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Abstract. Algorithms are developed for determining if a set of polyhedral objects 
in R 3 can be intersected by a common transversal (stabbing) line. It can be determined 
in O(n log n) time if a set of n line segments in space has a line transversal, and 
such a transversal can be found in the same time bound. For a set of polyhedra 
with a total of n vertices, we give an O(n* log n) algorithm for determining the 
existence of, and computing, a line transversal. Helly-type theorems for lines and 
segments are also given. In particular, it is shown that if every six of a set of  lines 
in space are intersected by a common transversal, then the entire set has a common 
transversal. 

1. Introduction 

Let S = S ~ , . . . ,  S,, be a set o f  geomet r ic  objects  in R d. We say that  the  objects  
have a k-transversal i f  they  are  s imul taneous ly  in tersected by  a k -d imens iona l  
fiat. The  ques t ion  o f  the  exis tence  o f  a k- t ransversa l  has  received cons ide rab le  
a t ten t ion  in the  ma themat i ca l  l i terature ,  see, for  example  [12] and  [5]. The 
co r r e spond ing  compu ta t i ona l  issues have been  cons ide rab ly  less s tudied.  
However ,  the  c o m p u t a t i o n  o f  1-transversals ,  or " s t abb ing  l ines"  as they are  ca l led  
in the  c o m p u t i n g  l i tera ture ,  has  a p p e a r e d  in the  contexts  o f  h idden  l ine p rob lems  
[8], set pa r t i t ion ing  [1], and  upda t ing  t r i angula t ions  [10]. 

When  k = 0 the p r o b l e m  reduces  to tha t  o f  dec id ing  whether  the given sets 
have a po in t  in common.  On  the theore t ica l  s ide,  when the sets S~ are  convex,  
the  fo l lowing  theorem prov ides  an answer  to this  quest ion.  

He l ly ' s  Theorem. A family  o f  m convex sets in R d have a common intersection 
point i f  and only i f  every d + 1 o f  the sets have a common intersection point. 

O n  the c o m p u t a t i o n a l  s ide,  when  the sets a re  po lyhed ra l ,  we can find an  intersec-  
t ion po in t  o r  de t e rmine  that  none  exist  by  solving a l inear  p r o g r a m m i n g  prob lem.  
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In low dimensions this can be done efficiently using Megiddo and Dyer's technique 
in time proportional to the number of half-spaces required to describe the input, 
see [15]. 

When k = 1 we call the 1-transversal a stabbing line and the problems become 
considerably more difficult. On the theoretical side there is no analogue of  Helly's 
theorem. In R 2 there exist configurations of  m line segments with stabbing lines 
for each m - 1 of  the line segments but no stabbing line for all m line segments 
[12]. Hadwiger has found an additional condition which gives a Helly-like 
theorem in the plane. By an oval we mean a bounded, closed convex set. 

Hadwiger's Theorem. A finite or countably infinite family of  disjoint ovals in R 2 
admits a stabbing line if  and only i f  there is an ordering on the ovals such that each 
three ovals admit a line stabber in the given order. 

As it stands, Hadwiger's theorem does not provide a "good"  characterization 
since if there is no stabbing line, the theorem does not provide an efficient way 
to demonstrate this, even for a finite family of sets. The theorem can, however, 
be turned into a "'good" characterization. Consider our finite family of  sets $. 
Any stabber for this family induces an ordering {i~, i 2 , . . .  , ira} and a reverse 
ordering {i,,, i , , _1 , . . . ,  i~} on the indices 1 . . . .  , m. Out of the a priori factorial 
number of  stabbers, Katchalski et al. [14] have shown that there can be at most 

( 2 )  such orderings. This result has been improved by Wenger [16], who reduced 

the upper bound to 6m + 6  and further reduced to 2 m - 2  by Edelsbrunner and 
Sharir [9]. In the case o f  polygonal objects, these potential orderings can be 
efficiently computed. For each ordering, it can be determined by linear program- 
ming if in fact a stabber exists which intersects the sets in the specified order [2]. 
The extension of  Hadwiger's theorem to higher dimensions seems a challenging 
task. Some results on hyperplane stabbers have been obtained by Katchalski [13] 
and Goodman and Pollack [ 11 ]. 

