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Abstract

Due to the recent improvements in laser scanning technology, 3D visualization and
modelling, there is an increasing need for tools supporting the automatic search for 3D
objects in archives. In this paper we describe a new geometric approach to 3D shape
comparison and retrieval for arbitrary objects described by 3D polyhedral models that
may contain gaps. In contrast with existing approaches, our approach takes the overall
relative spatial location into account by representing the 3D shape as a weighted point
set. To compare two objects geometrically we �rst apply principal components analysis
to bring the objects in a standard pose, and enclose each object by a 3D grid. Then we
generate for each object a signature representing a weighted point set, that contains for
each non-empty grid cell a salient point. We compare three methods to select in each
grid cell a salient point and a weight: (1) choose the vertex in the cell with the highest
Gaussian curvature, and choose as weight a measure for that curvature, (2) choose the
area-weighted mean of the vertices in the cell, and choose as weight a measure denoting
the normal variation of the facets in the cell and (3) choose the centre of mass of all
vertices in the cell, and choose as weight one. Finally, we compute the similarity between
two shapes by comparing their signatures using a new shape similarity measure based
on weight transportation that is a variation on the Earth Mover's Distance. Unlike the
Earth Mover's Distance, the new shape similarity measure satis�es the triangle inequality.
This property makes it suitable for use in indexing schemes, which frequently depend on
the triangle inequality, such as the one we introduce, based on so-called vantage objects.
The strength of our approach is proven through experimental results using a database
consisting of 133 models such as mugs, cars and boats, and a database consisting of
512 models, mostly air planes, classi�ed into conventional air planes, delta-jets, multi-
fuselages, biplanes, helicopters and other models.

1 Introduction

As a result of the recent improvements in laser scanning technology, the acquisition of 3D
models by 3D digitizing now is commonplace. Applications of emerging relevance are aug-
mented reality using digitized 3D models, 3D shape retrieval, and the creation of digital
archives for all kind of purposes, e.g. recording cultural heritage and reverse engineering.
The World Wide Web enables access to these digital archives and desktop computers now
have the power to process and display huge 3D data sets. Hence, there is an increasing need
for tools supporting the automatic search for 3D objects in archives.
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The World Wide Web provides access to thousands of 3D objects mostly in virtual reality
modelling language (VRML) format. Most 3D �le formats like VRML represent 3D models
as meshes. To represent a 3D shape properly, the mesh has to be closed, such that the mesh
is a polyhedron. Since the main application of the VRML models is visualization, in practice
VRML models are often not watertight, i.e. the polyhedra may contain small gaps. Also,
they may contain wrongly-oriented polygons.

In this paper, we describe a new geometric approach to 3D shape comparison and retrieval
for arbitrary objects described by 3D polyhedral models that may contain gaps. The key idea
is to represent the signature of an object as a weighted point set that represents the salient
points of the object and to compare these weighted point sets using a new shape similarity
measure based on weight transportation that is a variation on the Earth Mover's Distance.
Unlike the Earth Mover's Distance, the new shape similarity measure satis�es the triangle
inequality. This property makes it suitable for use in indexing schemes, which frequently
depend on the triangle inequality.

Also, we have implemented a 3D shape retrieval engine [35] that demonstrates the capa-
bilities of this new approach. The strength of our approach is proven through experimental
results using a database consisting of 133 models such as mugs, cars and boats, and a database
downloaded from the World Wide Web consisting of 512 models, mostly air planes classi�ed
into conventional air planes, delta-jets, multi-fuselages, biplanes, helicopters and other mod-
els.

The outline of the paper is as follows. The next section contains a summary of related
work. Section 3 describes how we extract the weighted point sets and how we compute
the distance between two such sets. Experimental results are presented in Section 4 and
discussed in Section 5. Finally, we present our conclusions and indicate future research topics
in Section 6.

2 Related Work

An important issue in the context of 3D archives is how to search for 3D objects in a similar
way as we already search for text, images, audio and video. Up to now there are only few
references to the speci�c problem of content based retrieval of 3D models. However, an
extensive amount of literature can be found in the related �elds of computer vision, object
recognition and geometric modelling. For a broad introduction to this literature, please
consult the survey paper by Campbell and Flynn [7]. The vast majority of work in shape
matching has focused on characterizing similarity between objects in 2D images. For an
overview of 2D shape matching methods we refer the reader to the paper by Veltkamp [31].
Unfortunately, most 2D methods do not extend directly to 3D model matching. In particular,
extending methods of comparing boundaries in two dimensions to higher dimensions is non-
trivial, both in theory and in practice. In the following, we describe 3D shape matching
research based on comparing shapes in 3D directly.

Feature based similarity: Cicirello and Regli [8] present an approach to compare the
similarity of solid models of machined artifacts based on the similarity of their machining
features and to interrogate databases of these models. Since machining features contain
manufacturing process knowledge their research is especially relevant for the CAD/CAM
community, but unfortunately it is not applicable for models of natural shapes like humans
and animals.
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2D view based similarity: A number of approaches compare 3D models by the simi-
larity of their 2D views. L�o�er [19] describes a content-based retrieval method that matches
a user provided 2D sketch with views from the 3D model in the database. Cyr and Kimia [12]
present a method to obtain representative views using a shape similarity based aspect graph
that clusters views into aspects. Funkhouser et al. [15, 34] implemented an experimental 3D
search engine supporting retrieval by shape using a sketch interface providing one, two or
three 2D outlines of the shape to be retrieved.

