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Abstract

Finite element simulations in computer graphics are typically based on tetrahedral or hexahedral elements, which

enables simple and efficient implementations, but in turn requires complicated remeshing in case of topological

changes or adaptive refinement. We propose a flexible finite element method for arbitrary polyhedral elements,

thereby effectively avoiding the need for remeshing. Our polyhedral finite elements are based on harmonic ba-

sis functions, which satisfy all necessary conditions for FEM simulations and seamlessly generalize both linear

tetrahedral and trilinear hexahedral elements. We discretize harmonic basis functions using the method of funda-

mental solutions, which enables their flexible computation and efficient evaluation. The versatility of our approach

is demonstrated on cutting and adaptive refinement within a simulation framework for corotated linear elasticity.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Finite element methods have become tremendously impor-
tant in computer graphics. They are used to animate scenes
showing “real-world” behavior, for example in virtual real-
ity applications like surgery simulations, or computer ani-
mations for feature films. Its versatility and rigorous math-
ematical foundation make the finite element method an in-
dispensable tool, which consequently has been applied to a
wide variety of problems.

Traditionally, FEM simulations in computer graphics rely
on strictly tetrahedral or hexahedral meshes, which sim-
plifies the finite element approximation and significantly
speeds up the involved computations. However, allowing a
single element shape only can be too restrictive, since it re-
quires complex remeshing in case of topological changes,
for instance due to cutting, fracture, or adaptive refinement.

One class of approaches [MBF04, SDF07, SSIF07] there-
fore avoids remeshing after cutting by embedding each re-
sulting cut part into an individual copy of the original tetra-
hedron. An interesting alternative is the approach of Wicke
et al. [WBG07]: They directly support more general con-
vex polyhedral elements in finite element simulations by em-
ploying mean-value coordinates as a generalization of linear
barycentric FEM shape functions.

In this paper we extend their approach to arbitrary convex
and non-convex polyhedral elements using harmonic coor-

dinates [JMD∗07] as FEM basis functions (cf. Fig. 1). Har-
monic basis functions naturally generalize linear basis func-
tions for tetrahedral elements and trilinear basis functions
for hexahedral elements. Hence, our method seamlessly in-
tegrates into existing FEM frameworks, such that standard
tetrahedral or hexahedral elements can be used in regular
parts of the model, whereas irregular polyhedral elements
are used in regions of cutting or adaptive refinement.

Harmonic coordinates, as the solution of a Laplace PDE
with Dirichlet boundary constraints, have an analytic solu-
tion for simple element shapes only. For general polyhedra
they therefore have to be approximated numerically, using
for instance finite differences, finite elements, or the bound-
ary element method. As a simple and flexible alternative
we propose an approximation using radial basis functions,
which guarantees the resulting basis functions to be har-
monic and to furthermore exactly satisfy important physical
conservation properties.

The use of general polyhedral elements significantly in-
creases the flexibility in generating and manipulating the
simulation mesh. We demonstrate this versatility in exam-
ples of cutting and adaptive refinement within a simulation
framework for elastically deformable models.
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Figure 1: Using harmonic basis functions, even non-convex polyhedral elements can be used directly in FEM simulations.

2. Related Work

Starting with Terzopoulos et al. [TPBF87,TF88], physically-
based methods have been used extensively in computer
graphics. In this paper, we focus on elastically deformable
solids that are simulated using the finite element method.
From the vast body of literature in the field, we only cite key
references, and refer the interested reader to [NMK∗06] for
a more comprehensive overview.

In computer graphics, finite element methods are imple-
mented almost exclusively using tetrahedral (e.g. [OH99])
or hexahedral meshes (e.g. [MTG04, JBT04]). These dis-
cretizations allow for simple and efficient implementations
of the finite element method, but in turn require rather com-
plex mesh restructuring in case of topological changes, for
instance due to fracture, cutting, or mesh refinement.