On the computational side very little is known about stabbing lines. In the 
case of  n line segments in the plane, Edelsbrunner et al. [8] have given an 
O(n log n) algorithm. Edelsbrunner [7] gives algorithms for stabbing translates 
of a convex polygon. Avis and Doskas [2] have given a general approach 
for finding d - 1  stabbers of line segments and polyhedra in R d, using linear 
programming. 

In dimension d---3 no algorithms for line stabbing have been previously 
presented. In this paper we develop a theory for line stabbing in p3, three- 
dimensional projective space. We begin by considering line stabbers of  lines in 
p3 and then specialize the results to line segments. Somewhat surprisingly in 
view of  the examples mentioned above, we find a Helly-type theorem in R 3 for 
lines, and for line segments providing they satisfy a "non-degeneracy" assump- 
tion. Degenerate lines or segments will be called ruled. Naturally, if all the 
segments lie on a 2-flat they are ruled, but there are also other situations where 
the segments are ruled. We give efficient algorithms for finding line stabbers of 
lines and line segments. Next we consider convex polyhedra in R 3. We prove an 
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extremal theorem that reduces the line-stabbing problem for polyhedra to a 
number  of  line-stabbing problems for segments and points. This gives rise to a 
polynomial-t ime algorithm for finding a line stabber for polyhedra. 

2. Theoretical Results 

The stabbers of  a given set of  lines are most easily presented in projective space. 
In an earlier version of  this paper,  most of  the results presented here were proved 
in real space [3]. We refer the reader to the book by Borsuk [4] for a very readable 
treatment of  projective space and quadric surfaces. We use homogeneous coordin- 
ates, where the point (Xo, Xl, x2, x3) in p3, Xo ¢ 0, corresponds to the point [XJXo, 
xz/xo, Xa/Xo] in R 3, and the point (x~, x2, x3) in R 3 corresponds to the point 
(1, Xl, x2, x3) in p3. Two lines which do not intersect in p3 are called skewed. 
Let S--  { L ~ , . . . ,  Lm} be a set of  m lines in p3. I f  every two lines in the set S are 
skewed, then we call the set S a skewed set. 

For u, v, w, x c  p3, we let det(u, v, w, x) be the determinant of  the matrix with 
the homogeneous coordinates of  u, v, w, x as column vectors. Let u and v be 
the coordinates of  two distinct points in p3. The unique line through u and v is 
parametrized by hu + ~u where h and ~ vary over R and either h ~ 0 or/~ ~ 0. 
I f  two lines L and L' parametrized by hu+l~v and A ' u ' + p . ' v '  intersect, then 
there exists A,/~, h ' ,  # ' ,  not all zero, such that hu + p.v = h ' u ' + / ~ ' v ' .  Equivalently, 
L and L' intersect if and only if det(u, v, u', v') =0 .  

Lcmma 1. Two skew lines L and L' and a point p which is not on L or L' admit 
one stabber. I f  L and L' are parametrized by Au + I~v and A'u' +/ . t 'v ' ,  then this 
stabber intersects L at 

q = det(u' ,  v', p, v ) u -  det(u' ,  v', p, u)v. 

Proof There is a unique hyperplane H containing L' and p. Since L and L' are 
skew, L intersects H at exactly one point q. The line L" through p and q is the 
unique stabber of  L, L', and q. 

The hyperplane H is given by the following equation: 

H ={x: det(u' ,  v' ,p,x)=O, xE P3}. 

Let q = det(u' ,  v',p, v ) u - d e t ( u ' ,  v',p, u)v. Since u and v cannot both lie on H, 
either det(u' ,  v', p, v) ~ 0 or det(u' ,  v', p, u) # 0 and so q is a point in p3 lying on 
L. Now q lies on H since 

det(u ' ,  v', p, q) = det(u' ,  v', p, det(u' ,  v', p, v) u - det( u', v', p, u) v) 

= det(u' ,  v',p, u) det(u' ,  v',p, v) 

- det(u' ,  v',p, v) det(u' ,  v',p, u) 

= 0 .  