Histogram based similarity: The following approaches to 3D shape matching compare
histograms or distributions encoding shape properties. Shum et al. [29] use a spherical coordi-
nate system to map the surface curvature of 3D objects to the unit sphere. By searching over a
spherical rotation space a distance between two curvature distributions is computed and used
as a measure for the similarity of two objects. Unfortunately, the method is limited to objects
which contain no holes, i.e. have genus zero. Ankerst et al. [1] use shape histograms de�ned
on shells and sectors around a model's centroid and compare shapes using a quadratic form
distance measure to compare the histograms. Elad et al. [14] use a moments-based classi�er
and a weighted Euclidean distance measure. Their method supports iterative and interactive
database searching in which the user can improve the weights of the distance measure by
marking relevant search results. Paquet et al. [23] apply cords-based, moments-based and
wavelets-based descriptors for 3D shape matching. A descriptor based on the 3D Discrete
Fourier Transform is introduced by Vrani�c and Saupe [33]. Kazhdan [18] describes a reective
symmetry descriptor associating a measure of reective symmetry to every plane through the
model's centroid. Osada et al. [21, 22] introduce and compare shape distributions measuring
properties based on distance, angle, area and volume measurements between random surface
points. They evaluate the similarity between the objects using a metric that measures dis-
tances between distributions. In their experiments the shape distribution measuring distances
between random surface points is most e�ective.

Topology based similarity: Hilaga et. al. [17] describe a topological matching method
relevant especially for articulated objects. Their method uses Reeb graphs based on geodesic
distances to encode the topology of 3D objects.

Volume based similarity: Novotni and Klein [20] describe a geometric similarity ap-
proach to 3D shape matching based on calculating a volumetric error between one object
and a sequence of o�set hulls of the other object. A drawback of their method is that their
similarity measure is no metric, because it is not symmetric and does not obey the triangle
inequality.

Deformation based similarity: A number of methods compare a pair of 2D shapes by
measuring the amount of deformation required to register the shapes exactly. For example,
Cohen et al. [10] use a representation based on curvature in order to encourage matching
curvature extrema between counters. Also, Basri et al. [3] propose a method to measure the
degree of similarity between two image contours taking into account deformations in object
shape. In contrast with [10], they use a similarity function that is a metric. The 2D methods
described above depend on the natural arc length parameterization of their contours. Another
problem is that the dimensionality of 3D data is higher, which makes registration, �nding
feature correspondences, and �tting model parameters more expensive. As a result, methods
that apply deformation for shape recovery [30] or shape evolution [13] are very diÆcult to
apply for 3D shape matching.

Many of the methods mentioned above do not take the overall relative spatial location
into account, but throw away some of this information, in order to deal with data of lower
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complexity, e.g. 2D views, or 1D histograms. What is new in our method, is that we use
the overall relative spatial position by representing the 3D shape as a weighted point set,
without taking the connectivity relations into account however. The weighted point sets
are compared using a new transportation distance that is a variant of the Earth Mover's
Distance [28]. New in our approach is that in contrast with the Earth Mover's Distance this
transportation distance satis�es the triangle inequality. Since this transportation distance
obeys the triangle inequality, our method can be used in indexing schemes that employ this
property, of which we will introduce one.

3 Overview of approach

To compare two objects independently of orientation, position and scaling we �rst apply prin-
cipal components analysis to bring the objects in a standard pose. Also in the preprocessing
step, we enclose each object by a 3D grid and generate for each object a signature representing
a weighted point set, that contains for each non-empty grid cell a salient point. We compare
three methods to select in each grid cell a salient point and a weight: (1) choose the vertex
in the cell with the highest Gaussian curvature, and choose as weight a measure for that
curvature, (2) choose the area-weighted mean of the vertices in the cell, and choose as weight
a measure denoting the normal variation of the facets in the cell and (3) choose the centre of
mass of all vertices in the cell, and choose as weight one. Finally, we compute the similarity
between two shapes by comparing their signatures using a shape similarity measure that is a
new variation on the Earth Mover's Distance.

We assume that a 3D shape is represented by a polyhedral mesh. We do not require that
the polyhedral mesh is closed. Therefore, our method can also handle polyhedral models that
may contain gaps.

3.1 Preprocessing

3D models have arbitrary scale, orientation and position in the 3D space. In order to com-
pute a correct measure of similarity it is necessary to place the 3D models into a canonical
coordinate system. This placing into the canonical coordinate system should be the same if
we translate, rotate or scale the model. Furthermore, if a model is given in multiple levels-of-
detail, canonical representations of di�erent levels should be approximately the same. First,
the centre of mass of the surfaces of each polyhedral model is translated to the origin. Note
that we cannot translate the centre of mass of the solid enclosed by the model to the origin,
because for a polyhedral model containing one or more gaps this solid is not de�ned. We
use the Principal Component Analysis (PCA) method to compute for each polyhedral model
the principal axes e1, e2 and e3 and their eigenvalues �1, �2 and �3, and make the necessary
conditions to get right-handed coordinate systems. These principal axes de�ne an orthogonal
coordinate system (e1; e2; e3), with �1 � �2 � �3. Next, the polyhedral model is rotated
around the origin such that the coordinate system (e1; e2; e3) coincides with the coordinate
system (ex; ey; ez).