In the context of fracture or cutting simulation, one class
of approaches tackled the arising problems using continu-
ous remeshing [OH99,OBH02,SOG06]. In contrast, the vir-
tual node algorithm [MBF04] and its generalization [SDF07,
SSIF07] duplicates elements instead of splitting them, and
embeds the surface parts into those copies. Point-based ap-
proaches do not have to maintain a consistent simulation
mesh [MKN∗04], but on the other hand have to update spe-
cial shape functions [PKA∗05] or distance graphs [SOG06].
In contrast, Wicke et al. [WBG07] avoid costly remeshing by
supporting general convex polyhedra in FEM simulations.

The need to accurately simulate highly detailed models
lead to the development of adaptive and hierarchical sim-
ulation techniques [DDCB01, GKS02, CGC∗02, OGRG07].
Hanging nodes, or T-junctions, in an adaptively refined sim-
ulation mesh often pose problems, and hence have to be ei-
ther avoided or specially treated, for instance by refining ba-
sis functions instead of elements [GKS02, CGC∗02], or by
constraining hanging nodes to edge midpoints [SSIF07].

We propose to handle the complex elements arising dur-
ing cutting as well as hanging nodes due to adaptive refine-
ment within a single, consistent simulation framework based
on arbitrary polyhedral elements. The key to such a gener-
alization is to find basis functions that fulfill all necessary
requirements for convergent FEM schemes [Hug00], but are
defined for a larger class of element shapes.

Our approach is inspired by, and hence most simi-
lar to, [WBG07], who employed 3D mean-value coordi-
nates [FKR05,JSW05,JLW07] as shape functions for convex
polyhedra. The main drawback of mean-value coordinates,
as well as of Wachspress coordinates [Wac75,War96], is that
they are defined on simplicial polyhedra only, i.e., on convex

elements with triangulated faces. The restriction to convex
elements might even be advantageous in practice, e.g., for
collision detection. However, having to triangulate element
faces can cause erroneous (slight) asymmetries for otherwise
perfectly symmetric configurations (e.g., symmetric defor-
mations of symmetric hexahedral meshes).

To overcome these limitations, we propose to use har-
monic coordinates [JMD∗07] as FEM basis functions, which
enables the simulation of arbitrary convex and non-convex
polyhedral elements with planar (not necessarily triangu-
lated) faces. In contrast to mean-value coordinates, harmonic
functions generalize both linear basis functions for tetrahe-
dra and trilinear basis functions for hexahedra, and therefore
can be considered a seamless generalization of linear basis
functions to arbitrary polyhedral elements.

3. Elastic Deformations

Before introducing harmonic basis functions (Section 4),
discussing their numerical approximation (Section 5), and
describing their integration into a dynamic simulation frame-
work (Section 6), we will first review the basic concepts of
continuum elasticity and its Galerkin discretization in this
section. A more detailed overview of deformable models
and finite element discretizations can be found in the sur-
vey [NMK∗06] or in the textbooks [Chu96, Hug00].

In the following we consider an object with material co-
ordinates x = [x,y,z]T , which is deformed by a displacement
field u = [u(x),v(x),w(x)]T . The local deformations of the
material are measured by a 3×3 strain tensor, where typical
choices are the nonlinear Green-Lagrange strain

εG(u) =
1

2

(

∇u+(∇u)T +∇u(∇u)T
)

(1)

or the linearized Cauchy strain

εC(u) =
1

2

(

∇u+(∇u)T
)

. (2)
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We employ the linear Cauchy strain ε = εC in our frame-
work, since it greatly simplifies the simulation, and the re-
sulting linearization artifacts can be mostly eliminated by
a co-rotational formulation [MG04]. Note, however, that
the harmonic basis functions we introduce in Section 4 are
equally valid for nonlinear strain measures.

