keel]
Varieties Z_{i} are exactly the \mathbb{Q}-factorial GIT quotients of $\operatorname{Cox}(Z)$ by the Picard torus arising from linearizations of the trivial bundle depending on the choice of a character of the torus [Thaddeus, Reid, Brion, Hu, Dolgachev]

MDS and SQM's

An MDS Z has finitely many small (iso in codim 1) Q-factorial modifications Z_{i} (SQM's) [Hu, Keel]
Z_{i} share the same Cox ring and, by strict transform, we identify $\operatorname{Div}\left(Z_{i}\right)$ and $\mathrm{Cl}\left(Z_{i}\right)$ with $\operatorname{Div}(Z)$ and $\mathrm{Cl}(Z)$, respectively; same holds for effective and movable cones

$$
\operatorname{Eff}\left(Z_{i}\right)=\operatorname{Eff}(Z) \quad \operatorname{Mov}\left(Z_{i}\right)=\operatorname{Mov}(Z)
$$

MDS and SQM's

An MDS Z has finitely many small (iso in codim 1) \mathbb{Q}-factorial modifications Z_{i} (SQM's) [Hu, Keel]
Z_{i} share the same Cox ring and, by strict transform, we identify $\operatorname{Div}\left(Z_{i}\right)$ and $\mathrm{Cl}\left(Z_{i}\right)$ with $\operatorname{Div}(Z)$ and $\mathrm{Cl}(Z)$, respectively; same holds for effective and movable cones

$$
\operatorname{Eff}\left(Z_{i}\right)=\operatorname{Eff}(Z) \quad \operatorname{Mov}\left(Z_{i}\right)=\operatorname{Mov}(Z)
$$

However, the cones $\operatorname{Nef}\left(Z_{i}\right)$ are different, that is $\operatorname{int} \operatorname{Nef}\left(Z_{i}\right) \cap \operatorname{int} \operatorname{Nef}\left(Z_{j}\right)=\emptyset$ if $Z_{i} \neq Z_{j}$ and we have decomposition

$$
\operatorname{Mov}(Z)=\bigcup_{i} \operatorname{Nef}\left(Z_{i}\right)
$$

Chow limit

e GIT quotients and their morphisms form a projective system. Take its limit, normalize it and get Chow limit Y which dominates all Z_{i} via birational morphisms:

$$
\operatorname{Spec} \operatorname{Cox}(Z)-\rightarrow Y \xrightarrow{\psi_{i}} Z_{i}
$$

Chow limit

e GIT quotients and their morphisms form a projective system. Take its limit, normalize it and get Chow limit Y which dominates all Z_{i} via birational morphisms:

$$
\operatorname{Spec} \operatorname{Cox}(Z)-\rightarrow Y \xrightarrow{\psi_{i}} Z_{i}
$$

e Note that the maps

$$
\psi_{i}^{*}, \psi_{j}^{*}: \operatorname{Pic}_{\mathbb{Q}}\left(Z_{i}\right)=\operatorname{Pic}_{\mathbb{Q}}\left(Z_{j}\right) \longrightarrow \operatorname{Pic}_{\mathbb{Q}}(Y)
$$

are different if $i \neq j$, but

$$
\psi_{i}^{*}\left(\operatorname{Nef}\left(Z_{i}\right)\right), \psi_{j}^{*}\left(\operatorname{Nef}\left(Z_{j}\right)\right) \subset \operatorname{Nef}(Y)
$$

exceptional divisors on Y

e An irreducible divisor $E \subset Y$ is an exceptional divisor of the first kind if it is a component of the exceptional locus of any (hence of all) morphism $\psi_{i}: Y \rightarrow Z_{i}$.

exceptional divisors on Y

e An irreducible divisor $E \subset Y$ is an exceptional divisor of the first kind if it is a component of the exceptional locus of any (hence of all) morphism $\psi_{i}: Y \rightarrow Z_{i}$.
e An irreducible divisor $E \subset Y$ is an exceptional divisor of the second kind if it is a strict transform to Y of a (divisorial) component of an exceptional locus of a birational morphism (divisorial contraction) of a Z_{i}; i.e. E is a non-movable divisor on Z.

stable multiplicities

e For a birational $\psi: Y \rightarrow Z$ and a big divisor B on Z

$$
\operatorname{mult}_{E}^{\text {sts }}\left(\psi^{*}[B]\right):=\inf _{D \in|B| \mathbb{Q}} \operatorname{mult}_{E}\left(\psi^{*} D\right)
$$

where $D \in|B|_{\mathbb{Q}}$ means that D is an (effective)
\mathbb{Q}-divisor with $m D \in|m B|$ for $m \gg 0$.

stable multiplicities

e For a birational $\psi: Y \rightarrow Z$ and a big divisor B on Z

$$
\operatorname{mult}_{E}^{\text {st }}\left(\psi^{*}[B]\right):=\inf _{D \in|B| \mathbb{Q}} \operatorname{mult}_{E}\left(\psi^{*} D\right)
$$

where $D \in|B|_{\mathbb{Q}}$ means that D is an (effective)
\mathbb{Q}-divisor with $m D \in|m B|$ for $m \gg 0$.
e Eventually, for an MDS Z the stable multiplicity function mult $E_{E}^{\text {st }}:=\operatorname{mult}_{E}^{\text {st }} \circ \psi^{*}$ can be extended to a concave, fanwise linear function on $\mathrm{Eff}(Z) \subseteq \mathrm{Cl}(Z)_{\mathbb{Q}}$. [Ein, Lazarsfeld, Mustaţă, Nakamaye, Popa]

the theorem

Altmann, _-: In the above situation

$$
\mathcal{D}_{\mathrm{Cox}}=\psi_{i}^{*}+\sum_{E \subset Y} \Delta_{E}^{i} \otimes E
$$

where E are exceptional divisors described above and

$$
\Delta_{E}^{i}:=\left\{C \in \mathrm{Cl}^{*}\left(Z_{i}\right)_{\mathbb{Q}} \mid\langle C,[B]\rangle \geq-\operatorname{mult}_{E}^{\text {st }} \psi_{i}^{*} B\right\}
$$

In short: for a big B on Z the class $\mathcal{D}_{\text {Cox }}([B])$ is the stable base-point free part of $\psi^{*}(B)$.

\mathbb{P}^{3} blown-up in two points

As a map of cones $\mathcal{D}_{\text {Cox }}: \operatorname{Eff}(Z) \rightarrow \operatorname{Nef}(Y)$ it is a composition of piecewise retraction of $\mathrm{Eff}(Z)$ to $\operatorname{Mov}(Z)$ with ψ_{i}^{*} on each $\operatorname{Nef}\left(Z_{i}\right)$.