Conventionally, the PCA [24] is applied only to a set of points (e.g., vertices or centroids
of facets), thus, the di�ering sizes of facets cannot be taken into account. Therefore, we
applied a \weighted" PCA [33] that relates the area of facets to weights associated to the
vertices of the polyhedral model. The PCA algorithm for pose estimation is fairly simple
and eÆcient. However, as noted by Novotni and Klein [20] the application of this procedure
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without further processing does not result always in a correct estimation. This is due to the
following problems:

� The PCA method gives the three principal axis, but it lacks any information about their
direction resulting thus in a two way ambiguity for each axis. This means that we have
a total of 4 con�gurations corresponding to the four possible right-handed coordinate
systems that all represent the same principal axes. Hence, if we want to obtain a
similarity value d(A;B) comparing two objects A and B, we consider four rotated copies
B1, B2, B3 and B4 of B and compute d(A;B) as the minimum of d(A;B1), d(A;B2),
d(A;B3), and d(A;B4).

� If the eigenvalues are similar, principal axis may switch, without a�ecting the eigenval-
ues. Since solving this problem is diÆcult, we accept that in a number of cases we may
obtain bad results.

After the PCA, as a last preprocessing step we divide the unit cube that encloses the
object into a grid consisting of 25*25*25 cells of equal size.

3.2 Extracting salient points

Next, we generate for each object a signature S representing a weighted point set, that contains
for each non-empty grid cell a salient point. Below we compare three methods to select in
each grid cell a salient point. All three methods use only the vertices and the facets adjacent
to the vertices to select a salient point. Therefore, they can handle models that contain gaps.
Models containing polygons that are wrongly oriented, are only handled correctly by the third
method.

3.2.1 Gaussian curvature method

For a smooth surface the Gaussian curvature c at a point is the product of the minimal and
maximal principal curvature at that point.

For polyhedral meshes the Gaussian curvature c(v) at a vertex v can be computed by the
following rule from Calladine [6]:

c(v) =
d(v)

a(v)
:

Here, d(v) denotes the angular defect at v, which is de�ned for interior vertices as 2� minus
the sum of the interior angles of the facets meeting at v. For vertices v at the boundary of
a gap the angular defect is de�ned as � minus the sum of the interior angles of the facets
meeting at v. The scalar a(v) denotes the area associated with vertex v, where each facet
contributes to a(v) the area of the facet divided by the number of its vertices.

The atter the surface, the smaller c will be. If all the facets are coplanar, for interior
vertices c will be zero. If for a boundary vertex the edges of the boundary do not meet at an
angle, d(v) is also zero.

The Gaussian curvature method computes for each non-empty grid cell the vertex v with
the highest absolute value of the Gaussian curvature. We take the absolute value of the
Gaussian curvature, because our similarity measure cannot handle point sets with negative
weights. Hence, at an individual point we cannot distinguish between elliptic and hyperbolic
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shapes. But, because in general the weighted point sets of elliptic and hyperbolic shapes will
di�er, these shapes will be found dissimilar using our similarity measure. Since the absolute
value jcj of the Gaussian curvature c may have values between zero and in�nity, we normalize
to the range [0; 1], and de�ne a measure M , such that for all M(x) = 1 � 1=(1 + x). This
normalization avoids that vertices with very high curvatures disturb the computation of our
similarity measure and makes it less sensitive to noise. For each non-empty grid cell the
weighted point (v;M(jcj)) is added to the signature S.

3.2.2 Normal variation method

Another approach to obtain a measure related to the curvature is the normal variation method.
In this approach we estimate the curvature in a grid cell by the normal variation in the grid
cell. We choose the area-weighted mean of the vertices p(c) in the grid cell as a salient point
and we choose as weight a measure for the normal variation.

We compute the area-weighted mean p(c) of the vertices in the grid cell by

p(c) =

0
@

MX
j=1

wjvj

1
A =

MX
j=1

wj;

where M is the number of vertices in the cell, vj is the j
th vertex in the cell. The weight wj

denotes the area associated with vertex vj, where each facet contributes to wj the area of the
facet divided by the number of its vertices.

To compute the normal variation we use the following from Brodsky and Watson [5]. For
each grid cell we compute the mean normal ~mn that is the area-weighted mean of all the
normals of facets adjacent to a vertex in the grid cell as given by the equation

~mn =

NX
i=1

ai ~ni;

where N is the number of facets in the cell, ~ni is the normal of facet i, and ai is the area of
facet i.

The atter the surface, the larger the magnitude of ~mn will be. If all the facets are
coplanar, the magnitude of ~mn will equal the area of surface of the surface in the cell. Hence,
cp = k ~mnk=

PN
i=1 ai equals one. Otherwise cp will be smaller than one. Therefore, we choose

1� cp as weight and add for each non-empty grid cell the weighted point (p(c); 1� cp) to the
signature S.

In the normal variation method gaps will result in a number of missing facets, that are
not taken into account in the procedure described above. If the area of these facets is small,
then the error caused by the gaps will also be small.

3.2.3 Midpoint method

The two methods described above may fail if 3D models contain wrongly oriented polygons.
This is the case for models that are represented by \polygonal soups", i.e. unorganized
and degenerate sets of polygons. To handle such degenerate models, we also implemented a
simple approach called midpoint method, that is similar to Rosignac's polygon simpli�cation
algorithm [27]. The midpoint method obtains a signature S by adding for each grid cell the
centre of mass of all vertices in the cell with unit weight to the signature S.
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3.3 Matching

Now that we have the signatures of our polyhedral models represented as sets of weighted
points, we need a way to match two such sets. So we need a de�nition of a distance function,
and an algorithm to compute the distance.

