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POLYHEDRAL RESOLUTIONS OF ALGEBRAIC VARIETIES
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Abstract. We give a method for constructing relatively small smooth simplicial
resolutions of singular projective algebraic varieties. For varieties of dimension n, at
most n applications of the basic process yields a resolution of combinatorial
dimension at most n. The object so obtained may be used to compute the mixed
Hodge stucture of the underlying variety.

1. Introduction. To compute the mixed Hodge structure of a complex projective
variety Y one uses, following Deligne [D], a smooth simplicial resolution
[e: X. -» Y\. As one measure of the size of a resolution, one may take the
combinatorial dimension:

cdim X. = {max p: Xp ¥= 0}.
The purpose of this note is to give a method of constructing smooth simplicial
resolutions which are small and sometimes rather efficient.

Theorem 1.1. Let Y be a complex projective variety of dimension n. Then Y has a
simplicial resolution of combinatorial dimension at most n.

The method described permits one to approach, from a single point of view, a
number of ad hoc constructions which have arisen in various applications. Three of
these resolutions are described in the last section.

The objects by means of which the small resolutions are constructed are polyhedral
spaces, which we describe informally now and formally in the next section.2 In rough
terms such a space consists of a polyhedron &, a topological space Xa for each face a
of &, and a continuous map fra: Xa -> XT for each inclusion of faces (t < a). The
face maps must satisfy the cocycle condition

J v\ JVfX       Jft\

whenever t > v > X. As an example, consider the abstract mapping cyclinder, which
we may give either as a diagram

c(f,g)=  lLm^r ,
or as labelled version of the polyhedron 7 = [0,1],

L       M       R

We say that C(f, g) = C\I is a polyhedral space "over" the unit interval.
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596 J. A. CARLSON

To every polyhedral space X = X\0> is functorially associated an ordinary topo-
logical space, the realization. To define it, let <£OT: T^obe the linear inclusion of r
as a face of a. Then the realization is the identification space \X\ = (Xa X a)/~
where the equivalence relation is given by

wherever p. is a face of X. The usual mapping cyclinder, mapping cone, and
suspension are particular cases of the realization \C(f, g)\.

An augmentation e of a polyhedral space A^by an ordinary topological space Y
is a system of maps ea: Xa -» Y such that e„ = eT ° fTa. Whenever A'l^is augmented
by Y there is a canonical and functorial map |e|: \X.\ -» Y. When this map is a
homotopy equivalence, we call it a polyhedral resolution of Y. If X is smooth in the
sense that each Xa is smooth, then e is a smooth polyhedral resolution. As an example
of such, consider a projective variety Y with singular locus 2, let it: Y -+ Y be a
resolution of singularities, and let 2 be the preimage of 2 in Y. There results a
polyhedral variety

c(i,ir)-[y«-2:-2]
which is augmented by Y.

Example [C]. Let Y be a curve. Then the augmentation map looks like Figure 1.1.
The remaining map p is a canonical map \X\£P\ -* \0>\ of the realization of a
polyhedral space to its polyhedron. Here p~l(0) = Y, /?_1(0,1) = 2 X (0,1), and
/j_1(l) s 2. Note that the fibers of |e| are either points or cones over parts of 2. Since
|e| has contractible fibers, it is a smooth polyhedral resolution.

It is easy to see that C(i, 77) is always a resolution, although not always smooth as
in the example. If y is a smooth point of Y, then the corresponding fiber of |e| is the
realization of

e-1(y)= [{y}*- 0 - 0],

which is a point. If y is a singular point, then the fiber is the realization of

t-\y)=W\y)^Tr-\y)^{y}\,
which is the cone over ir'\y) with vertex y. Since the fiber of |e| is contractible in
either case, e is a polyhedral resolution.

1-1

Figure 1.1
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POLYHEDRAL RESOLUTIONS OF ALGEBRAIC VARIETIES 597

The main idea of this paper is based on the observation that, although the singular
locus of

Y\l=C(i,nr)
def

may not be empty, it must be of dimension smaller than that of the singular locus of
Y. To produce smooth resolutions, one would, therefore, like to repeat the construc-
tion just given with T|7 instead of Y as starting point. For this it suffices to be able
to

(i) desingularize polyhedral spaces,
(ii) form the mapping cylinder in the category of polyhedral spaces, with a certain

control on the size of the singular loci produced.
Thus, step (i) removes singularities at the cost of changing the topology of the

realization, while step (ii) restores the correct topology at the cost of introducing
lower-dimensional singularities.