In an elastic material, strain leads to restoring forces rep-
resented by a 3× 3 stress tensor σ. Since stress and strain
are symmetric tensors, we can represent their independent
degrees of freedom by 6-vectors. Assuming a Hookean ma-
terial yields a linear relation between stress and strain

σ(u) = Cε(u) , (3)

where the symmetric 6×6 matrix C contains the elastic co-
efficients of the material. Finally, the elastic energy E(u)
stored in a deformed object is given by stress times strain,
integrated over the object volume Ω:

E(u) =
1

2

∫
Ω

ε(u)T
C ε(u) dx . (4)

The displacement field u(x) is then discretized using a
finite dimensional space spanned by basis functions Ni(x).
To this end, the object is partitioned into finite elements e,
i.e.,

⋃
e = Ω, and u(x) is approximated by interpolating the

displacements ui of the nodes xi within elements. The inter-
polated displacement ue in an element e of k nodes is

u(x) |e ≈ u
e(x) :=

k

∑
i=1

ui N
e
i (x) , (5)

where the shape functions Ne
i = Ni|e determine the influence

of the nodal displacements ui in the element. From the gra-
dient ∇ue(x) one computes strain and stress, such that the
elastic energy stored in the deformed element e

Ee(
u

e) =
1

2

∫
e

ε
(
u

e)T
Cε

(
u

e) dx , (6)

can be accumulated into the total energy E(u) = ∑e Ee(ue).
Its variational derivative ∂E/∂u, respectively the partial
derivatives ∂E/∂ui, constitute the internal restoring forces
that drive the dynamic elasticity simulation.

The basis functions Ni have to fulfill a number of require-
ments in order to guarantee convergence of the method under
refinement of the discretization [Hug00]: For linear elastic-
ity, they have to be in the Sobolev space H1. In the special
case of linear FEM they have to be C1 smooth within el-
ements and C0 continuous across element boundaries. Fur-
thermore, the basis functions need to exactly reproduce lin-
ear functions (e.g., rigid motions). These conditions are sat-
isfied by linear shape functions for tetrahedra and trilinear
shape functions for hexahedra — the element types and basis
functions most frequently used in computer graphics. How-
ever, since those require complex remeshing for topological
changes, we introduce more flexible shape functions for gen-
eral polyhedral elements in the following section.

4. Harmonic Basis Functions

We propose to use harmonic basis functions as a general-
ization of linear barycentric basis functions to general poly-
hedral elements. A shape function Ne

i : e→ IR is harmonic

if its Laplacian vanishes in e, in which case it is uniquely
determined by Dirichlet boundary constraints b(x) on ∂e:

∆N
e
i (x) = 0 , for x ∈ e , (7)

N
e
i (x) = bi(x) , for x ∈ ∂e . (8)

For a finite element simulation we need nodal basis func-
tions Ne

i for interpolating quantities within each element e.
If these functions are chosen to be harmonic, they are fully
determined by the values bi(x) on the element boundary ∂e,
which we set up following [JMD∗07]: First, in order to in-
terpolate nodal quantities, the basis function Ne

i of node i has
to equal 1 at the node xi and 0 at all others, i.e.,

N
e
i

(
x j

)
= δi j ∀ i, j = 1, . . . ,k . (9)

Additionally, in order to ensure continuity across element
boundaries, the values of the basis function for node i de-
fined in neighboring elements e1 and e2 should coincide on
the face or edge shared by the two elements:

N
e1
i (x) = N

e2
i (x) for x ∈ e1∩ e2 . (10)

This can be guaranteed by choosing the values on the
faces of a d-dimensional element to be (d−1)-dimensional
harmonic coordinates. For a trivariate harmonic basis func-
tion Ne

i on a 3D element e the boundary conditions are bi-
variate harmonic coordinates on its faces, which themselves
are determined by univariate harmonic (i.e., linear) interpo-
lation of the nodal values Ne

i

(
x j

)
= δi j along the edges.

It follows from these recursively defined boundary con-
straints and the uniqueness of harmonic functions for fixed
Dirichlet constraints, that harmonic shape functions repro-
duce linear triangles and bilinear quads in 2D, as well as lin-
ear tetrahedra and trilinear hexahedra in 3D. The harmonic
basis for a more complex 2D element is shown in Fig. 2.