A distance measure is a function de�ned on pairs of patterns indicating the degree of their
resemblance. Formally speaking, a distance measure d on a set S is a nonnegative valued
function d : S � S ! R

+ [ f0g. For many pattern matching applications, it is desirable that
d has some of the following properties:

i. Self-identity : For all x 2 S; d(x; x) = 0.

ii. Positivity : For all x 6= y in S; d(x; y) > 0.

iii. Symmetry : For all x; y 2 S; d(x; y) = d(y; x).

iv. Triangle inequality :
For all x; y; z 2 S, d(x; z) � d(x; y) + d(y; z).

v. Transformation invariant : For a chosen transformation group G, for all x; y 2 S, g 2 G,
d(g(x); g(y)) = d(x; y). This also implies d(g(A); B) = d(A; g�1(B)).

A function d having properties (i){(iv) is called a metric. Other combinations are possible:
a pseudo-metric is a function that has properties (i), (iii) and (iv), while a semi-metric is a
function that obeys only (i), (ii) and (iii).

The triangle inequality is very useful for making searching more eÆcient [2]. This is based
on the following observation. Consider a shape or weighted point set A1 that closely matches
a query Aq: d(A1; Aq) is small. Let Ar be some reference shape. If the triangle inequality
holds, d(Ar; Aq) � d(Ar; A1) + d(A1; Aq), then we know that d(Ar; Aq) � d(Ar; A1) is small
as well. We can approximate the distance between a database shape A1 and a query Aq

by comparing their distances to a reference shape Ar. This observation can be applied to
implement eÆcient indexing and searching of the shape database using the vantage method,
as follows [32]. Calculate o�-line the distance between all database objects and a reference
shape called vantage object. The set of objects that have about the same distance to the
vantage as a query object, contains also those objects that have about the same distance to
the query object (if the triangle inequality holds). This can be extended to more vantage
objects. In this way, on-line complex shape comparisons have to be done with only a few
vantage objects, at the cost of false positives, but no false negatives. After computing the
distances of all database objects to a �xed number of vantage objects, for querying only a few
expensive shape comparisons are needed, the actual range query is done eÆciently in higher
dimensional Euclidean space.

There are two main approaches to compare weighted point sets. One approach is to
interpret the point sets as fuzzy sets. However, a distance measure for fuzzy sets that is a
metric, invariant under rigid motion and respects scaling of the underlying ground distance,
does not exist [4]. In addition, a Hausdor�-like pseudo-metric fails to di�erentiate between
fuzzy sets with arbitrarily di�erent maximum membership values. The other approach is
the Earth Mover's Distance (EMD). However, for sets of unequal total weights, it gives zero
distance for arbitrarily di�erent sets, and it does not obey the triangle inequality. Therefore,
we describe below a new shape similarity measure based on weight transportation that is a
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variation on the EMD and satis�es the triangle inequality. We refer the reader to [16] for an
exhaustive description of the EMD and the new shape similarity measure.

3.3.1 Earth Mover's Distance

The distance that we will use for matching is a variation on the EMD [28]. The EMD between
two weighted point sets measures the minimum amount of work needed to transport from a
supplier set of weights to a demander set of weights. Stated in a di�erent way, the EMD is
the average ground distance that weights travels during an optimal ow [11]. Let N denote
the space of weighted point sets, in which any two sets can have unequal total weights. In
[16] it is demonstrated that the EMD has the following drawbacks when applied on N :

1. It does not obey the positivity property. The EMD does not take into account the
surplus of weight, if any, between two sets. As a result, there are cases where it does
not distinguish between two non-identical sets. Even for arbitrarily di�erent sets, the
distance can be zero.

2. It does not obey the triangle inequality. As a result, the EMD prevents the triangle
inequality from being used in speeding up database retrieval.

Consequently, the EMD on N is not a metric.

3.3.2 Proportional Transportation Distance

An interesting question, that naturally arises, is the following: is there a similarity measure
based on weight transportation such that the surplus of weight between two point sets is taken
into account and the triangle inequality still holds? In the sequel we present a new distance
for weighted point sets in N . Let A;B 2 N . When measuring the distance from A to B,
rather than taking A as the supplier and B as the demander moving only as much weight as
needed, trying to �ll the `holes' with `earth', we move the total weight of A to the positions of
the points in B. What we measure then, is the minimum amount of work needed to transform
A to a new set A0 that resembles B. In particular, we redistribute A's total weight from the
position of its points, to the position of B's points leaving the old percentages of weights in
B the same.

We call this distance the Proportional Transportation Distance (PTD); it is de�ned as
follows. Let A = fa1; a2; : : : ; amg be a weighted point set such that ai = (xi; wi), i = 1; : : : ;m
where xi 2 IRk with wi 2 IR [ f0g being its corresponding weight. Let also W =

Pm
i=1 wi

be the total weight of set A. Let B = fb1; b2; : : : ; bng be a weighted point set such that
bi = (yi; ui), i = 1; : : : ; n where yi 2 IRk with ui 2 IR [ f0g being its corresponding weight.
Let also U =

Pn
i=1 ui be the total weight of set B. Let d be a ground distance between two

single points, typically the Euclidean distance. Formally, the PTD can be expressed as a
linear programming problem. We denote as fij the elementary ow of weight from xi to yj,
over the elementary distance dij . The set of all feasible ows F = [fij] from A to B, is now
de�ned by the following constraints:

1. fij � 0; i = 1; :::;m; j = 1; :::; n

2.
Pn

j=1 fij = wi; i = 1; :::;m

3.
Pm

i=1 fij =
ujW

U
; j = 1; :::; n
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4.
Pm

i=1

Pn
j=1 fij =W

The PTD(A, B) is given by the following objective function:

PTD(A;B) =
minF2F

Pm
i=1

Pn
j=1 fijdij

W
(1)

Constraints 2 and 4 forces all of A's weight to move to the positions of points in B.
Constraint 3 ensures that this is done in a way that preserves the old percentages of weight
in B. Next we examine PTD's properties.

