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Abstract: This work describes the production of polyhydroxyalkanoates (PHA) as a side stream

process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the

production potential in Germany and the European Union (EU). Therefore, tests with different types of

sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential.

Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature,

pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable

VFA production. In a second step, various tests regarding a high PHA production and stable PHA

composition to determine the influence of substrate concentration, temperature, pH and cycle time

of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor

operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 ◦C is

preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition.

A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate

concentration, 20 ◦C, neutral pH-value and a 24 h cycle time. A final step a potential analysis,

based on the results and detailed data from German waste water treatment plants, showed that the

theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016

worldwide biopolymer production. In addition, a profound estimation regarding the EU showed

that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on

European waste water treatment plants.
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1. Introduction

Common plastic is derived from petrochemicals based on the limited natural resource petroleum.

Besides the exploitation of natural resources, the use of plastic is responsible for major waste problems,

as common plastic is non- or poor biodegradable [1].

Biopolymers present a possible alternative to common plastics. If they are fully biodegradable [2,3]

their use not only allows the preservation of limited resources, but also suits the idea of sustainability.

The term “biopolymer” or “bioplastic” is not yet uniformly defined. Common definitions of

the term “biopolymer” also include biodegradable plastics from fossil fuels and non-biodegradable

plastics from renewable resources as seen in Figure 1. To eliminate the problems accompanied by

polymer production from crude oil a more stringent definition is introduced by the authors:
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“Biopolymers are made from renewable resources and/or biodegradable waste materials

(e.g., waste water, sewage sludge, organic waste) and are fully biodegradable by naturally

occurring microorganisms.”

“Biopolymers are made from renewable resources and/or biodegradable waste materials 

occurring microorganisms.”

 

–

Figure 1. Definition for biopolymers, including the stringent definition on the upper right, modified

after [4].

This definition ensures that polymers from fossil resources and non-biodegradable polymers,

which cause at least one of the mentioned problems, are excluded and that the term biopolymer is

just used for polymers, which allow the preservation of limited resources and also suit the idea of

sustainability. This type of biopolymers is shown in the upper right of Figure 1.

Beside other polymers polyhydroxyalkanoates (PHA), which are biodegradable polyesters

accumulated by bacteria under nutrient limited conditions [5] or under balanced growth, are a source

for bioplastic production matching the above mentioned strict definition. More than 150 component

parts of PHA have been identified so far [6]. The possibility for chemical modification of PHA provide

a wide range of material properties and an even wider range of use [7,8]. However, so far the main raw

material for the biopolymer production are starchy plants like maize [9], constituting the disadvantages

of high land consumption, diminishing food resources as well as problems like leaching of nutrients,

input of pesticide and soil erosion [10].

So far, municipal waste water treatment plants (WWTP) as alternative raw material and biomass

source for the PHA production have not been widely investigated, although they offer the opportunity

to compensate the disadvantages of the common PHA production using starchy plants.

PHA production in WWTP takes place in two steps, which composes the production of volatile

fatty acids (VFA) in an anaerobic process and finally the PHA production in an aerobic process (see

also Figure 2). In contrast to [11,12] the PHA production process described in this work is designed

as a side stream process of a municipal WWTP and does not include the treatment of waste water.

Therefore, the whole process can focus on polymer production only.
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Figure 2. PHA production scheme.

The possibility to use ice-cream waste water as alternative source material for the VFA production

was shown by [13] while [14] investigated the effect of pH, sludge-retention time (RT) and acetate

concentration on the PHA production from municipal waste water. Diverse authors [15–18] stated that

there is a general possibility to produce PHA from activated sludge.

In many of the research projects on PHA production, synthetic waste water was used to gain

knowledge about one part of the PHA production or the production’s operating conditions [19–25].

However, so far no research group has investigated the general possibility and all operating conditions

of a biopolymer production using only material flows of a WWTP.

PHA production itself is based on a bacteria mixed culture selection from excess sludge via aerobic

dynamic feeding. The installed feast/famine regime for enrichment of PHA producing bacteria is

state of the art and tested by many authors [19,23,26,27]. The feast-phase is defined as a period of

substrate availability and could be monitored via the reactors oxygen concentration. During the period

of starvation (famine-phase) bacteria with the ability of polymer-storage gained a selection advantage

as they are able to use the stored polymers as carbon and energy source.