Harmonic basis functions satisfy all requirements for
admissible FEM basis functions (we refer the reader
to [JMD∗07] for short proofs of some of these properties):

• Since 3D harmonic shape functions degenerate to 2D har-
monic coordinates on element faces, they are continuous
across element boundaries: Ni ∈ C0(Ω).

• As solution to Laplace’s equation (7) they are smooth
within elements: Ne

i ∈ C∞(e).
• For fixed constraints bi, (7) characterizes the minimizer of

the Dirichlet energy
∫

e ‖∇Ne
i ‖

2. Hence, the gradients of

harmonic functions are square integrable: ∇Ne
i ∈ L2(e).

Combining the last three points we get Ni ∈ H1(Ω).
• They are non-negative Ni(x) ∈ [0,1], build a partition of

unity ∑i Ni(x) = 1, and reproduce linear functions.
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Figure 2: Harmonic basis functions for the six nodes of a non-convex 2D element. The constraint collocation points ci are

visualized as small spheres along the element boundary, the kernel centers ki are shifted slightly outside and are shown in gray.

5. Numerical Approximation

Closed form expressions for harmonic basis functions exist
for simple element shapes only, such as tetrahedra or hexa-
hedra. For more general elements, harmonic basis functions
Ne

i have to be computed numerically as the solution of (7),
(8), which is valid for both 2D faces and 3D elements. To
this end, several well-established techniques for solving the
2D and 3D Laplacian PDEs exist, each having their own re-
spective advantages and drawbacks.

Finite Differences. Overlaying the element by a regular 3D
grid and using a finite difference discretization leads to the
solution of a sparse linear system for a piecewise trilinear
approximation of Ne

i [JMD∗07]. While this method is com-
paratively easy to implement, an accurate solution requires
a sufficiently dense grid in order to resolve the smallest
edges/faces of the element. In particular for cutting, where
small edges occur frequently, the cubic growth of volumet-
ric grids leads to very complex systems, which require ad-
vanced multi-grid methods for their solution [JMD∗07].

Finite Elements could be used to solve (7) on an adaptive
tessellation of polyhedral elements, thereby overcoming the
limitations of regular grids. However, since the major goal
of our approach is to enable adaptive FEM computations
without complex remeshing of elements, the recursive ap-
plication of adaptive FEM to each polyhedral element is a
chicken-and-egg problem and contradicts our goals.

Boundary Element Method. The boundary element
method (BEM) is also well suited to solve the PDE (7). By
formulating the solution as an integral of fundamental solu-
tions over the element’s boundary, it avoids a volumetric tes-
sellation and therefore needs a boundary discretization only.
Due to our experiments the major drawback of BEM is per-
formance: In its exact formulation, each function evaluation
requires a full integral over the element’s boundary, which
makes the numerical integration of (6) very expensive.

Fundamental Solutions. While all the above methods can
be employed for solving (7), (8) we found the method of
fundamental solutions (MFS) [FK98] to be a more flexible,
easier-to-implement, yet sufficiently accurate alternative.

MFS is closely related to BEM: It is also a boundary
method, and thus does not require a volumetric tessella-
tion, and it also represents the approximate solution in terms
of fundamental solution kernels. However, instead of the
boundary integrals in BEM, MFS employs a simple, mesh-
less collocation. A shape function Ne

i (x), simply denoted by
N(x) in the following, is represented in the following form:

N(x) =
n

∑
j=1

w j ·ψ
(∥
∥x−k j

∥
∥
)

+ a
T
1 x+a0 , (11)

where the first part is a superposition of n weighted radial ba-
sis functions ψ (RBFs), centered at k j, and the second part
is a linear polynomial in x. The kernel function ψ is cho-
sen as fundamental solution of the Laplace PDE, which is
ψ(r) = logr in 2D and ψ(r) = 1/r in 3D. As a consequence,
the function (11) is harmonic by construction [Duc77], in the
whole domain except at the kernels’ singularities k j .

