Polyhedral divisors of Cox rings

Jarosław Wiśniewski, reporting a work with Klaus Altmann

Cox rings and MDS

• Let Z be a \mathbb{Q} -factorial projective variety over \mathbb{C} such that $\mathrm{Cl}(Z)$ is a lattice. We define

$$Cox(Z) = \bigoplus_{D \in Cl(Z)} \Gamma(Z, \mathcal{O}(D))$$

with multiplicative structure defined by a choice of divisors whose classes form a basis of Cl(Z).

Cox rings and MDS

• Let Z be a \mathbb{Q} -factorial projective variety over \mathbb{C} such that $\mathrm{Cl}(Z)$ is a lattice. We define

$$Cox(Z) = \bigoplus_{D \in Cl(Z)} \Gamma(Z, \mathcal{O}(D))$$

with multiplicative structure defined by a choice of divisors whose classes form a basis of Cl(Z).

• Assume Cox(Z) finitely generated and call Z a Mori Dream Space (or MDS). The Cl(Z)-grading of Cox(Z) yields action of torus $Hom_{\mathbb{Z}}(Cl(Z), \mathbb{C}^*) \cong (\mathbb{C}^*)^{\mathrm{rk}(Cl(Z))}$ on the affine variety $\mathrm{Spec}(Cox(Z))$.

polyhedral group

• Let T be an algebraic torus over \mathbb{C} . We get the mutually dual lattices, $M:=\operatorname{Hom}_{\operatorname{algGrp}}(T,\mathbb{C}^*)$ and $N:=\operatorname{Hom}_{\operatorname{algGrp}}(\mathbb{C}^*,T)$.

polyhedral group

- Let T be an algebraic torus over \mathbb{C} . We get the mutually dual lattices, $M:=\operatorname{Hom}_{\mathsf{algGrp}}(T,\mathbb{C}^*)$ and $N:=\operatorname{Hom}_{\mathsf{algGrp}}(\mathbb{C}^*,T)$.
- If $\sigma \subseteq N_{\mathbb{Q}}$ is a polyhedral cone, then we denote by $\operatorname{Pol}(N_{\mathbb{Q}}, \sigma)$ the Grothendieck group of the semigroup

$$\operatorname{Pol}^+(N_{\mathbb{Q}}, \sigma) := \{ \Delta \subseteq N_{\mathbb{Q}} \mid \Delta = \sigma + [\mathsf{compact polytope}] \}$$

with respect to Minkowski addition. Via $a \mapsto a + \sigma$, the latter contains $N_{\mathbb{Q}}$. Moreover, $\operatorname{tail}(\Delta) := \sigma$ is called the tail cone of the elements of $\operatorname{Pol}(N_{\mathbb{Q}}, \sigma)$.

polyhedral divisors

Let Y be a normal and semiprojective variety. By $\operatorname{CaDiv}(Y)$ and $\operatorname{Div}(Y)$ we denote the group of Cartier and Weil divisors on Y.

polyhedral divisors

Let Y be a normal and semiprojective variety. By CaDiv(Y) and Div(Y) we denote the group of Cartier and Weil divisors on Y.

$$\mathcal{D} = \sum_{i} \Delta_{i} \otimes D_{i} \in \operatorname{Pol}(N_{\mathbb{Q}}, \sigma) \otimes_{\mathbb{Z}} \operatorname{CaDiv}(Y)$$

with D_i effective divisors and $\Delta_i \in \operatorname{Pol}^+(N_{\mathbb{Q}}, \sigma)$ is a *polyhedral divisor* on (Y, N) with tail cone $\sigma = \operatorname{tail}(\mathcal{D})$.

polyhedral divisors

Let Y be a normal and semiprojective variety. By CaDiv(Y) and Div(Y) we denote the group of Cartier and Weil divisors on Y.

$$\mathcal{D} = \sum_{i} \Delta_{i} \otimes D_{i} \in \operatorname{Pol}(N_{\mathbb{Q}}, \sigma) \otimes_{\mathbb{Z}} \operatorname{CaDiv}(Y)$$

with D_i effective divisors and $\Delta_i \in \operatorname{Pol}^+(N_{\mathbb{Q}}, \sigma)$ is a polyhedral divisor on (Y, N) with tail cone $\sigma = \operatorname{tail}(\mathcal{D})$.