To summarize, a tower of resolutions

y<- y|7<- y\i2 <- ••• «- Y\im

over the unit /--cubes U will result, where the dimension of the singular locus of y|7r
is at most n — r and where the right-most space is smooth. Since the process
introduces certain redundancies, we also give a method ("consolidation", see §2)
which will be used to constuct the examples of the last section.

§§2 and 3 contain foundational and collateral material, while §§4, 5, and 6
contain the essentials.

Similar results have been obtained by Guillen, Navarro Aznar, and Puerta of
Barcelona in their work Cubical hyper-resolutions.

2. Polyhedral spaces. We shall now discuss polyhedral spaces in some detail. The
theory closely parallels that of simplicial spaces [D]. A polyhedron a is by definition
the convex hull of a finite point set in a real vector space. A face r of a is the
intersection of a with a supporting hyperplane. To denote that t is a face of a, we
write t < a, with t < a admitting the additional possibility that r = a. A polyhedral
complex & is a collection of polyhedra in a vector space V such that

(i) if a e 0> and r < a, then t e 9>,
(ii) if a, t G 0>, then a n t < a.

The span of such a complex is the subset of V defined by |^| = Uo6<^ a.
A polyhedral complex defines a category ^tP whose objects are the elements a of

& and whose morphisms are the face maps, i.e. the linear inclusions 4>OT: r -* a
defined whenever t < a. A morphism f: ^SSP -* ^J? is a morphism in the ordinary
sense subject to the restriction that dim f(a) < dim(a). By virtue of this restriction,
vertices must go to vertices. Morphisms do in fact come about geometrically, as the
next lemma shows. When necessary to make the distinction, we shall write "a " when
a is viewed as an object of ^0>, and "|a|" when it is viewed as a convex body.

Lemma 2.1. Let f: <€!? -» Wl be a morphism of polyhedral complexes. Then there is
a continuous map F: \0>\ ---> |J| which induces f in the sense that F(\o\) = \f(a)\.
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598 J. A. CARLSON

Proof. Let 0>n = {a e ^dima < n) be the ^-skeleton of &. Since vertices go to
vertices,/: <g9>Q -> <«?j2 determines F0: |^0| --> |J|. Assume that F„: |^>„| -» |J|has
been constructed with the required properties, and let a be an (n + l)-polyhedron of
@. Set t = f(a), and let a, f be the respective barycenters. Given x in the boundary
of a, let yx: [0,1] -» be the unique affine map with yv(0) = 6 and yv(1) = x. For y in
the boundary of r let y be the analogous map. Define Fn+1 on a by F„ + 1[yv(?)] =
yv(Owith>- = F„(jc).

A polyhedral object in a category ^ is a functor from & to <€. We say that A" is a
polyhedral object in # owe/- 0>, and we write A|^ when necessary to stress the
identity of the domain category. A polyhedral object is given by objects Xa = X(a)
gotten by applying X to the objects of 0 and related by morphisms /OT: XT —> Xa
gotten by applying X to the morphisms of &. The cocyle condition of section one is
forced upon us by functoriality. A morphism of polyhedral objects M: X\3P -> Y\3. is
given by

(i) an underlying morphism m: ISSP -» #i?,
(ii) morphisms Ma: Xa -» ymo sucht hat the diagrams below commute:

/■■*■! 1 fYJ to + ▼   J ntr ,ma

An ordinary object Y in ^ can be thought of as a polyhedral object with a
one-point polyhedron, y| *. With this convention, we define an augmentation of X\2P
by y as a morphism e: X\0> -* Y\ *. Often the "star" will be omitted.

A polyhedral space can now be defined as a contravariant polyhedral object in V>,
the category of topological spaces. If the target category is smaller, say the category
of algebraic varieties, we may speak of a polyhedral variety in the same fashion one
speaks of polyhedral manifolds, etc.

There are several elementary but important functorial constructs for polyhedral
spaces. The first of these is the reduction, defined by

R(X\    ) = (UXa)/~

where the equivalence relation on the disjoint union is that given by

Xa~Xr      ^Xa=faj(XT).