3.3.3 Properties of the PTD

Let us take a closer look at PTD's de�nition. While measuring the PTD(A, B) for any
sets A and B, if we substitute the variables fij with f 0ijW , i = 1::m, j = 1::n in its linear
programming (LP) formulation, call it LP1 we get the following LP problem:

min
F2F

mX
i=1

nX
j=1

f 0ijdij

where F is de�ned by:

1. f 0ij � 0

2.
Pn

j=1 f
0
ij = wi=W

3.
Pm

i=1 f
0
ij = uj=U

4.
Pm

i=1

Pn
j=1 f

0
ij = 1

It is clear that this new formulation, call it LP2, gives us the distance between the two
sets of percentages of weights in A, B. Note that the total weights of the new sets are both
equal to one. Since the substitution function fij = f 0ijW;W 6= 0 is bijective, LP1 is equivalent
to LP2. This means that we are working on the space of equal total weight sets.

However, it's obvious that more than one LP1 problems can be equivalent to the same LP2
problem i.e. any two weighted point sets of the same cardinality and positionally coincident,
can have the same percentages of weight at the same positions although their corresponding
individual weights are di�erent.

We can now state the properties of PTD.

1. It obviously has the identity property.

2. It obeys the triangle inequality.

3. It does not follow the positivity property since the distance between positionally coin-
ciding sets with the same percentages of weights at the same positions is 0. However
this is the only case in which the distance between two non-identical point sets is zero.
The PTD will distinguish two sets B and B0 where the one came from the other by
adding even only one point.
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It follows that the PTD is a pseudo-metric. Of course, by identifying sets with zero distance
we can produce a metric on the resulting partition of the set N of generally unequal total
weight sets.

The PTD can be computed eÆciently by solving the corresponding linear programming
problem, using for example a streamlined version of the simplex algorithm for the transporta-
tion problem. In practice simplex performs well, but in theory it can perform an exponential
number of steps before giving a solution. Theoretically better (polynomial time) algorithms
for general linear programming, like an interior point algorithm could be used; however it is
likely to perform better than the simplex method only for very large problem sizes. Since
the transportation problem is a special case of the minimum cost ow problem in networks,
a polynomial time algorithm that solves the latter can be used as well.

4 Experimental results

We have tested our geometric approach to 3D shape comparison on two di�erent databases,
one consisting of 133 models such as mugs, cars and boats, and one consisting of 512 models
including 376 models of air planes. Our primary objective is to show that our simple approach
can actually be used in 3D shape comparison. This together with its properties, namely
the triangle inequality, would make it a good candidate for shape retrieval applications as
explained in the previous section.

In order to calculate the PTD between two weighted point sets, each weighted point set
is �rst normalized by dividing each individual point weight by the total weight of the points
in the set, as the LP2 formulation suggests. The distance computation is based on the EMD
publicly available code [9].

The computation of the PTD between two sets is possible in a reasonable amount of
time. In our experiments in the average case computing the PTD takes about 5 seconds on
a typical Pentium III, 1000 MHz with 256MB of memory. In our experiments the worst case
is computing the PTD between two sets of around 300 points each, which takes about 40
seconds.

A linear search through a database of 512 models would take, on the average, over 42
minutes, which would make this similarity measure unsuitable for retrieval purposes. Em-
ploying the triangle inequality with the vantage method however, using for example 8 vantage
objects, a query would take on the average 40 seconds.

4.1 Robustness to level of detail

We test the robustness of our similarity measure to level of detail by testing it with di�erent
polyhedral approximations of two 3D shapes using 4 approximative models of the Utah teapot
and 4 approximative models of an ellipsoid. The polyhedral approximations of the Utah teapot
have been obtained by exporting the B-spline representation to VRML using di�erent levels of
detail using the Rhinoceros software [26]. The polyhedral approximations of the ellipsoid have
been obtained by �rst approximating the sphere for k = 2; 3; 4; 5 with k-frequency icosahedra
[25] containing 20k2 triangular facets. To approximate an ellipsoid the x, y and z coordinates
of the k-frequency icosahedra have been scaled with a factor 4, 2, and 1 respectively.

From table 1 we see that there is some di�erence in the similarity measure for the �rst
level of detail and the other levels of detail. For increasing numbers of vertices the similarity
is higher, as denoted by the smaller distance value. This can be explained as follows. For
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Gauss Norm Midp

ptd(e1,t1) 0.145 0.183 0.143
ptd(e2,t2) 0.137 0.163 0.122
ptd(e3,t3) 0.121 0.162 0.115
ptd(e4,t4) 0.115 0.148 0.103

ptd(e1,e2) 0.070 0.085 0.072
ptd(e2,e3) 0.057 0.074 0.055
ptd(e3,e4) 0.043 0.067 0.043

ptd(t1,t2) 0.131 0.153 0.130
ptd(t2,t3) 0.043 0.040 0.041
ptd(t3,t4) 0.031 0.025 0.021

Table 1: Overview of robustness to level of detail results. e1, e2, e3, and e4 denote approxi-
mations of an ellipsoid containing 42, 92, 162 and 252 vertices, respectively. t1, t2, t3, and t4
denote approximations of the Utah teapot containing 262, 3743, 9795 and 17233 facets, respec-
tively. ptd denotes the Proportional Transportation Distance for signatures generated with
the Gaussian curvature (Gauss), the normal variation (Norm) and the midpoint method
(Midp).