Thus the stabber of  L, L', and p intersects L at q. [] 
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[,emma 2. The stabbers o f  three skew lines in p3 form a quadric surface Q. 

Proof. Let S =  {L~, L2, L3} be a set of  three skew lines in p3 where L; is 
parametrized by Au~ +/~v~, u~, v~ e P3, A,/z e R. Let l be a stabber of  S and let p 
be a point on ! which does not lie on L~ or L2 or L3. By Lemma 1, l intersects 
L~ at 

q = det(u2, v2, p, v~)u~ - det(u2, v2, p, u~)v~ 

and hence 

det(u3, v3, p, q) = det(u3, v3, p, det(u2, v2, p, vl)u~ - det(u2, v2, p, ul)v~) 

= det(u3, v3,p, ul)det(u2,  v2,p, vl) 

- de t (u3 ,  v3, p, vl) det( u2, v2, p, uO. 

Since 1 intersects L3, det(u3, v3,p~ q ) = 0  and 

det(u3, v3,p, ul) det(u2, v2,p, v 0 - d e t ( u 3 ,  v3,p, vl) det(u2, v2,p, ul) =0.  (1) 

I f p  lies on L~ or L2 or L3, p also satisfies equation (1). Equation (1) has degree 
two and defines a quadric surface Q, so if p lies on a stabber of  S then p must 
lie on this quadric surface. 

We claim that for every point p on this quadric surface, there are stabbers of  
S which contain p. I f  p lies on L~, then by Lemma 1 there is a stabber of  S and 
p. I f  p does not lie on L~, then by Lemma 1 there is some point q on L~ such 
that the line through p and q stabs L~ and L2. Since p lies on the quadric surface 
defined above, det(u3, v3, p, q ) =  0 and this stabber of  Lt,  L2, and p also stabs 
t 3. Therefore, the stabbers of  S form a quadric surface. [] 

Any line which does not lie on a quadric surface intersects the quadric surface 
in at most two points. Thus any four skew lines have at most two stabbers or an 
infinite number  of  stabbers. It is easy but tedious to check that this statement is 
true for any four lines which are not skew. 

We refer to a set of  skew lines that admit  an infinite number of  stabbers as 
ruled. The terminology derives from the fact that the set of  stabbing lines forms 
a doubly ruled surface. A set of  three skewed lines is trivially ruled. The surface 
can be partit ioned into two sets of  lines: every pair of  lines from the same set is 
skewed; every pair of  lines from different sets is intersecting. There is thus an 
obvious duality between the stabbing lines and the lines to be stabbed. We will 
maintain the convention of  upper  case " L "  for the original data lines, and lower 
case ' T '  for computed stabbing lines. 

Lemma 3. For m >-3 let S = { L1, L2, . . . , L,.} be a ruled set o f  lines lying on the 
quadric surface Q formed by the stabbers o f  Li ,  L2, L3. For every point P c Q there 
is a unique stabbing line through p that intersects each line in S. 
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Proof We prove the lemma by induction. I f  m = 3 the lemma is true by Lemma 
2. For m > 4, assume the lemma is true for m -  1. Let p be a point on Q. By 
Lemma I there is a unique stabber I of LI,  L2, and p. By the inductive assumption 
there is a unique stabber i' of  {L~, L 2 , . . . ,  Lm-~} and p. Since l' stabs L~, L2, L3, 
and p and l is the unique stabber of  L~, Lz, L3, and p, l' =/ .  Similarly, there is 
a unique stabber l" of {L~, L2, • . . ,  Lm-2, L,,} and p, so I"= I. Thus I = l' = l" and 
I is the unique stabber of  S and p. [] 

Let S = {L~, L2, L3} and let L~ be parametrized by Aui +/~v~. Given the quadric 
surface Q formed by the stabbers of S, we can define a function F which maps 
every point p on Q to the unique point q on L1 such that the line l(p, q) through 
p and q is a stabber of  S. Formally, 

~det(u2, 1)2, p, vl)ul - det(u2, V2, p, ut)vl, 
F(p) = [ det(u3, v3, p, vl)ut -det(u3, v3, p, uOvl, 

p c ( 2 -  G ,  (2) 
p c L~. (3) 

It follows from Lemmas 1 and 2 that F performs the function described above. 
In the sequel we will need the following fact about F(p). 