• Moreover, it is called *semiample* if the evaluations $\mathcal{D}(u) := \sum_{i} \min \langle \Delta_i, u \rangle D_i$ are semiample for $u \in \sigma^{\vee} \cap M$

• For $u \in \sigma^{\vee}$ we get $\min \langle \Delta_i, u \rangle > -\infty$ and therefore \mathcal{D} defines a function $\sigma^{\vee} \to \operatorname{CaDiv}_{\mathbb{Q}}(Y)$ denoted by the same name. By abuse, $\mathcal{D}: M_{\mathbb{Q}} \to \operatorname{CaDiv}_{\mathbb{Q}}(Y)$ however $\Gamma(Y, \mathcal{O}_Y(\mathcal{D}(u))) = 0$ makes sense for $u \notin \sigma^{\vee}$.

- For $u \in \sigma^{\vee}$ we get $\min \langle \Delta_i, u \rangle > -\infty$ and therefore \mathcal{D} defines a function $\sigma^{\vee} \to \operatorname{CaDiv}_{\mathbb{Q}}(Y)$ denoted by the same name. By abuse, $\mathcal{D}: M_{\mathbb{Q}} \to \operatorname{CaDiv}_{\mathbb{Q}}(Y)$ however $\Gamma(Y, \mathcal{O}_Y(\mathcal{D}(u))) = 0$ makes sense for $u \notin \sigma^{\vee}$.
- Semiample polyhedral divisors are called *p-divisors*. We get a structure of finitely generated \mathbb{C} -algebra on $\bigoplus_{u \in M} \Gamma(Y, \mathcal{O}_Y(\mathcal{D}(u)))$ and define

$$X := X(\mathcal{D}) := \operatorname{Spec} \bigoplus_{u \in M} \Gamma(Y, \mathcal{O}_Y(\mathcal{D}(u)))$$

which is an affine variety with T action.

• The variety $X(\mathcal{D})$ does not change if \mathcal{D} is pulled back via a birational modification $Y' \to Y$ or if \mathcal{D} is altered by a polyhedral *principal* divisor from Y. P-divisors that differ by (a chains of) those operations are called equivalent.

- The variety $X(\mathcal{D})$ does not change if \mathcal{D} is pulled back via a birational modification $Y' \to Y$ or if \mathcal{D} is altered by a polyhedral *principal* divisor from Y. P-divisors that differ by (a chains of) those operations are called equivalent.
- Altmann, Hausen: The map $\mathcal{D} \mapsto X(\mathcal{D})$ yields a bijection between equivalence classes of p-divisors and normal, affine \mathbb{C} -varieties with an effective T-action.

- The variety $X(\mathcal{D})$ does not change if \mathcal{D} is pulled back via a birational modification $Y' \to Y$ or if \mathcal{D} is altered by a polyhedral *principal* divisor from Y. P-divisors that differ by (a chains of) those operations are called equivalent.
- Altmann, Hausen: The map $\mathcal{D} \mapsto X(\mathcal{D})$ yields a bijection between equivalence classes of p-divisors and normal, affine \mathbb{C} -varieties with an effective T-action.
- Task: Find description of $Cox(\bullet)$ in terms of \mathcal{D}_{Cox} .

- The variety $X(\mathcal{D})$ does not change if \mathcal{D} is pulled back via a birational modification $Y' \to Y$ or if \mathcal{D} is altered by a polyhedral *principal* divisor from Y. P-divisors that differ by (a chains of) those operations are called equivalent.
- Altmann, Hausen: The map $\mathcal{D} \mapsto X(\mathcal{D})$ yields a bijection between equivalence classes of p-divisors and normal, affine \mathbb{C} -varieties with an effective T-action.
- Task: Find description of $Cox(\bullet)$ in terms of \mathcal{D}_{Cox} .
- Motivation: Zariski decomposition, base point loci loci and multiplicities.

warnings

• Equivalent divisors define the same map $N_{\mathbb{Q}} \to \operatorname{CaDiv}_{\mathbb{Q}}(Y)/\operatorname{PDiv}(Y) \neq \operatorname{Pic}_{\mathbb{Q}}(Y)$ which we can extend to $N_{\mathbb{Q}} \to \operatorname{Pic}_{\mathbb{Q}}(Y)$.

warnings

- Equivalent divisors define the same map $N_{\mathbb{Q}} \to \operatorname{CaDiv}_{\mathbb{Q}}(Y)/\operatorname{PDiv}(Y) \neq \operatorname{Pic}_{\mathbb{Q}}(Y)$ which we can extend to $N_{\mathbb{Q}} \to \operatorname{Pic}_{\mathbb{Q}}(Y)$.
- When T is the Picard torus, then N = Cl(Y), hence we have a map $Cl_{\mathbb{Q}}(Y) \to Pic_{\mathbb{Q}}(Y)$. One may be tempted to think that this should be identity.