Nearest First Second
Method Neighbour Tier Tier

Gauss 82% 53% 70%
Norm 75% 50% 68%
Midp 78% 53% 71%
D2 66% 49% 66%

Table 2: Comparison of the Gaussian curvature (Gauss), the normal variation (Norm) and
the midpoint method (Midp) to the D2 shape distribution based method [21, 22] using the
Princeton database.

a low number of vertices in the model, also the number of points in the model's signature,
which is equal to the number of grid cells containing at least a vertex, is low. Hence, the
weighted point set does not represent the shape very well. For instance ptd(t1; t2) is almost
the same as ptd(e1; t1). In our case the signatures of e1, e2, e3, and e4 contain 42, 78, 110
and 152 points respectively, and the signatures of t1, t2, t3, and t4 contain 47, 157, 208, and
225 points, respectively. We conclude that for the higher level of details (> 100 points) our
signatures and similarity measure together are reasonably robust against change in level of
detail.

4.2 Shape retrieval results

Also, we compare the ability of the Gaussian curvature, normal variation and midpoint shape
matching method to �nd shapes similar to a query image. We tested our results using a
database from Princeton, that has also been used by Osada et al. [21, 22], and a test database
consisting of 512 models.

The database from Princeton consists of 133 models retrieved from the World Wide Web
and grouped qualitatively (by function more than by shape) into 25 classes: 5 animals, 4
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Figure 1: Precision versus number of models returned for the Princeton database.

balls, 2 belts, 3 blimps, 3 boats, 6 cars, 8 chairs, 3 claws, 4 helicopters, 11 humans, 3 lamps,
3 lightnings, 6 missiles, 4 mugs, 4 open books, 4 pens, 4 phones, 27 planes, 4 ries, 3 skate
boards, 4 sofas, 6 spaceships, 3 subs, 4 tables, and 5 tanks. Some classes (such as ball, mug,
open book, pen and sub) contained 3D models with shapes greatly resembling each other,
while others (such as animal, boat, car and plane) contained models with a wide variety of
shapes.

To investigate the ability of our shape matching methods to discriminate between classes
of objects, for each method, we computed for each object in the database the distances to
all other objects in the database. In our tests we used each object as query object. Table
2 presents the results of these tests. We compare the results against the best of the shape
distribution based methods described in [21, 22]. This is the so-called D2 method, that
represents a shape by the distribution of Euclidean distances between pairs of randomly
selected points on the surface of a 3D model. The �rst column indicates the shape matching
method. The second column lists the percentage of retrieved objects in which the nearest
neighbour was from the query's class. Let k denote the number of objects in the query's class.
The third column (\First Tier") lists the percentage of retrieved objects from the query's class
within the �rst k � 1 hits excluding the query. The fourth column (\Second Tier") lists the
percentage of retrieved objects from the query's class within the �rst 2(k � 1) hits excluding
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Figure 2: Query results using the Gaussian curvature method for the Princeton database.
Each column illustrates a query. The top row shows the query objects, the second
row the nearest neighbour, the third and fourth row show the second and third
nearest neighbour, respectively.

the query.
For the Princeton database, �gure 1 shows for each weighting scheme the precision, i.e.

the proportion of returned models that are in the same class as the query object, as a function
of the number of models returned.

Figure 2 illustrates for the Princeton database shape retrieval using the Gaussian curvature
method. Each column shows a query result. We also examined query results on this database
using our experimental shape retrieval engine that can also be found at our web site [35].
The search engine allows the user to choose a method and generate random queries or speci�c
queries identi�ed by a number identifying a model. The reader can verify the query results
from �gure 2 selecting for the Princeton database the Gaussian curvature method and query
the models in the �rst row of �gure 2 from left to right using the numbers 130, 110, 5 and 12.

To avoid the drawbacks of a classi�cation by functionality, as in the Princeton database, we
made a test database with a shape-based classi�cation. First we collected 684 VRML models,
mostly airplanes, from the World Wide Web. From this collection we classi�ed 512 models
into six categories: 242 conventional air planes, 60 delta-jets, 45 multi-fuselages, 19 biplanes,
10 helicopters and 136 other models. This classi�cation was purely on the basis of shape, not
on the type of object. We did not classify the remaining 172 models, because it was not clear
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Figure 3: Precision versus number of models returned for the Utrecht database.

to which class these models should belong, looking at their shape. For veri�cation, on our
web site the reader can query the complete database containing all 684 models, download the
complete database, and a database containing the 512 classi�ed models only.

For our test database (the Utrecht database), �gure 3 shows the precision as a function
of the number of returned models n, i.e. the proportion of returned models that are in the
same class as the query object.

Figure 4 illustrates for the Utrecht database shape retrieval using the midpoint method.
The reader can verify the query results from �gure 4 selecting for the Utrecht database the
midpoint method and query the models in the top row of �gure 4 from left to right using the
numbers 532, 389, and 129. The last column of �gure 4 shows the signatures of the models
in the third column.
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Figure 4: Query results using the midpoint method for the Utrecht database. Each of the �rst
three columns illustrates a query in the same way as in Figure 2. The last column
shows the signatures of the model in the third column. The blue spheres denote
weighted points of the query object and the red spheres denote weighted points of
the retrieved object.