Note that A'^is canonically augmented by R(X\9>).
Example 2.1. Let C = [A «- A -» *] then R(C) is X with A collapsed to a point.
Example 2.2. Let <W= {Uj\i e A} be a cover of Y. For each subset S c A, set

Us = U,eS Vj. Let Fbe a vector space with A as basis, let |5| be the convex hull of S,
and let & = [\S\:US* 0} be the polyhedral complex defined by the cover. The
nerve of U is the polyhedral space over 0* defined by the correspondence TV^:
S -* Us. The nerve is augmented by Y, and its reduction is homeomorphic to Y:

N<%       -'-* Y

e'\ / =

RN<%License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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One can also define copolyhedral spaces as covariant functors from <€& to top.
Recalling the scholastic distinction between a and |ct|, the "identity" functor 7:
a -» |a| defines such an object. Although we should properly write I(4>ar) = \4>aT\,
this convention will usually be broken. The reduction functor makes sense in the
covariant world as well, so that one has a canonical homomorphism R(I\0) -* \3P\
which is given by the augmentation. As a slightly fancier example we define a model
for ^as a copolyhedral space M^endowed with a homeomorphism 0: M\& -> 1\2?
so that R(M\0) is a topological space endowed with a canonical homeomorphism
R(M\0>) -* \@>\. Following are two examples, the second of which will be used later.

A realization of A ̂ relative to a model M\0is defined as

\X\0\M={UXoXMa)/~

where the equivalence is given by (xx, m^t^) ~ (f^Xx, t ). Given a morphism
G = ((?', G") of (A^, Af|^>) to (Y\£, 7Y|J), there is a functorially defined mor-
phism of realizations IG^IA"^ -> \Y\N induced by (xa, ta) -* (G'axa, G'a'ta) on the
level of the disjoint unions. In what follows we shall generally omit the subscript
which identifies the model used, particularly when it is the identity model. This
omission is partially justified by the fact that different models give homeomorphic
realizations.

A polyhedral space is always augmented by its realization, although not canoni-
cally so. To define one augmentation, let a denote the barycenter of a, and map Xa
to Xa X { a}, where the latter is viewed in R( X\0>).

A polyhedral resolution is a morphism

e: X\&>-* Y\*
which induces a homotopy equivalence on the level of realizations. As a trivial but
alliterative example, one notes that X\0 resolves its realization. As a somewhat less
trivial example, we note that the nerve of a cover is a polyhedral resolution of the
space covered. To see that this is indeed the case, define the carrier of a point/? in Y
to be the simplex C(p) = {/' e A\p e IT}. Thus, C(p) e 0, and \C(p)\ c \&>\. The
important point is now that the fiber \e\~1(p) is the simplex \C(p)\, hence contract-
ible, so that |e| is a homotopy equivalence, as required.

The realization and the reduction are related by the commutative diagram below:

X\&>
(/ \ e

\X\P\ -»     R(X\&)License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Although the two constructs are homotopy equivalent for nerves of covers, they are
not homotopy equivalent in general, as the following example shows:

*

A|7=     * *    .

*

The realization is a circle, while the reduction is a point.
We end this section with some remarks on subdivisions of polyhedral complexes

which will prove useful at the very end. Let 0> and &' be complexes with the same
span, and define, for each a in 9>, the set

&'a = { tG^'|t < a}.

IfSP' is a subcomplex such that |^„'| = \a\ for each a, then we say that is a subdivision
of &. In this case there is a smallest polyhedron C(t) e &>, the carrier, which
contains t e &'. The subdivision of a polyhedral space X\3P by &' is then the
polyhedral space A"|^' defined by the relations

v — y e-a" _ px
at  — aC(t)> r\v        rCi\)C(f)-

If e:  X\3P -» y| *   is an augmentation, then there is an induced augmentation
e': X'\&' -» y|* given by

[e':A-;-y] = [£c(T):A-C(T)-y].

Moreover, there is a canonical homeomorphism of realizations which is compatible
with the augmentation:

|A|^|      -^      \X\0>\

W\\ t/\e\
Y

The subdivision of polyhedral spaces using the labelled polyhedron representation
is illustrated in Figure 2.2. The polyhedral space y|S over the square is obtained by
subdividing the space X\ 7 over the triangle. Conversely, we say that A"| T arises from
y|5 by unsubdivision or consolidation.  Consolidation will be used to simplify

Cm f AC      AC C
/ AC/ 1-1/ / change

AC/      __  subdivide      Ac/ model
/        BC  -^ / ac   -^   AC        ABC BC

/ABC Ac/ ABC
A       AB      B A        AB      B A AB B

X\T X'\T' X'\T'=Y\S

Figure 2.2
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polyhedral resolutions. For the moment, we note that every polyhedral space admits
a simplicial subdivision, i.e. one such that each polyhedron t is an unoriented
simplex.

3. Simplicial polyhedral spaces and their cohomology. In this section we observe
that an orientation of a simplicial polyhedral complex defines a simplicial space
X\AN from a polyhedral space X\0*. We then recall the cohomology theory of such
objects, following Deligne [D].