Hence, the kernel k j have to be placed outside the ele-
ment. A standard method is to first sample the boundary by
s j ∈ ∂e, and to move the kernels outward in (interpolated)
normal direction by a small fraction ξ of the element size:

k j = s j + ξ · size(e) ·n
(
s j

)
. (12)

For non-convex elements one additionally has to take care
that this simple offsetting does not generate centers in the
element’s interior. For generating the n samples s j, we select
the element’s nodes, about 3–5 samples on each edge, and a
uniform sampling of its faces of about the same density.

The function (11) satisfies (7) by construction, thus we
solve for the best approximation of the Dirichlet con-
straints (8). To this end, we approximate the boundary in-
tegral of the L2 error by a sum of m collocation points ci:

∫
∂e
|N(x)−b(x)|2 ≈

1

m

m

∑
i=1

|N(ci)−b(ci)|
2→min . (13)

These collocation points ci ∈ ∂e are generated equivalently
to the samples s j, but at a higher resolution of m ≈ 3n. The
distribution of kernel centers ki and collocation constraint
points ci, as well as the resulting basis functions are shown
for a non-convex L-shaped 2D element in Fig. 2.
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Given the kernel centers ki, the minimization of the L2

error (13) amounts to solving an overdetermined linear least
squares system for the coefficients of (11):






ψ11 . . . ψ1n cT
1 1

...
...

...
...

ψm1 . . . ψmn cT
m 1















w1
...

wn

a1

a0










=






b(c1)
...

b(cm)




 , (14)

where ψi j = ψ
(∥
∥ci−k j

∥
∥
)
. This least squares system can be

solved in a numerically robust manner using the QR factor-
ization or the SVD pseudo-inverse [GL89].

In order to compute a 3D basis function Ne
i for an ele-

ment e, we first solve the above linear system on each of
its faces. The resulting 2D harmonic functions constitute the
boundary constraints for the final 3D linear system, which
yields the coefficients of Ne

i . Notice that in order to com-
pute all k basis functions Ne

1 , . . . ,Ne
k of an element e with k

nodes, the same 2D and 3D systems are solved for k differ-
ent right-hand sides bi(x). After factoring each matrix once,
these systems can be solved efficiently by back-substitution.

Discussion. As described in Section 4, exact solutions of
(7), (8) satisfy the conditions for admissible FEM shape
functions. The numerical approximation N from (11) satis-
fies all but one exactly, and one up to small numerical errors.

Since the singularities k j are located outside of e, we have

N ∈ C1(e) and ∇N ∈ L2(e). However, the C0 continuity
across elements is only satisfied approximately through the
Dirichlet conditions (8), resp. (13). Our typical choice of 5
edge samples for generating kernels through (12) leads to L2

boundary errors of about 2–3%. More accurate results can
be achieved by using more kernels in (11). However, as we
show in Section 8, the accuracy of the global solution is not
limited by the individual basis functions’ errors.

Typically, MFS approximations are based on fundamen-
tal solution kernels ψ

(∥
∥·−k j

∥
∥
)

only, and do not include a
linear polynomial as in (11). This polynomial, however, is
crucial in our case, since it guarantees exact reproduction
of linear functions, independent of the number n of kernels
used. Due to our experiments even small errors in the lin-
ear reproduction (L2 error around 10−3) would cause ghost
forces, thereby destroying the preservation of linear and an-
gular momenta and resulting in counter-intuitive behavior.

The offset distance ξ in (12) has to be chosen heuristically.
In our experiments, we found ξ = 0.1 to be a reliable setting,
as similarly stated in [LGW∗07]. Moreover, due to our dense
sampling of collocation points ci (m ≈ 3n) the solution of
the least squares system (14) is hardly influenced by ξ. In
contrast, an exact interpolation (m = n + 3) cannot prevent
oscillations on the boundary between the ci and would be
much more sensitive to the offset distance (cf. Fig. 3).

Figure 3: Top: If we enforce the boundary conditions ex-

actly, the solution oscillates and is very sensitive to the off-

set distance (ξ = 0.05,0.1,0.15). Bottom: In contrast, dense

least-squares boundary conditions are more robust and con-

siderably less affected by different parameter choices.