Lemma 4. F is a continuous function from Q to L~. 

Proof For every point pc  Q - L 2  we can define a neighborhood N(p)  which 
does not intersect L2. For every point p'c N(p)  

F(p') = det(u2, v2, p', v l )u l -  det(ue, v2, p', ul)vl. 

Note that if p '  c L~, this formula sets F ( p ' )  = p' .  Thus F is continuous at p. Now 
assume p c L2, and consider a neighborhood N ( p )  small enough to be disjoint 
from L3. I f  we first apply Lemma 1 with L = L~ and L' = L2 and then reapply it 
with L ' =  L3,  w e  see that formulas (2) and (3) agree up to a nonzero multiple 
for any point not on either L2 or  t 3. Therefore, for any q c N(p),  F(q) is given 
by formula (3) and is therefore continuous in this region. Again F is continuous 
at p. [] 

Applying Lemma 4, i f  M is a line segment on Q with endpoints p and q, then 
F(M)  is a line segment on L~ with endpoints F(p) and F(q). Note that a line 
segment in projective space may correspond to either a segment or two half-lines 
in real space. 

I f  P is a polyhedron which intersects Q, then F ( Q n  P) is a closed set in L~ 
and is composed of  the union of line segments in Li. If  N is an open set inside 
P, then F ( Q n  N)  is an open set in L~. Therefore, the endpoints of  the line 
segments forming F ( Q  c~ P)  must correspond to stabbers which do not intersect 
the interior of  P. These stabbers must pass through some edge of P. 

As a consequence of Lemmas 1 and 2 we have the following Helly-like theorem. 

Theorem 1. A set of m >-6 lines in p3 have a stabbing line if and only if every six 
of  the lines has a stabbing line. 
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Proof. Let S = {L~, . . . ,  Lm} denote the set of lines. Assume at first that they are 
skewed. If  some set of four lines admits a unique stabber, then the conclusion 
is immediate. Suppose next that some set of  four lines, say Lt, L2, L3, L4, admits 
exactly two stabbing lines l~ and/2 .  If  neither is a stabber for S, then there is 
some line L~ missed by l~ and some line Lj missed by/2.  But this is impossible, 
since then there would be no stabber of L~, L2, L3, L4, L~, L~, a contradiction. 
There remains the case that each set of four lines admits an infinity of stabbers. 
But in this case it follows from Lemma 2 that all of  the lines must lie in a quadric 
surface Q. Any line in this surface that intersects three of the lines must intersect 
all of them. 

Now suppose that the lines are not skewed. Two lines, say L~ and L2, intersect 
at point p. If  all the lines contained point p, the conclusion is immediate, so 
assume some line L3 does not contain p. Let H denote the plane containing L~ 
and L2, let H '  denote the plane containing L3 and p, and let ! be the line H c~ H'.  
I f  all the lines lie in plane H or H '  or intersect l, then 1 is a stabbing line for S. 
Otherwise some line L4 does not lie in H or H '  and does not intersect I. L1, L2, 
L3, L4 have at most two stabbers so we can proceed as above. The theorem 
follows. [] 

The theorem generalizes to all dimensions. We call a set of line segments 
collinear if one line contains all the line segments. A set of line segments is 
coplanar if the set of  lines containing the line.segments can be embedded in a 
plane. Finally, a set of line segments is skewed if the set of  lines containing the 
line segments is skewed and a set of  line segments is ruled if the set of lines 
containing the line segments is ruled. Theorem 1 has the following corollary. 

Corollary 1. A set o f  m > 6  skewed segments in R 3 that are not ruled have a 
stabbing line i f  and only i f  every six segments has a stabbing line. 

We now turn to the problem of stabbing lines for convex polyhedra in R 3. 
Let S = { P ~ , . . . ,  Pm} be a set of disjoint polyhedra in R a. Using the previous 
lemmas we can prove the following "extremai" theorem for polyhedra. For points 
x and y in space, let l(x, y )  denote the line through x and y. 