An orientation of a simplicial polyhedral complex is a bijection B: £P0 -» {0,... ,7V}
defined on the set of vertices. An orientation associates an increasing sequence to
each ^-simplex, 7 = (i0,...,ip) = B(a), where {B~l(i0),. ..,B~l(ip)} is the set of
vertices of a. For each increasing sequence 7 define 5;(7) = (i0,.. .,ij,.. .,ip), where
the superscript denotes omisson. Set

xi = xp-\i)>     x[p]= LJ Xj,

where |(/0,..., /' )| = p. Define maps

8y.X[p]^X[p-l]       (j = 0,...,P)

by

[S/ X, -» A^(/)J = UfSj(r)/.

There results an assembly of maps and spaces

s0
X\AN=   X[0]^X[l]^ •••   .

To place such an object in its proper context [D], let [p] = {0,1,... ,p), and let
AN be in the category whose objects are [0],.. .,[7V], and whose morphisms are
generated by the order-preserving injections 8y. [p] -* [p + 1] defined by j $. 8^[p].
A semisimplicial object in a category # of combinatorial dimension TV is then a
functor A^A^-* <€, usually written A^A^. We shall generally omit the prefix
"semi". The construction given in the preceding paragraph associates a simplicial
space X\ AN to an oriented simplicial polyhedral space X\0.

The virtue of simplicial spaces is that they admit a natural cohomology theory
relative to functors K: £f!7~^> KA from a subcategory of topological spaces to a
category of complexes in an abelian category A. Following Deligne [D], one defines a
cosimplicial complex

8°
KX\AN=   K(X0)^K(XX)3 ■■■

and from it a single complex

sK(X\AN)=  ®K(X[p])[p],
pLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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where one uses the convention (L[p])q = Lp + q for shifting degrees of a complex.
The differential of (sK)p is given by Dp(-\)pdp + 8* where dp is the differential of
X(X[p]) and where 8* = Lf=0(-1)'§' is the simplicial differential. The cohomology
of X\ AN relative to K is then defined by

H(X\AN,K) = H(sK(X\AN)).
The simplicial filtration

W'sK=  ®K(X[p])[p]
p>i

defines a spectral sequence emanating from ordinary cohomology and abutting to
the simplicial cohomology:

£f = 77*(X[p], K) = H" + "(X\AN, K).
We now define the cohomology of X\0 to be that of the simplicial space AIA^

deduced from but independent of an orientation of 0:

H(X\&,K):= H(X\AN,K).
If F: X\@> -» y|^is a morphism which is functorial for K, then there is an induced
map

F*: H(Y\&>, K) -» 77( X\9>, K).
In particular, if we choose K to be the functor of singular cochains, then we obtain a
singular cohomology theory for polyhedral spaces which is functorial for continuous
morphisms. The following result shows that the definitions made are reasonable:

Theorem 3.1. k: X\£?-> |A"|^| be the canonical augmentation. Then the induced
map of singular cohomology

k*:H{\X\0>\) -+H(X\9)
is an isomorphism.

Proof of the theorem. The argument is based on the existence of a special cover
for \X\0\. Define first a polyhedral space ^l^by assigning to each object oof^a
one-point topological space {a}, and observe that there is a canonical homeomor-
phism \&>\&>\ -> \&>\. The morphism X\&>^> &>\&> defined by Xa -> {a} therefore
induces a canonical map p: \X\&\ -* \&\. (See Figure 1.1.) Choose an orientation of
3P and let t be the associated barycentric coordinate vector for points of a. Define a
metric on a by

d0(x,y) = max\tia(x)-tia(y)\,

and let d(x, y) be a metric on |^| which agrees with da(x, y) on a. For small 5 let

U,= {x<E\0>\:d(x,i) <1 -S),
where ;' is a vertex of &. The nerve of this canonical cover of \3P\ has 0> as
polyhedron. Indeed, the open set Uf = Ui C\ ■ • • n Ut is a contractible open
neighborhood of I, the barycenter of the oriented simplex 7. The required open cover
of \X\0\ is then the pullback of the canonical cover of \£P\, given by the sets

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



POLYHEDRAL RESOLUTIONS OF ALGEBRAIC VARIETIES 603

Uj = p~x(Ut). Note that there is an inclusion
j: X\@^ N<%\0>

for the nerve defined by sending X, lop'1 (I), and there is a retraction
r:N<%\9>-* X\0>

defined by a suitable projection of U, = /)"1(7T/) onto X, identified with p~1(I).
Since both i and r are homotopy equivalences of polyhedral spaces, the cohomology
groups of A"|^and TV^I^are canonically isomorphic.