Degenerate elements cause numerical problems for har-
monic shape functions, just as they do for standard shape
functions. Two (almost) coincident kernels ki, k j lead to lin-
early dependent rows i, j in (14), yielding a rank deficient
matrix. Simple cases, like the clustered kernels near the con-
cave corner in Fig. 3, can be resolved explicitly by merging
kernels, or implicitly through the SVD pseudo-inverse.

For degenerate edges with coincident nodes xi, x j, we
conceptually merge xi and x j by computing one joint ba-
sis function φe

i j from the constraints bi + b j in (8) and using
a joint nodal displacement ui j = ui = u j. Note that this does
not change the simulation mesh, and therefore preserves,
e.g., planarity of faces. Almost planar sliver elements can
be merged with their neighbors as proposed in [WBG07].

6. Finite Element Simulation

After introducing harmonic basis functions and their numer-
ical approximation, we insert them into the Galerkin dis-
cretization of Section 3 and set up the matrix equations for
the FEM simulation. We again give the main equations only,
and refer the reader to [NMK∗06, Hug00] for more details.

Once the basis functions Ne
i are computed as described in

the previous section, the displacement ue within e can be ap-
proximated as in (5), which can be written in matrix notation

u
e(x) :=

k

∑
i=1

N
e
i (x) ui = He(x) Ue ,

with a 3× 3k matrix He(x) of basis function values Ne
i (x)

and a vector Ue = [uT
1 , . . . ,uT

k ]T of e’s nodal displacements.
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Figure 4: A quadtree element with neighbors at a higher re-

finement level. Shown are the basis functions for the shared

nodes, where the center one is not a hanging node, but in-

stead is part (and DOF) of all three elements.

Since the Cauchy strain is linear in the displacements, it
can also be written in matrix notation as

ε
(
u

e(x)
)

= Be(x) Ue ,

with a 6×3k matrix Be(x) built from gradients∇Ne
i (x). Us-

ing this matrix notation of each element’s strain, the global
elastic energy (6) of the deformed model can be written as

E(u) = ∑
e

U
T
e

(
1

2

∫
e

B
T
e CBe dx

)

︸ ︷︷ ︸

=: Ke

Ue =
1

2
U

T
KU , (15)

with Ke denoting the 3k× 3k stiffness matrix of element e,
which are assembled into the global stiffness matrix K, and
U = [. . .uT

i . . . ]T the global vector of nodal displacements.

For a general polyhedral element e, the computation of its
stiffness matrix Ke requires numerical integration, since the
derivative matrix Be(x) is not constant, as in the special case
of linear tetrahedra. We employ either bounding box subdi-
vision and Gaussian quadrature or Monte Carlo integration
instead of the heuristic integration proposed by [WBG07],
since the latter degrades for non-convex elements. For linear
elasticity, the matrices Ke can be precomputed, such that the
integration has to be performed only once for each element.
As a consequence, the run-time complexity of our simulation
is not higher than that of a simulation using a tetrahedral or
hexahedral discretization.

Since the linear strain is not rotation-invariant, even
rigid-body motions will give rise to strain, which in turn
causes ghost forces. This can be remedied by adapting
the stiffness warping of [MG04] to general polyhedral ele-
ments [WBG07]: The rotation Re of the element’s displace-
ment Ue is extracted using shape matching, and is factored
out by correcting the stiffness matrix as Ke ← Re Ke RT

e .
This correction has to be performed in each time step, and
the global stiffness matrix K needs to be updated accord-
ingly. Again, the complexity for these computations is of the
same order as for tetrahedral or hexahedral simulations.

Figure 5: Left: Collision handling on the simulation mesh’s

nodes. Right: Collision handling on the embedded surface.

With the discrete energy (15), the governing equation for
a dynamically deforming elastic solid becomes

MÜ + DU̇ + KU = Fext , (16)

with mass matrix M, damping matrix D, and the vector Fext

containing external forces. We use a standard semi-implicit
Euler method for the robust time-integration of (16). In our
framework we employ simple nodal collision detection and
handling, based on linear penalty forces being added to Fext

in order to resolve collisions. The collision handling for har-
monic basis functions is performed in exactly the same way
as for standard linear or trilinear basis functions.