The objective of this research project was to find the most suitable raw material and all operating

conditions for the VFA and PHA production process using only material flows of a WWTP. At first the

suitability of different raw materials of a municipal WWTP for VFA-production were investigated and

afterwards the influence of operating conditions (temperature, pH, retention time (RT) and withdrawal

(WD)) and reactor operation method. Another concern was, how the tested operating conditions or the

diversity of the used material flows of a WWTP influence the VFA composition and the type of PHA

produced. As there is a variation in the composition of the used material flows (different sludge) of a

WWTP, it is of particular importance to observe their influence on VFA production and composition.

Then the possibility to produce PHA out of the VFA containing substrate was tested using a

feast/famine regime (as shown in Figure 3). Subsequently, the influence of operating conditions

(temperature, pH, cycle time (CT) and substrate concentration) on PHA production were investigated.
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’s operation conditions

from the WWTP’s digester

Figure 3. Emptying and refilling process during aerobic dynamic feeding (values shown are an example

for investigated operation conditions), modified after [28].

The PHA potential on German WWTPs was calculated based on detailed data from operators

of WWTPs [29] and the results of the PHA production experiments mentioned above. Finally, a

profound estimation of the biopolymer potential of all WWTPs in the 28 member states of the

European Union (EU) was made based on data provided by the EU [30] and the mentioned PHA

production experiments.

2. Materials and Methods

2.1. VFA Production

2.1.1. Conception of the Experiments

For the VFA production ((1) Acidogenic fermentation in Figure 2) anaerobic reactors of different

sizes (4 L, 15 L) were operated as batch reactors or as semi-continuous reactors. While the batch

operation is defined as a one-time substrate filling at the beginning of the experiment with no

withdrawal and refill during the test, a semi-continuously operation method allows to introduce

and withdraw substrate to or from the reactor. Semi-continuously is defined as one-time substrate

filling at the beginning of every cycle, e.g., daily within a test duration of one month.

All tests were conducted without sedimentation or biomass recirculation. Therefore, the hydraulic

retention time equals the sludge age and both will be referred hereinafter as RT.

The raw material is the most important base for gaining high PHA production rates, so that

the selection of suitable raw material has the number one priority. The improvement of the VFA

production’s operation conditions was examined afterwards with the most appropriate raw material

found. A chronological test order was implemented as follows:

1. Selection of raw material

2. Investigation of the most suitable pH-level

3. Evaluation of a retention time (RT) range

4. Selection of a suitable combination of RT and withdrawal (WD)

2.1.2. Selection of Raw Material

For raw material selection continuously stirred batch reactors with a volume of 4 L were used.

Four different types of sludge, namely primary sludge (average total solid TSa = 43 g/L), excess sludge

(TSa = 10 g/L), a one to one mixture of primary-and digested sludge (TSa = 37.5 g/L) and a one to

one mixture of excess- and digested sludge (TSa = 21 g/L) from a municipal WWTP were treated

under anaerobic conditions. Thereby the digested sludge from the WWTP’s digester was only used as

inoculum for the anaerobic process in order to find out, if it could accelerate the process. All types of

sludge were investigated under four different conditions: pH controlled at pH = 6, without pH-control
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and each at around 20 ◦C or around 30 ◦C reactor temperature. In summary 16 different tests were

performed. The reactors were filled at the beginning of the experiments and samples of 50 mL were

retrieved every day to determine the VFA concentration and composition. To achieve the selected

temperature, the reactors were situated in temperature-controlled rooms. For pH-controlled tests, the

pH-value was measured by a mobile pH meter (WTW pH340i) and adjusted with NaOH by hand

twice a day. The test duration for all experiments was 18 days to 20 days. A sample of all tested types

of sludge was taken before and after the tests to determine the chemical oxygen demand (COD), the

total Kjeldahl nitrogen(TKN) and total P.