Theorem 2. S = {Pi . . . .  , Pro}, m >-- 2, has a stabbing line i f  and only i f  there exists 
a stabbing line through: 

(a) two vertices in two distinct P~ ; or 
(b) one vertex and two skewed edges in three distinct Pi ; or 
(c) two coplanar edges which are not collinear; or 
(d) three skew edges. 

Proof. We begin with the following: 

Observation. Let S' = Q1,- • •, Qm be a set of m -> 2 disjoint convex polygons in 
the plane that admit a stabbing line. There exist indices 1 - r < s < m and vertices 
x~ ~ Qr and xs e Qs such that l(xr, xs) is a stabbing line for Q ~ , . . . ,  Qm. 

To see this, let l be a stabber for S'. By translating i, if necessary, we can assure 
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that it goes through some vertex Xr of  some Q,. We can rotate l about xr, 
maintaining the property that it is a stabber, until it passes through a vertex xs 
of  some other Qs. 

Assume there is a stabbing line of  S. There are two cases. 

Case 1. There exists a stabbing line l of  S which passes through a vertex of  
some polyhedron in $. 

Assume l passes through the vertex xr of  polyhedron P,. By rotating I around xr 
in any direction, we can find a stabbing line l' which passes through xr and an 
edge e, of  some polyhedron Ps, s # r. Let H be the plane containing Xr and G, 
let Qr = Xr, Q~ = es, and Q~ = H n P~, i # r, s. By the above observation there exists 
a stabbing line l' through two vertices Xr and x~ ¢ Q,. I f  x, is a vertex of  P, then 
we have found a stabbing line through two vertices, satisfying condition (a). I f  
xt is not a vertex of P,, then it must lie on some edge e, which is not contained 
in H and we have found a stabbing line though one vertex and two skew edges, 
satisfying condition (b). 

Case 2. No stabbing line of  S passes through a vertex of any polyhedron in S. 

By translating the stabbing line of  S in any direction we can find a stabbing line 
I which intersects an edge er of  some Pr. Let H be the plane containing l and 
er, let Q~ = e,, and let Q~ = H n P~, i ~ r. By the above observation there exists 
a line r through vertices x~ ~ Q, and x, c Q,, where indices r, s, and t are distinct. 
For if, say, r = s, then there would be a stabber through a vertex of P~ which was 
forbidden by assumption. 

Let x~ and x, lie on edges e, and e, of  P~ and P,, respectively. By assumption 
r does not intersect the endpoints of  G or e,, so e, and e, do not lie in H and 
are not collinear. I f  G and e, are co-planar, then condition (c) is satisfied. 
Otherwise, er, G, e, form three skew edges and condition (d) is satisfied. [] 

3. Algorithms 

The algorithms follow quite naturally from the theory developed in the preceding 
section. Given a set S = {M~, M2,. • . ,  M,} of n nonintersecting line segments in 
R 3, we can find a stabber of  S in O(n log n) time. 

I f  any two line segments of  {M~, M2, M3} lie in the same plane H, then a 
stabber of  S must lie in H. We can apply the algorithm of Edelsbrunner et al. 
[8] for stabbing line segments in the plane in O(n log n) time. Otherwise, embed 
R 3 in p3 and let L~, L2, L3 be the projective lines containing M~, M2, M3, 
respectively. By assumption these lines are skew, so the stabbers of  these lines 
form a quadric surface Q. We can check in constant time whether each Mj lies 
on Q. I f  some M~ does not lie on Q, then it intersects Q in at most two points. 
By Lemma 3 there are at most two stabbers of  MI ,  M 2 , M 3 ,  and Mi. We can 
check whether these stabbers stab S in O(n) time. 

Finally, if  all Mi lie on Q, then we can define the function F as in Lemma 4 
which maps every point of  Q onto L1 s uch tha t  the line from p to F(p)  is a 
stabber of  L~, L2, and L3. By sorting the endpoints of  the line segments F(M~), 
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we can find the intersection of  all the line segments F(Mi) in O(n log n) time. 
To each point in that intersection there corresponds a line stabber of  S. 

Let S = {PI . . . .  , P=}, m -> 2, be a set of  disjoint polyhedra in R 3. Let n be the 
total number of  vertices and edges in S. We will show how to find a line stabber 
for S in O(n 4 log n) time. 