7. Embedded Simulation

Using the method described so far, we can simulate de-
formable objects that are discretized by general polyhedral
elements. However, a straightforward volume tessellation
works for clean, moderately complex objects only, but be-
comes problematic for highly complex or topologically in-
consistent models (e.g., scanned data, point-based models).

To be able to also handle such objects, we adapt a space
embedding technique [FvdPT97, CGC∗02, MG04, JBT04,
SSIF07]. In a preprocessing step, we voxelize the object into
hexahedral elements, and then simulate the elastic deforma-
tion on the resulting voxels only. The high resolution surface
mesh is deformed by interpolating the displacement within
the voxels according to (5). However, since the complexity
of regular grids grows cubically under refinement, this ap-
proach can handle moderate grid resolutions only.

Exploiting the flexibility we gain from arbitrary element
shapes, a hierarchical, adaptive refinement is very easy to
implement. Similar to [BPWG07], we employ an octree-like
discretization that refines nodes near the embedded surface.
Note that this does not lead to hanging nodes in our dis-
cretization. Since the elements need not be strictly hexahe-
dral, faces between octree cells of different depth do not re-
quire special handling, as illustrated in Fig. 4.

For embedded simulations we perform collision handling
on the vertices of the embedded surface, instead of on the
simulation nodes (cf. Fig. 5). Similar to [SSIF07], (penalty)
forces applied to an embedded vertex x = ∑i xi Ni(x) simply
have to be distributed to the simulation nodes xi, weighted
by the (generalized) barycentric coordinates Ne

i (x).
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Figure 6: For a 2D Poisson problem with known solution, we compare bilinear FEM (left), adaptive basis function refinement

of CHARMS (middle), and our adaptive element refinement (right). The graphs compare approximations for grids of about the

same number of DOFs. The plots show L2 errors and condition numbers of K for increasing numbers of DOFs.

8. Results

In this section we demonstrate the versatility of our poly-
hedral finite element framework on adaptive refinement and
progressive cutting, and give statistics and comparisons of
our method. Most examples show individual frames of sim-
ulations that are also included in the accompanying video.

Non-Convex Elements. As a proof of concept, Fig. 1 shows
a simulation of a simple, non-convex element, whose shape
functions are computed using n = 97 RBF centers in (11).
While non-convex elements undoubtedly increase the mesh-
ing flexibility, we also note that in practice a restriction to
convex elements might be preferable, for instance for effi-
cient collision detection.

2D Adaptive Refinement. Fig. 6 shows a quantitative anal-
ysis of our method based on a 2D Poisson problem−∆u = f

with known analytic solution. We compare convergence be-
havior and condition numbers of uniform refinement of stan-
dard bilinear FEM, adaptive refinement of bilinear basis
functions with CHARMS [GKS02], and our quadtree-like
adaptive element refinement (cf. Fig. 4).

While condition numbers increase similarly with the num-
ber of DOFs for all methods, adaptive refinement makes bet-
ter use of the DOFs than uniform refinement. When compar-
ing CHARMS to our refinement technique, the former can
also be used for higher order basis functions, whereas our
method is a generalization of linear shape functions only.
However, it allows for more flexible splits without the need
to balance neighboring elements’ refinement levels (see be-
low). The plots also show that the number of sources si (resp.
of RBF kernels ki) used for individual basis functions Ne

i has
practically no effect on the global approximation error.

Adaptive Mesh Generation. In Fig. 7, the Stanford bunny
is embedded in an adaptive octree-like simulation mesh,
which concentrates the DOFs at the more interesting bound-
ary surface. Supporting general polyhedral elements makes
this kind of adaptive embedding both easy to implement
and to maintain, thereby enabling the efficient simulation of
highly complex or topologically inconsistent meshes.