Because the nerve of a cover is augmented by the space covered, one has the
following commutative diagram:

X\0> ■!* N%P

k\ 1/ e

\X\0\
Since k* = i*e* on cohomology with i* an isomorphism by the previous paragraph,
it suffices to know that e* is an isomorphism—an immediate consequence of the
Mayer-Vietoris spectral sequence. For a cover with only two open sets as in Figure
1.1, the result follows from the usual Mayer-Vietoris sequence. The nerve in this
case is given by the three open sets U0 — p'l[0,2/3) , £/, = p~1(l/3,l], and
U0l = p'l(l/3,2/3). To conclude, the theorem is true because a polyhedral resolu-
tion X\& ot y is homotopy equivalent to the nerve of an open cover \X\@>\, a space
which is in turn homotopy equivalent to Y. Thus, a polyhedral resolution of Y is, up
to homotopy, the nerve of an ordinary open cover of Y; it is a "generalized nerve".

4. Resolution of singularities. Our next task is to investigate the extent to which
polyhedral varieties admit resolutions of singularities. The first result is general but
weak:

Theorem 4.1. For every polyhedral variety Y\2P there exists an epimorphism
77: X\0> -» Y\0>with X smooth and with dim Ya = dim Yafor all a.

To do better, we restrict the class of objects:
Definition 4.2. A polyhedral space y|^ is epimorphic if all face maps are

epimorphisms.

Theorem 4.3. For every epimorphic polyhedral variety Y\3P there exists a birational
morphism m: X\0> -» Y\0>with X smooth and epimorphic.

A birational morphism it is, of course, one such that each ira is birational. We shall
give the proofs after discussing in some detail the notions of the center and the
exceptional locus of a morphism in the polyhedral category.

For ordinary varieties, the center of an epimorphism <f>: X -* Y is the subspace 77
of y above which 4> is not an isomorphism, and the exceptional locus is the pullback
to X: E = <J>_1(77). Since the correspondence a -» B(<pa) does not in general define a
polyhedral object, we must define the center of <p as the smallest polyhedral subspace
containing the B(<j>a):

Ba= UtU*(*t)]
0<T
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604 J. A CARLSON

where faa is, by definition, the identity map. The exceptional locus is then defined by
E<p = 4>~l(B). Because the inverse image of a polyhedral subspace under an epimor-
phism is again a polyhedral subspace, this makes sense.

One measure of the size of a polyhedral space is the geometric dimension:

gdim(^|^) = max{dim^0|a e &>}.

With respect to this measure the center and exceptional locus display some restraint:

Proposition 4.4. Let f:  X\0> ^> Y\0> be a birational morphism of polyhedral
varieties, and let n = gdim(A|5a). Then

(i) gdim(Ti) < n,
(ii) // y is epimorphic, then gdim(F) < n.

Proof, (i) It suffices to show that dim/aT(77T) < n for all a and t with a < t.
Since <£T is birational, B(4>T) is a proper algebraic subset of YT, so that

dim/OT7i(<i)T) < dim YT < n.

Thus, dim 7ia is also less than n.
(ii) It suffices to show that dim<p~lfOTB(<i>T) < n. If faTB(cbT) is a proper subset of

y„, then <j>~1farB(4>r) is a proper subset of Xa, so then inequality holds. If, on the
contrary, dim faTB(<j>T) = dim Ya, then dim YG < dim A,. < n because Y is epimor-
phic. But then dim^1/0T7i(</)T) < dim Xa = dim Ya < n.

Because it will be necessary to resolve the singularities of the center and excep-
tional locus of a morphism, we need variant constructions of these loci which are
epimorphic but which still satisfy the previous proposition. To this end, let Y\0be
epimorphic, and define formal inverse face operators/^ = (/J)-1 where p. < X and
where these are viewed as operators on subsets. Because of the set-theoretic identity
g ° g~l(A) = A for surjections, the cocycle rule extends to give fx\f^v = Ax« where
/X/1 is a face map and where /M„ is either a face map or an inverse face map. In other
works, X < jit and p. — v, where the last expression means ju < v or p. > v. The variant
center is now defined by

K=    U/„t*(*t)-
a — r

To see that this does indeed give an epimorphic subspace of y|^, it suffices to show
that/OT7iT = Ba when a < t:

/„t5t=/.t[U/tX*(+x)
-T~X

= U f.rfrxB(<t>x) =  U f.xB(4>x),
t—X a-X

where the last equality uses the extended cocycle relation. The variant exceptional
locus is then defined by E = §~lB. Because the inverse image of an epimorphic space
under an epimorphism is itself epimorphic, so must be E.