2.1.3. Evaluation of Operating Conditions

As the influence of fermentation temperature was already observed during the selection of the raw

material, three additional operating conditions (pH, RT, WD) were investigated in continuous stirred

tank reactors (CSTR) with a volume of 15 L. For all experiments primary sludge from a municipal

WWTP was used as raw material and a sample was retrieved prior to the experiments to determine

COD, TKN and total P. All reactors were placed in a temperature-controlled room at around 30 ◦C. pH

was monitored at all times via a Metrom Profitrode pH probe and automatically adjusted with NaOH

during all tests.

For the batch tests (pH, pre-RT) all reactors were filled with primary sludge at the beginning and

samples of 100 mL were retrieved every day to determine the VFA concentration and composition.

The batch test period was 18 days to 20 days long. Former studies show a high VFA production in a

pH-range between 5 [11] and 9 [31] or 11 [32]. In consequence a range of pH-levels (pH = 6, 6.5, 7, 8,

10) were tested.

For the semi-continuously operated tests all reactors were filled with primary sludge at the

beginning and operated under pH-controlled conditions at pH = 6. After a starting phase of 10 days,

to accumulate VFAs, the semi-continuous operation phase began, for which a certain amount of

the sludge in the reactor was exchanged. Samples of 100 mL were retrieved to analyse the VFA

concentration and composition for about 40 days with a RT of 4 days, 6 days and 8 days, each with

25% and 50% WD. Additionally, a 75% WD was performed with a RT of 4 days. A RT of 2 days was

also tested with a WD of 50%. RT and WD are related factors, e.g., a RT of 4 days was used when 25%

of the sludge was exchanged every day, 50% every second day or 75% every third day.

2.1.4. Analytical Procedures

COD, TKN, total P and total solids (TS) were determined according to standard methods.

The concentration and composition of volatile fatty acids, namely formate (Fo), acetate (Ac),

propionate (Pro) and butyrate (Bu), were detected by high performance liquid chromatography

(HPLC). Therefore, the sample was acidified to pH = 2 and filtered through 0.45 µm membrane filter.

Afterwards HPLC detection was performed using a HP1100 chromatographer equipped with an UV

detector and a Varian Metacarb 87H column. Sulphuric acid (0.05 M) was used as eluent at a flow

rate of 0.6 mL/min. The detection wavelength was 210 nm. Volatile fatty acid’s concentration was

calibrated using 4 nmol to 4000 nmol standards.

As the results of formic acid detection was below detection point for all except one test, formic

acid is not shown in the VFA composition.

2.1.5. Conversion of Units

For a better comparability all results regarding VFA concentrations, COD, TKN and total P were

converted into mg/L.

The concentration of VFA in terms of mg/L is defined as:

VFA = Ac + Pro + Bu (1)
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The degree of acidification (DA) was calculated according to [33] as shown in Equation (2). As

VFA results are given in mgVFA/L they have to be converted into COD units as shown in Equation (3)

DA = VFA/CODS in (mgCOD/L)/(mgCOD/L) (2)

with CODS = COD of Substrate at the start.

CODVFA = (conc. VFAi/molar mass VFAi) oxygen demand (3)

with i = Ac, Pro, Bu.

For a better comparability regarding the different RT and WD, the average of the VFA

concentration during the test period was calculated. In a second step, the average VFA concentration

was used to calculate the average VFA production rate (PRVFA). This step also eliminates the reactors

size and can hence be considered as average VFA production rate per day and litre, which will be

referred to production rate (PR) hereinafter (Equation (4)).

PRVFA = av. VFA conc./RT in mgVFA/(L×day) (4)

This calculation helps to compare results from different reactor sizes and retention times.

2.2. PHA Production

2.2.1. Experimental Set-Up

The overall process describing the production of biopolymers from municipal waste water is

displayed in Figure 2. For PHA production only “(2a): Biomass accumulation” and “(2b): PHA

production” is considered. The first step, the volatile fatty acids (VFA) production, was already

discussed in Chapter 2.1. The substrate produced in step 1 under anaerobic fermentation process at

30 ◦C, pH = 6, RT = 4 days and a withdrawal of 25% was frozen at −18 ◦C and defrosted about 24 h

prior to its use as input material for phase 2 PHA production.