Stress-Based Dynamic Refinement. Polyhedral elements
allow for dynamic element refinement: Similar to frac-
ture [OH99, OBH02], we sample the stress tensor σ(x) at a
few points within each element, compute the principal stress
as the largest absolute eigenvalue, and refine an element once
a certain threshold is reached. Fig. 8 illustrates this for two
kinds of adaptive refinement: A uniform 1-to-8 subdivision
of voxels, and the more flexible 1-to-2 splitting perpendicu-
lar to the maximum stress direction, which results in fewer
elements for the same refinement threshold.

Progressive Cutting. As proposed in [WBG07], supporting
general polyhedra in FEM simulations effectively avoids the
need for complex remeshing during cutting and thus con-
siderably simplifies the implementation. Our harmonic basis
functions seamlessly integrate into both tetrahedral and hex-
ahedral simulations, where then only the cut elements have
to be computed as harmonic polyhedral elements (cf. Fig. 9).
Arbitrary cuts can lead to non-convex elements with small
opening angles, which complicates off-setting RBF centers.
To avoid this problem, and to simplify the actual element
splitting and collision detection, our cutting algorithm gen-
erates convex elements only, following [WBG07].

Timings. For the examples shown, Table 1 summarizes
model complexities and timings, taken on an Intel Core2
Duo, 2.4 GHz. Solving the linear systems takes about the
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Figure 7: The bunny model is embedded into an adaptively refined, octree-like simulation mesh, shown on the left. The degrees

of freedom are concentrated on the surface, wasting little computing power on the less interesting, invisible interior.

Figure 8: Dynamic, stress-based refinement of a hexahedral bar model, using 1-to-2 splits for the bending deformation and

1-to-8 subdivision for twisting. The bar is constrained at both ends, the color visualizes the maximum principal stress.

same time as for standard FEM, with only a slight increase
in matrix density in case of complex polyhedra with high
vertex count. Solving for and numerically integrating shape
functions Ne

i is considerably more expensive than for sim-
ple linear tetrahedra or trilinear hexahedra. Note, however,
that general polyhedral elements are employed in irregular
regions of adaptivity and cutting only, whereas in regular
regions we can use standard elements. Our approach there-
fore trades the combinatorial complexity of remeshing for
the computational complexity of polyhedral elements.

9. Conclusion

We have introduced an FEM framework for arbitrary poly-
hedral elements based on harmonic basis functions, and pro-
posed the method of fundamental solutions as a simple and
flexible method for computing these basis functions. Being
able to use general polyhedral elements in FEM simulations
considerably simplifies topological changes of the simula-
tion domain, as illustrated for adaptive mesh generation, dy-
namic refinement, and progressive cutting.

While we demonstrated harmonic polyhedral elements
mainly in the context of corotated linear elasticity, it is im-
portant to note that they can as well be used with nonlin-
ear strain measures and nonlinear material behavior, which
therefore constitutes an interesting direction for future work.
Furthermore, extending our approach to both adaptive and
hierarchical discretizations and solvers has the potential to
improve runtime performance of the simulation.

Acknowledgments. This research was supported by the
Swiss National Science Foundation grant 200021-117756.

Figure 9: Left: Progressive cutting of a hexahedral bar

model. Right: Cutting a tetrahedral dinosaur mesh. Tetra-

hedra are visualized in yellow, general polyhedra in blue.

Scene Start #N/#E End #N/#E tinit tsolve ttotal

Collision (Fig. 5) 274 / 153 274 / 153 105 5.2 20
Bunny (Fig. 7) 4.8k / 3k 4.8k / 3k 59 221 247
Bending (Fig. 8) 99 / 40 256 / 88 302 1.6 60
Twisting (Fig. 8) 99 / 40 1392 / 719 170 37 276
Bar Cut (Fig. 9) 99 / 40 391 / 63 688 3 235
Dino Cut (Fig. 9) 5.6k / 19k 9.3k / 21k 48 113 752

Table 1: Statistics and timinigs for the examples shown in

this paper. We list initial and final number of nodes (#N) and

elements (#E), avg. time to compute Ne
i and setup Ke per

polyhedral element, and for the linear solve per time-step

(both [ms]), and the total simulation time [s].
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