Proposition 4.5. Let tr: X -* Y be a birational map of epimorphic polyhedral
spaces. Then gdim B < n and gdim E < n, where n = gdim Yas before.
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Proof. The inequality for B is proved much as before. It suffices to observe that if
faT is an inverse face map, then/OT(7iT), as the preimage of a proper subspace under
an epimorphism, is a proper subspace of Ya.

For E, one proceeds as before, adjoining the observation that if fJT is an inverse
face map, then

kVoI)(bt) = kVzy\bt) = (c<t>ay\BT) = (<pjxy\B.),
as a result of which the set in question is the inverse image of a proper subspace
under a surjection, hence is itself a proper subspace.

The proofs of the theorems asserted at the beginning of this section rely on an
extension lemma for morphisms. To describe the lemma, let P be a polyhedron, let
S'P be the complex consisting of P and its faces, and let 3J«\P be the boundary
complex obtained by deleting P. When there is no danger of confusion, we write P
and dP for&P and d^P.

Lemma 4.6. Let <f>: X\dP -* Y\P be a morphism. Then there is a canonical
commutative diagram extending X and <j> to P

X\&>
'J ^

A"|3F-^y|F
<t>\dP

By this we mean in particular that ia is the identity. In addition,
(i) if<j>\dP is an epimorphism, then so is 4>\P,
(ii) if both (/>| dP and Y\P are epimorphic, then so is X\P.

Proof of Lemma 4.6. Let Fl,...,F„ be an ordering of the faces of P of
codimension one, and set

XP = { (yP,Xl,...,xn) g YP X UXF\<t>Fi(x,)=fFYiP(yP)).

The projections on the factors of the Cartesian product give maps

<pp: sCP --■* ip,       Jfp'' -X-p "~*    f

with the required composition properties. Clauses (i) and (ii) are immediate conse-
quences of the definitions.

Proof of Theorem 4.1. Let 0>n = [a e ^dima < n) be the n-skeleton of 0.
Define a morphism of the required type for the zero-skeleton by choosing a
resolution of singularities ttb: Xv ^ Yv for each vertex of 0. By induction assume
that a surjection tr\^n: X\0n -* Y\0>n exists which satisfies the theorem. To define <n
and X over 0>n + 1, let P be an (n + l)-polyhedron, and use the canonical extension
diagram of the lemma to construct a preliminary version of tr and X. Let X'P be a
sub variety of XP of the correct dimension such that tt(X'p) = YP, and let X'P be a
resolution of singularities for X' with mP: XP -* YP the obvious map. Replace Xp
and -TTp by XP and ttp to achieve the required extensions to the (n + l)-skeleton.

Proof of Theorem 4.3. We begin as before with a resolution of singularities of
the zero-skeleton and a preliminary extension from the ^-skeleton to the (n + 1)-
skeleton. The definitive extension is constructed as follows: Let YF* be the subset of
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YF over which irF is an isomorphism, and set

r;-(ffPy\Yt),    x'p = tt-p\y;).
Because ttf is birational by construction, Y* is dense and open in YF. Because of the
surjectivity of all maps in the above definitions, the property of being dense and
open propagates to the inverse images, then to the intersection YP, and finally to X'P.
Thus X'p is a dense open on which ttp is bijective. Let X'P be a smooth compactifica-
tion to which ttp extends as a morphism vP. Replace Xp and ttp by XP and 7tp to
achieve the required extensions to the (n + l)-skeleton.

5. Mapping cyclinders. We define mapping cylinders for polyhedral complexes and
spaces, then study birational morphism using the latter. For complexes the cylinder
will be an object '&= #(/, r) associated to a diagram

of injective morphisms of complexes. When 3) looks like Figure 5.1, then the cylinder
looks like Figure 5.2.

Figure 5.1 Figure 5.2

To give a formal definition, let ^ be a category which has one object and
morphism for each object and morphism of S).

Objects.

jx(0) ifo-eif,
aX{0,l}     ifae^,
ax{l} if ae 3?.

Morphisms.

Ar X id(o) if a, re JSP,
(1) /„TX id,,,,!) ifa.Te-tf,

/OTXid(1) ifa,re^,

where a < t.

aX{0} -> r\a) X[0,1]      ifae/(^r),
a X{1} -♦ r'l(a) X{0,1}     ifaer(^).