5 Discussion

Figures 1 and 3 demonstrate that our methods can be fairly e�ective in retrieving similar 3D
models. In the �rst case the Gaussian curvature method was the best and in the second case
the midpoint method. In both cases the normal variation method is less e�ective than the
Gaussian and midpoint method.

From the results in table 2 we observe that our methods perform better than the D2 shape
distribution based method described in [21, 22].

The di�erence in precision between �gures 1 and 3 is caused by the di�erence of the class
sizes and by the di�erence in classi�cation of both databases. Figure 3 corresponds to the
Utrecht database. Figure 1 corresponds to the Princeton database, were the classi�cation is
based on the function of models rather than their shape. This causes a number of ambiguous
classi�cations in terms of shape. This is illustrated in Figure 2. The �rst query object is a
tank, only the nearest neighbour is also a tank. The other three tanks are not found among
the 3-nearest neighbours. This is not surprising as these cars and tanks have similar shape.
However, because tanks and cars are in di�erent classes, this result will cause a lowering of
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the precision in �gure 1. Also, the smaller class sizes in the Princeton database will cause a
lowering of the precision in �gure 1.

The second query object is a skate board. The other two skate boards in the Princeton
database are found as nearest neighbour and second nearest neighbour. The third query
object is a wolf of the class animals. Also, the three nearest neighbours are animals. The
class animals consists of 5 models. The �fth animal, a dinosaur, is found on rank 5 instead
of rank 4. These results are satisfactory.

Our method is designed only for single polyhedral objects, it is not robust against outliers
in the VRML scene. So if the scene contains more than a single object, the results are
distorted. This is illustrated in �gure 5, showing a blimp. The bottom of the �gure shows
some text modelled as VRML, which severely inuences the matching. Indeed, Figure 2 shows
a query with a blimp. The blimp class contains two other blimps, but only one blimp is found
as nearest neighbour. The other blimp of �gure 5 is found on rank 92, due to the outliers.

Figure 4 shows three queries on the Utrecht database obtained with the midpoint method.
The �rst query object is classi�ed as a multi-fuselage. The query returns three models, that
are also classi�ed as multi-fuselages. The second and third query items are classi�ed as
conventional air planes and the returned models are also classi�ed as conventional air planes.
If we take a closer look at the third query, we expect that the air plane ranked third would be
�rst, because of the orientation of the wings. This result is explained as follows. If we look at
the signatures of the models in the last column, the signatures contain only weighted points
at the tips of the wings and near the fuselage. This is so, because the VRML models contain
only vertices at these places. Hence, the shapes of the wings contribute only a few weighted
points to the signature. Overall, the query results on the Utrecht database are satisfactory.

The experiments show that our approach can actually be used in 3D shape comparison,
for example as an e�ective �lter, after which more detailed comparisons can be made. Our
experimental results demonstrate that our geometric approach to shape matching is fairly
e�ective in �nding objects similar to a query object. Since the similarity between two shapes
is computed using the Proportional Transportation Distance, which satis�es the triangle
inequality, our method is suitable for use in indexing very large collections of models.

6 Conclusions

In this paper we have presented the �rst ideas you would think of in trying to incorporate
spatial distribution of shape information for comparisons, in much the same way as the
shape distribution based methods described in [21, 22] implement the �rst ideas you would
think of for making shape distributions without spatial relations. In this sense the results
provide a lower bound of any following attempt to do retrieval of polyhedral models using
spatial distribution. Compared to the best of the shape distribution based methods described
in [21, 22] the experimental results presented in table 2 show that the performance of our
approach is better. Of course, there are many improvements that can be made to our method.
E.g., for grid cells that intersect facets of the VRML model but contain no vertices of it, also
a salient point should be added to the signature of the model. Instead of using the vertices of
the mesh directly, it may be better to resample the mesh to generate evenly spaced samples
on the surfaces of the model, and use those to generate the signature. Also, it would be
interesting to investigate the method for grids consisting of smaller cells. We expect that the
results will be more precise, but for small cells we cannot generate a salient point for each
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Figure 5: Blimp ranked far away from the blimp used as query in �gure 2.

cell, because the running time for computing the PTD between signatures containing many
weighted points would be very high. In the preprocessing stage, the pose estimation can be
improved in cases for which the PCA method obtains similar eigenvalues. Another important
issue for further research is the development of publicly available benchmark databases so
that di�erent shape matching methods can be compared.

7 Acknowledgements

We thank Geert-Jan Giezeman from our institute for implementing the 3D shape search en-
gine, we thank Bram de Smit from the Integrated Concept Advancement Group, Delft Uni-
versity of Technology, for providing us with the Utah teapot data sets, and Patrick Min from
the Princeton Shape Retrieval and Analysis Group for providing us the Princeton database.

References

[1] M. Ankerst, G. Kastenmuller, H.-P. Kriegel, and T. Seidl. 3D Shape Histograms for
Similarity Search and Classi�cation in Spatial Databases. Symposium on Large Spatial

Databases, 207-226, 1999.

[2] J. Barros, J. French, W. Martin, P. Kelly, and M. Cannon. Using the triangle inequality to
reduce the number of comparisons required for similarity-based retrieval. Proc. of SPIE,
vol. 2670, 392-403, 1996.

[3] R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of deformable
shapes. Vision Reasearch, 38:2365-2385, 1998.