warnings

- Equivalent divisors define the same map $N_{\mathbb{Q}} \to \operatorname{CaDiv}_{\mathbb{Q}}(Y)/\operatorname{PDiv}(Y) \neq \operatorname{Pic}_{\mathbb{Q}}(Y)$ which we can extend to $N_{\mathbb{Q}} \to \operatorname{Pic}_{\mathbb{Q}}(Y)$.
- When T is the Picard torus, then N = Cl(Y), hence we have a map $Cl_{\mathbb{Q}}(Y) \to Pic_{\mathbb{Q}}(Y)$. One may be tempted to think that this should be identity.
- The effective grading of $\mathrm{Cox}(\bullet)$ is in the cone of effective divisors $\mathrm{Eff} \subset \mathrm{Cl}_\mathbb{Q}$ while the values of the expected p-divisor is in the cone of semi-ample divisors $\mathrm{Nef} \subset \mathrm{Pic}_\mathbb{Q}$ hence $\mathcal{D}_{\mathrm{Cox}}$ defines a map

$$\mathrm{Cl}_{\mathbb{Q}} \supset \mathrm{Eff} \to \mathrm{Nef} \subset \mathrm{Pic}_{\mathbb{Q}}$$

Zariski decomposition

Let D be an effective \mathbb{Q} divisor on a surface S. Then D = P + N where $P \in \operatorname{Nef}(S)$ and N is effective, if non-empty then supported on a contractible divisor transversal to P. Moreover for $n \geq 0$ we have

$$\Gamma(S, \mathcal{O}_S(nD)) = \Gamma(S, \mathcal{O}_S(nP))$$

Zariski decomposition

Let D be an effective \mathbb{Q} divisor on a surface S. Then D = P + N where $P \in \operatorname{Nef}(S)$ and N is effective, if non-empty then supported on a contractible divisor transversal to P. Moreover for $n \geq 0$ we have

$$\Gamma(S, \mathcal{O}_S(nD)) = \Gamma(S, \mathcal{O}_S(nP))$$

• If Cox(S) is finitely generated then $\mathcal{D}_{Cox}([D]) = [P]$.

Zariski decomposition

Let D be an effective \mathbb{Q} divisor on a surface S. Then D = P + N where $P \in \operatorname{Nef}(S)$ and N is effective, if non-empty then supported on a contractible divisor transversal to P. Moreover for $n \geq 0$ we have

$$\Gamma(S, \mathcal{O}_S(nD)) = \Gamma(S, \mathcal{O}_S(nP))$$

• If Cox(S) is finitely generated then $\mathcal{D}_{Cox}([D]) = [P]$.

$$\mathcal{D}_{\text{Cox}}: \text{Cl}_{\mathbb{Q}}(S) \supset \text{Eff}(S) \to \text{Nef}(S) \subset \text{Pic}_{\mathbb{Q}}(S)$$

is a piecewise linear retraction of cones.

\mathbb{P}^2 blown-up in two points

$$\mathcal{D} = \mathrm{id}_{\mathrm{Cl}(S)} + \sum_{i} \left(\overline{0[E_i]} + \mathrm{Nef}(S) \right)$$

An MDS Z has finitely many small (iso in codim 1) \mathbb{Q} -factorial modifications Z_i (SQM's) [Hu, Keel]

An MDS Z has finitely many small (iso in codim 1) \mathbb{Q} -factorial modifications Z_i (SQM's) [Hu, Keel] Varieties Z_i are exactly the \mathbb{Q} -factorial GIT quotients of $\mathrm{Cox}(Z)$ by the Picard torus arising from linearizations of the trivial bundle depending on the choice of a character of the torus [Thaddeus, Reid, Brion, Hu, Dolgachev]

An MDS Z has finitely many small (iso in codim 1) \mathbb{Q} -factorial modifications Z_i (SQM's) [Hu, Keel] Z_i share the same Cox ring and, by strict transform, we identify $\mathrm{Div}(Z_i)$ and $\mathrm{Cl}(Z_i)$ with $\mathrm{Div}(Z)$ and $\mathrm{Cl}(Z)$, respectively; same holds for effective and movable cones

$$\operatorname{Eff}(Z_i) = \operatorname{Eff}(Z) \quad \operatorname{Mov}(Z_i) = \operatorname{Mov}(Z)$$

An MDS Z has finitely many small (iso in codim 1) \mathbb{Q} -factorial modifications Z_i (SQM's) [Hu, Keel] Z_i share the same Cox ring and, by strict transform, we identify $\mathrm{Div}(Z_i)$ and $\mathrm{Cl}(Z_i)$ with $\mathrm{Div}(Z)$ and $\mathrm{Cl}(Z)$, respectively; same holds for effective and movable cones

$$\operatorname{Eff}(Z_i) = \operatorname{Eff}(Z) \quad \operatorname{Mov}(Z_i) = \operatorname{Mov}(Z)$$