To fulfil the definitions completely, one must exhibit # as the category of a
collection of convex polyhedra in a vector space V. To this end, suppose given

|L|cF^,        \R\cVa,
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and geometric maps

\l\:\Jt\^\<?\,        \r\:\A^\®l
Define a map

77: \4t\ X [0,1] -» VyX R X VR = Vv
def

by

ff(jc,0=(l-0(l1(*).0,0) + f(0,l|r|(jc)),
and observe that the images of a X [0,1] and a X {?} are convex polyhedra in V.
The required collection is then

^x{0} x{0} U77(^x[0,l]) u{0} x{l} x®.

For polyhedral spaces we assume a diagram

D =   L<r- M -^ 7?

whose underlying diagram of complexes is as above. The cylinder C = C(l, r) will
be a polyhedral space over <€ = ^(l, r) with one object and morphism for each
object and morphism of D, defined in much the same way as before.

Objects.

CaX{0] = La ifaei?,

C„x[o,i]=K ifoe^f,
CaX{1) = Ra      if oe*.

Morphisms.

7ox{0},tx{0) = 7ot'      a,Teir,

(1) /oX[0,l].TX[0,l]=/ar.       0,J^Ji,

7ox{i},tx{i) =/or'       a, t e 5f,

where a < t.

(2) 7aX{0),oX [0,1] =  'o' /oX{l).oX [0.1] =  ro'

where a e ^.
Now suppose given an epimorphism m: X\0 -* Y\0>. The base and exceptional

loci fit together to give a diagram

D(it) =   X^E^B ,

and hence define a canonical mapping cylinder C(tt) = C(i, p) over 0X1, where 7
is the complex consisting of the unit interval and its faces. Taking note of the
commutative diagram below,

i p
X     <-      E     -*     B

IT   \ i/   j

Y
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we see that C(tt) is canonically augmented by Y. The next result shows why the
cylinder of an epimorphism is useful:

Theorem 5.1. Let it: X\9> -» Y\0> be an epimorphism, and let C(tt)\0X I be its
canonical cylinder. Then the augmentation

e: C(tt)^ Y

induces a homotopy equivalence of realizations.

Proof. We will show that |e| has contractible fibers. To this end, let z be a point of
|F|, and let C(Y, z) be its carrier—the smallest polyhedral subspace of Y such that
z e |C(y, z)|. One may construct the carrier from the set Ba~l(z), where a and 8 are
the canonical projections below:

UYa X a      I      UY0

a I

\Y\
Let C(X, z) = ir~lC(Y, z) and observe that the restriction of the canonical diagram
to C(Y, z) is as follows:

C(A, z)       «--       C(X, z)      -P-*      C(Y,z)

w.- \ </ j:

C(Y,z)

The fiber |£|-1(z) is then the geometric cylinder for the restricted diagram. However,
because i is the identity and the realization of C(Y, z) is a point, the cylinder
C(iz, p,) is a cone, hence contractible. Indeed, we have the following simple
criterion for contractibility:

Lemma 5.2. There is a canonical deformation retraction of the realization of
\     F      idC(F, id) =   B^A->A

onto the realization of B.

Proof. Because the right-hand map is the identity, the geometric cylinder is the
quotient of the space

C = LJ(7iaXaLUoXaX[0,l])
a

under the face relations. Define a deformation retraction of C onto 77 = LI7?0 X a by
setting

H(x,£;t) = (x,£)    for(x,£)^BaXo,

H(x, (,,s;t) = (x, i,ts)    for (x, £, s) e Aa X a X [0,1].

One verifies that the deformation retraction H: C X [0,1] -» C of C to 77 is
compatible with the face relations and so descends to a deformation retraction
77: |C| X [0,1] -» |C| of \C\ to \B\.
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Remark. All that we have done works equally well with the epimorphic (barred)
variant of the base and exceptional locus. It is these that we shall use henceforth.

6. Polyhedral resolutions. We shall now prove a slightly refined version of
Theorem 1.1 which guarantees the existence of smooth polyhedral resolutions. To
this end, define the total dimension of a polyhedral space by

tdim(^|^) = max{ dima + dim Aa\a e &>}.

Theorem 6.1. For every projective algebraic variety X of dimension n there is a
smooth polyhedral resolution of total dimension n.