During all PHA production tests continuous stirred tank reactor (CSTR) with a volume of 15 L

were used. All reactors were equipped with a pH- and oxygen-probe. If necessary, pH-value was

adjusted via a dosing pump. pH levels were controlled by the pH probe and adjusted with NaOH

or H2SO4. The reactor temperature was controlled via the pH-probe and manually adjusted using

a heating bath (Haake DC30) and a heat exchanger, installed in the reactor. To maintain aerobic

conditions an aerator was installed in the reactor. All reactors were operated in batch mode. The

batch operation is defined as a one-time substrate filling at the beginning of the aerobic dynamic

feeding-cycle with no withdrawal and refill during the cycle. There was no sedimentation or biomass

recirculation in all tests. Therefore, the hydraulic retention time equals the sludge age and both will be

referred hereinafter as RT. At the end of every cycle 7.5 L were withdrawn from reactor 2a and filled

into Reactor 2b. Hence a RT of 2 days was implemented. Afterwards both reactors were filled with

7.5 L of substrate and fresh water to achieve the working volume of 15 L per reactor. Reactor 2b was

emptied at the end of the feast-phase, and samples were taken to measure the PHA concentration

and composition.

Both reactors were operated under similar conditions, just differing concerning nutrient

availability. As the VFA enriched substrate showed nutrient limited conditions, with a

Carbon:Nitrogen:Phosphorus (C:N:P)-ratio in a range of 100:2:0.5 to 100:3:0.8 [34] CH4N2O and

KH2PO4 were added to Reactor 2a to create optimal conditions for the bacteria growth (C:N:P =

100:5:1) and selection process. Reactor 2b, however, was operated under the named nutrient limited

conditions to reach a higher PHA concentration.

Samples to determine the PHA concentration were taken at the end of the feast-phase. The total

solid (TS) concentration was measured at the end of each cycle and was about 5 ± 0.5 g/L in both
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reactors. This was done to figure out if the selection process in Reactor 2a was working correctly or if

the biomass concentration was decreasing e.g., for lack of nutrients. As the biomass concentration was

stable throughout all experiments no further tests regarding cell growth were conducted.

Experiments regarding the substrate concentration and temperature selection had the top priority.

Afterwards the optimisation of all other operation conditions concerning the PHA production

was examined with the most appropriate reactor temperature and substrate concentration found.

A chronological test order was implemented as follows:

1. Selection of a suitable substrate concentration

2. Investigation of the reactor temperature

3. Evaluation of a suitable pH-level

4. Selection of a suitable cycle time

2.2.2. Investigation Concerning the Best Substrate Concentration

As there is a big variation in substrate concentration in literature, different substrate concentration

of 1200 mgVFA/L and 2000 mgVFA/L were tested at 20 ◦C or 30 ◦C, pH = 7 or without pH control

and a CT = 24 h. The named concentrations were chosen to avoid possible problems triggered by

substrate inhibition.

2.2.3. Investigation Concerning the Best Temperature

The temperatures of material flows from a municipal WWTP are about 15 ◦C to 20 ◦C in temperate

climates and might exceed 30 ◦C in hot climates or after mesophilic acidification. So tests with 15 ◦C,

20 ◦C and 30 ◦C were performed with a substrate concentration of 1200 mgVFA/L, pH = 7 and a CT

of 24 h or 48 h to find the best reactor temperature regarding PHA production. To avoid a substrate

induced influence all tests were conducted with the same substrate batch.

2.2.4. Investigation Concerning the Best pH Level

As the best pH level to produce PHA depends on the used substrate, various pH levels (6, 7, 8,

9, without pH control) were tested in this study with a substrate concentration of 1200 mgVFA/L, a

temperature of 20 ◦C and a CT = 24 h.

2.2.5. Investigation Concerning the Best Cycle Time

To find the most suitable cycle time (CT) for the bacteria selection process, experiments with a

substrate concentration of 1200 mgVFA/L were conducted at a temperature of 20 ◦C and at pH = 7 or 8.

As the feast/famine ratio is more important than the overall CT a constant substrate concentration

should ensure that the feast phases of the cycles were constant and the variation in CT resulted in a

different famine phase, only. [25] stated that the feast-phase should not last longer than 20% of the

overall CT to create a selection pressure on non-PHA accumulating bacteria. Therefore, CTs of 24 h,

48 h and 72 h were tested.

2.2.6. Analytical Procedures

COD, TKN, total P and total solids (TS) were determined according to standard methods.