[4] P. Bra�. On the non-existence of Hausdor�-like metrics for fuzzy sets. Freie Universit�at
Berlin, Fachbereich Mathematik und Informatik, TR B 00-02, 2000.

[5] D. Brodsky, and B. Watson. Model Simpli�cation Through Re�nement. Proc. Graphics

Interface, 221-228, 2000.

17



[6] C.R. Calladine. Gaussian Curvature and Shell Structures. The Mathematics of Surfaces,
179-196, Oxford University Press, 1985.

[7] R.J. Campbell, and P.J. Flynn. A Survey of Free-Form Object Representation and Recog-
nition Techniques. Computer Vision and Image Understanding, (81):166{210, 2001.

[8] V. Cicirello, and W.C. Regli, Machining Feature-based Comparisons of Mechanical Parts.
International Conference on Shape Modeling and Applications (SMI 2001), 176-185, 2001.

[9] Code for the Earth Movers Distance (EMD), http://robotics.stanford.edu/~rubner/
emd/default.htm.

[10] I. Cohen, N. Ayache, and P. Sulger, Tracking Points on Deformable Objects Using
Curvature Information. ECCV '92, Lecture notes in Computer Science 588, 458-466,
1992.

[11] S. Cohen, and L. Guibas. The Earth Mover's Distance under Transformation Sets. Proc.
of the 7th IEEE Int. Conf. on Computer Vision, 173-187, 1999.

[12] C.M. Cyr, and B. Kimia. 3D Object Recognition Using Shape Similiarity-Based Aspect
Graph. Int. Conf. on Computer Vision (ICCV01), I:254-261, 2001.

[13] D. DeCarlo, and D. Metaxas. Shape evolution with structural and topological changes
using blending. PAMI, 20(11):1186-1205, 1998.

[14] M. Elad, A. Tal, and S. Ar. Content Based Retrieval of VRML Objects - An Iterative
and Interactive Approach Eurographics Multimedia Workshop, 97-108, September 2001.

[15] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D. Jacobs.
A Search Engine for 3D Models. Submitted for publication, 2002.

[16] P. Giannopoulus, and R.C. Veltkamp. A pseudo-metric for weighted point sets To appear

in European Conf. on Computer Vision 2002.

[17] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii. Topology Matching for Fully
Automatic Similarity Estimation of 3D Shapes. SIGGRAPH 2001, 203-212, August 2001.

[18] M. Kazhdan, B. Chazelle, D. Dobkin, A. Finkelstein, and T. Funkhouser. A Reective
Symmetry Descriptor. To appear in European Conf. on Computer Vision 2002, http://
www.cs.princeton.edu/~funk/ecvv02.pdf.

[19] J. L�o�er, Content-based Retrieval of 3D models in Distributed Web Databases by Visual
Shape Information, Int. Conf. on Information Visualisation (IV2000), 2000.

[20] M. Novotni, and R. Klein, A Geometric Approach to 3D Object Comparison, Int. Conf.
on Shape Modeling and Applications (SMI 2001), 167-175, 2001.

[21] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, Matching 3D Models with Shape
Distributions. Int. Conf. on Shape Modeling and Applications (SMI 2001), 154-166, 2001.

[22] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, Shape Distributions To appear
in ACM Transactions on Graphics 2002. http://www.cs.princeton.edu/~funk/tog02.
pdf.

18



[23] E. Paquet, A. Murching, T. Naveen, A. Tabatabai, and M. Rioux, Description of Shape
Information for 2-D and 3-D Objects, Signal Processing: Image Communication, (16):103{
122, 2000.

[24] M. Petrou, and P. Bosdogianni, Image Processing: The Fundamentals. John Willey,
1999.

[25] A. Pugh. Polyhedra: A Visual Approach. University of California Press, Berkeley, Cali-
fornia, 1993.

[26] Rhinoceros: NURBS modeling for Windows, http://www.rhino3d.com/.

[27] J. Rossignac, and P. Borrel, Multi-resolution 3D approximation for Rendering Complex
Scenes. Geometric Modeling in Computer Graphics, 455-465, 1993, Springer Verlag.

[28] Y. Rubner, C. Tomasi, and L.J. Guibas, A Metric for Distributions with Applications
to Image Databases IEEE Int. Conf. on Computer Vision, 59-66, 1998.

[29] H.-Y. Shum, and M. Hebert, and K. Ikeuchi, On 3D Shape Similarity, Proc. IEEE

Computer Vision and Pattern Recognition, 526-531, 1996.

[30] D. Terzopoulus, and D. Metaxas. Dynamic models with local and global deformations:
Deformable superquadrics. PAMI, 13(7):703-714, 1991.

[31] R.C. Veltkamp, Shape Matching: Similarity Measures and Algorithms, Int. Conf. on

Shape Modeling and Applications (SMI 2001), 188-197, 2001.

[32] J. Vleugels, and R.C. Veltkamp EÆcient Image Retrieval through Vantage Objects, Pat-
tern Recognition, 35(1):69-80, 2002.

[33] D.V. Vrani�c, and D. Saupe, 3D Shape Descriptor Based on 3D Fourier Transform, Proc.
of the EURASIP Conference on Digital Signal Processing for Multimedia Communications

and Services (ECMCS 2001), Budapest, Hungary, September 2001.

[34] 3D Model Search Engine, http://shape.cs.princeton.edu/search.html.

[35] 3D Shape Retrieval Engine, http://www.cs.uu.nl/centers/give/imaging/3Drecog/
3Dmatching.html.

19