Proof. We begin with a technical definition. Let 7 be the complex consisting of
the unit interval and its faces, and let Ip be the p-fo\d Cartesian product. In general
the Cartesian product of polyhedral complexes makes sense: if a and t are polyhedra
in vector spaces V and W, then a X t is a polyhedron in V X W. Given X\ Ip, let
AX\IP be the subspace defined by

AX{l}Xa =  ^{l}Xo> ^■*[0,1]X« =  Vl]Xo'

^^{0)Xo = ima8e(^[0,l]Xo ~* ^"{0)XaJ-

In  a suitably loose sense, AX is  the smallest subspace of A which contains
A"|(0,l] X Ip~\ where this latter means X\IP - X\{0} X Ip-\

Our strategy is to construct a sequence of polyhedral resolutions X\IP of X with
the following properties:

<J)P > 1,
(ii) A"|{0} Xlpl is smooth,
(hi) ,4A'|7'' is epimorphic,
(iv)gdim(AX\Ip)^ n - p,
(v) there is a morphism X\Ip+l -» X\IP which induces a homotopy equivalence of

realizations.
Since a polyhedral space of geometric dimension zero is smooth, AX\IP is smooth

for p sufficiently large but no greater than n. Since

X\Ip= (X\{0) X7',-1)TJ(^A'|(0,1] XF"1)

is a collection of spaces, X\IP is smooth for this value of p.
To implement the strategy, begin with a resolution of singularities, it: X -* X, and

let

X\I = C(ir)= [X^ E ^ B]

where AX\I = [£<-£ -» 77]. The conditions required of A|7 are obviously satis-
fied.

To continue, suppose X\IP exists. Apply Theorem 4.2 to AX\IP, taking note of the
fact that it is epimorphic, to construct a birational morphism

tta:AX\Ip -> AX\Ip
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with AX smooth and epimorphic. Use irA to define a resolution of singularities m for
X\IP by setting

(X\I»)a=(X\Ip)a   ifae {0} XF-',

(X\IP)„= (AX\ I") a   otherwise.

The face maps are defined in the natural way, with

[(*|/'W]XT-(*|/'){0}Xr]

= [(Alqip0,]XT^ (AX\Ip){0)XT^ (X\Ip)l0]XT\.

The base and exceptional loci of tta are epimorphic and of geometric dimension at
most n — p — 1 by Proposition 4.2, and the same holds by construction for tt Thus,
if we define X\Ip+l = C(ir ), then conditions (i)-(v) are again satisfied, as required.
Q.E.D.

7. Examples. We close with three examples of polyhedral resolutions which
illustrate the theorem just proved.

A. A surface with an isolated singularity. Let/> be the singular point of X, and let X
be a resolution of singularities of A with exceptional locus E. Then A|7 is given by
the following labelled simplex:

X       E       p

I-1
If £ is a smooth curve, A"|7 is the required resolution; if not, one more step is
necessary. Let 2 be the singular locus of E, let E be the normalization, and let 2 be
the lift of 2 to E. From these, one assembles the resolution of AX\I which is
illustrated in Figure 7.1 below. The inclusions are for the center and exceptional
locus.

E               E

E\ +-   \E AX\I<-AX\I

J J =
z I   ■<-   Is B(jtA)<-E{itA)

P P       i I

Figure 7.1
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The required resolution of A is then given by the polyhedral space defined by
Figure 7.2. With a different model for the polyhedral complex 72, the polygon looks
like Figure 7.3. Consolidation then produces the simplicial polyhedral space X\ T in
Figure 7.4.

X        2        S x X1-1 Ks K
F 2 2 £     ~\ E        X S

2 VS Z\
--J 1 \ I >

P P        P P       P        P p p p

Figure 7.2 Figure 7.3 Figure 7.4

Since the realizations of A|72 and A|F are homeomorphic, X\T is also a
resolution. As a simplicial space, it looks like Figure 7.5.

A      1 'Pi
E        X P X[l]

Figure 7.5

B. An arbitrary surface. An analogous procedure leads one to the simplicial
polyhedral resolution in Figure 7.6. The 2's have dimension one and the F's have
dimension zero, where

(i) 2' is the normalization of the singular locus 2 of X,
(ii) if 2 is the lift of 2 to A, then 2' is the normalization of 2 X 2 2,
(iii) T and T are the base and exception loci of 2' -» 2,
(iv) t and 7" are the base and exceptional loci of 2' -» 2.

X

?    \

2''-p—^T

Figure 7.6
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



612 J. A. CARLSON

C. A curve in a smooth surface. The cohomology of the pair (X, A) is that of the
space X/A obtained by collapsing A in X to a point. Because this space is the
reduction of the mapping cone C\I,

X       A       p

the cohomology of the cone as a polyhedral space is canonically isomorphic, via the
map C\I -» 7?(C|7) to the cohomology of the pair. If A is smooth, then C|7 is also,
and we are done. If not, let A -* A be the normalization, with center and exceptional
locus 2 and 2. Then the standard procedure leads to the smooth resolutions pictured
in Figure 7.7.

X        2        2   1 T X
~|       "       I ~S     v 2
A 2 2 ~        A     ~\

P P P p p p

Figure 7.7
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