However, the cones $\operatorname{Nef}(Z_i)$ are different, that is $\operatorname{int} \operatorname{Nef}(Z_i) \cap \operatorname{int} \operatorname{Nef}(Z_j) = \emptyset$ if $Z_i \neq Z_j$ and we have decomposition

$$Mov(Z) = \bigcup_{i} Nef(Z_i)$$

Chow limit

• GIT quotients and their morphisms form a projective system. Take its limit, normalize it and get *Chow limit* Y which dominates all Z_i via birational morphisms:

Spec Cox(Z)
$$\longrightarrow Y \xrightarrow{\psi_i} Z_i$$

Chow limit

• GIT quotients and their morphisms form a projective system. Take its limit, normalize it and get *Chow limit* Y which dominates all Z_i via birational morphisms:

Spec Cox(Z)
$$\longrightarrow Y \xrightarrow{\psi_i} Z_i$$

Note that the maps

$$\psi_i^*, \ \psi_j^* : \operatorname{Pic}_{\mathbb{Q}}(Z_i) = \operatorname{Pic}_{\mathbb{Q}}(Z_j) \longrightarrow \operatorname{Pic}_{\mathbb{Q}}(Y)$$

are different if $i \neq j$, but

$$\psi_i^*(\operatorname{Nef}(Z_i)), \ \psi_j^*(\operatorname{Nef}(Z_j)) \subset \operatorname{Nef}(Y)$$

exceptional divisors on Y

• An irreducible divisor $E \subset Y$ is an exceptional divisor of the first kind if it is a component of the exceptional locus of any (hence of all) morphism $\psi_i: Y \to Z_i$.

exceptional divisors on Y

- An irreducible divisor $E \subset Y$ is an exceptional divisor of the first kind if it is a component of the exceptional locus of any (hence of all) morphism $\psi_i: Y \to Z_i$.
- An irreducible divisor $E \subset Y$ is an exceptional divisor of the second kind if it is a strict transform to Y of a (divisorial) component of an exceptional locus of a birational morphism (divisorial contraction) of a Z_i ; i.e. E is a non-movable divisor on Z.

stable multiplicities

ullet For a birational $\psi:Y\to Z$ and a big divisor B on Z

$$\operatorname{mult}_{E}^{\operatorname{st}}(\psi^{*}[B]) := \inf_{D \in |B|_{\mathbb{Q}}} \operatorname{mult}_{E}(\psi^{*}D)$$

where $D \in |B|_{\mathbb{Q}}$ means that D is an (effective) \mathbb{Q} -divisor with $mD \in |mB|$ for $m \gg 0$.

stable multiplicities

ullet For a birational $\psi:Y o Z$ and a big divisor B on Z

$$\operatorname{mult}_{E}^{\operatorname{st}}(\psi^{*}[B]) := \inf_{D \in |B|_{\mathbb{Q}}} \operatorname{mult}_{E}(\psi^{*}D)$$

where $D \in |B|_{\mathbb{Q}}$ means that D is an (effective) \mathbb{Q} -divisor with $mD \in |mB|$ for $m \gg 0$.

Eventually, for an MDS Z the stable multiplicity function $\operatorname{mult}_E^{\operatorname{st}} := \operatorname{mult}_E^{\operatorname{st}} \circ \psi^*$ can be extended to a concave, fanwise linear function on $\operatorname{Eff}(Z) \subseteq \operatorname{Cl}(Z)_{\mathbb{Q}}$. [Ein, Lazarsfeld, Mustaţă, Nakamaye, Popa]

the theorem

Altmann, —: In the above situation

$$\mathcal{D}_{\text{Cox}} = \psi_i^* + \sum_{E \subset Y} \Delta_E^i \otimes E$$

where E are exceptional divisors described above and

$$\Delta_E^i := \{ C \in \mathrm{Cl}^*(Z_i)_{\mathbb{Q}} \mid \langle C, [B] \rangle \ge - \mathrm{mult}_E^{\mathrm{st}} \psi_i^* B \}$$

In short: for a big B on Z the class $\mathcal{D}_{\text{Cox}}([B])$ is the stable base-point free part of $\psi^*(B)$.

\mathbb{P}^3 blown-up in two points

As a map of cones $\mathcal{D}_{\operatorname{Cox}} : \operatorname{Eff}(Z) \to \operatorname{Nef}(Y)$ it is a composition of piecewise retraction of $\operatorname{Eff}(Z)$ to $\operatorname{Mov}(Z)$ with ψ_i^* on each $\operatorname{Nef}(Z_i)$.