Define F as in Lemma 4 and let P be any polyhedra with t edges which has 
been preprocessed using the techniques given by Dobkin and Kirpatrick in [6] 
for fast reporting of polyhedral intersections. We show that if Q is a quadric 
surface formed by the stabbers of the skew lines L~, L2, L3, then we can construct 
F ( Q n  P) in O(t log t) time. Let T = { F ( Q n  e): e is an edge of  P which does 
not lie in Q}. T is composed of at most 2t points on L~. For each point y ~ T 
store Ey ={e:  y~ F ( Q n e )  and e is an edge of P which does not lie in Q}. Sort 
the points of  T. These points divide Lt into at most 2t line segments, each of  
whose interiors is either contained in F ( Q n  P) or in L~- F ( Q n  P). For every 
such line segment M~, determine if the interior of  Mi is in F(Q n P) by choosing 
some point xi from the interior of  M~ and querying whether the unique stabber 
of  x, L2, and L3 also stabs P. F ( Q  n P)  is the union of all the line segments Mi 
whose interior lies in F ( Q n  P) and the points in T. 

Since P has been preprocessed using the techniques in [6], it takes O(log t) 
time to find if a line intersects P. There are at most 2t such queries. Sorting takes 
O(t log t) time so the total complexity for this algorithm is O(t log t). 

To find a line stabber for the polyhedra in S we first preprocess the polyhedra 
as in [6]. We then test for the four possible cases in Theorem 2: 

(a) For every two vertices in Pj, Pk, J, k distinct, do: 
Check if the line through the two vertices stabs all the polyhedra. 

(b) For every vertex and two skew edges in Pj, Pk, Pt, J, k, I distinct, do: 
Find the stabber of  the vertex and two edges if it exists and check if it 
stabs all the polyhedra. 

(c) For every two edge in Pj, Pk, j, k distinct, which are coplanar, do: 
Let H be the plane containing the two edges. Intersect each of the 
polyhedra with H to form m polygons and u s e  the algorithm of  
Edelsbrunner et al. [8] to find any stabbers of  S which lie in H. 

(d) For every three skew edges in Pj, Pk, Pt, j, k, I distinct, do: 
Embed R 3 in p3 and let LI, L2, L3 be the projective lines containing the 
three skew edges. Let Q be the quadric surface formed by the stabbers of 
these lines. Define F as in Lemma 4. Apply the algorithm above to construct 
F ( Q n  ~)  for each i. Let T be the set of all the endpoints of segments in 
F(Qr~P~), i= 1 , . . . ,  m. T is a collection of at most 2n points. Sort the 
points in T. By scanning the points in T in order, intersect all the F ( Q  c~/'~). 
A point in this intersection has a unique stabbing line which stabs all the 
elements in S. 

Preprocessing all the polyhedra takes O(n 2) time. The total time of  this algorithm 
is dominated by the last step. This step takes a total of  O(n log n) time to construct 
F(Q n P~) for all i. It also takes O(n log n) time to sort T. The last step is executed 
O(n ~) times for a total of  O ( n  4 log n)-time complexity. 
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4. Conclusion 

We p r e s e n t e d  an a l g o r i t h m  for  f inding a l ine  t r ansversa l  in R 3. We  are  in t e re s t ed  

in g e n e r a l i z i n g  this  a l g o r i t h m  to  f ind ing  k - t r ansve r sa l s  in R d. T h e  a lgeb ra i c  

r e l a t i o n s h i p s  b e t w e e n  p o l y h e d r a  and  the i r  s t abber s  b e c o m e  m o r e  c o m p l e x  in 

h i g h e r  d i m e n s i o n s  a n d  we  m a y  n e e d  too l s  for  a l g e b r a i c  g e o m e t r y .  W e  k n o w  o f  

no non t r i v i a l  l o w e r  b o u n d s  for  f ind ing  t r ansversa l s ,  e v e n  in the  p lane .  F ina l ly ,  

we be l i eve  tha t  t he  t i m e  c o m p l e x i t y  for  f ind ing  l ine  t r ansversa l s  in R 3 can  a l m o s t  
ce r t a in ly  be  r e d u c e d .  
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