The concentration and composition of polyhydroxyalkanoates (PHA), namely

polyhydroxybutyrate (PHB) and polyhydroxyvalerate (PHV), were detected by gas chromatography,

according to [35] with some variations. Therefore, the biomass was separated via a centrifuge at

10,000 rpm for 20 min and dried at 105 ◦C. Afterwards the sample was pulverised with a ball mill

and about 100 mg were digested and analysed. Detection was performed using a Perkin Elmer

Autosystem XL chromatographer and a VF5ms 30 m × 0.25 column. Helium was used as carrier

gas. PHA concentration was calibrated using 4 mL standards. The concentration and composition
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of volatile fatty acids, namely formate (Fo), acetate (Ac), propionate (Pro) and butyrate (Bu), were

detected as described in Chapter 2.1.3.

2.2.7. Calculation of Parameters

For better comparability, all results regarding VFA concentrations, COD, TKN and total P were

converted into mg/L. The concentration of PHA in terms of % cell dry weight (CDW) is defined as:

PHA = PHB + PHV (5)

2.3. Potential Analysis

Calculations

Based on the PHA production results described in Chapter 3, a potential analysis was performed.

The aim of the analysis was to determine the potential of biopolymer production (based on renewal

resources and biodegradable, see definition in Chapter 1) on German and European waste water

treatment plants (WWTP) by using sewage sludge as a substrate. All input data used for the

calculations can be found in Table 1.

A plausibility analyses was performed to cross-check the most important input data like the

amount of primary sludge (PS) per population equivalent (PE).

As detailed data about waste water and sewage sludge production are available in Germany, the

first step of the potential analysis was calculated using these data together with results presented in

Chapter 3. In a second calculation step, data provided by the European Union (EU) were used to create

an in-depth estimation of the biopolymer potential considering all 28 member states.

Table 1. Input data used during the potential analysis.

Parameter Unit Value Literature

Connected people equivalents (PE) on German WWTPs Mio. PE 115.7 [29]
Proportion of PSP *-PEs regarding total PEs in Germany % 92 [29]

PEs with PSP * in Germany Mio. PE 106.56
Amount of primary sludge per PE L/(PE×d) 1.1 [36]

Total solid conc. of primary sludge/acidified material g/L 35 [4]
VFA concentration gVFA/m3 7,653 [4]

Retention time and withdrawal at the first production step d; %/d 4; 25 [4]
Total solid concentration in the aerobic Reactors 2a/2b g/L 5.0 [4]

Loading rate for PHA production kgVFA/m3 1.2 [4]
Retention time and withdrawal at Reactor 2a d and %/d 2 and 50 [4]

PHA proportion based on cell dry weight CDW.-% 28.4 [36]
Yearly sewage sludge amount in the EU tTS/a 13,245,180 [30]

Yearly sewage sludge amount in Germany tTS/a 1,815,150 [30]

* PSP = German WWTPs with preliminary sedimentation potential (PSP = more than 10,000 PE).

3. Results and Discussion

3.1. VFA Production

3.1.1. Potential Analysis

Table 2 displays the results of the performed investigations ordered by degree of acidification.

Primary sludge performed best under three out of four conditions and yielded by far the best degree

of acidification (DA) with 31% at 30 ◦C under pH-controlled conditions [34]. The second best carbon

source, a one to one mixture of primary and digested sludge at 20 ◦C under pH-uncontrolled conditions,

achieved only a DA of 14%. In five out of eight experiments pH-uncontrolled conditions resulted in a

higher DA. Therefore, a fermentation without pH control should be considered for all fermentation



Bioengineering 2017, 4, 54 9 of 24

raw materials. However, primary sludge yielded better DAs with pH control at both investigated

temperatures. At 30 ◦C the DA of primary sludge was twice as high than without pH control.

Table 2. Degree of acidification and VFA composition in dependence of substrate and operation

conditions (batch-tests, 4 L).

Carbon Source pH Temperature Max. Conc. DA Ac/Pro/Bu

(◦C) (Day) (%) (%)

Primary sludge 6 * 30 9 31 52/48/0
Primary sludge 6 * 20 7 14 56/44/0
Primary sludge 4.6 30 10 14 41/59/0

Primary-/digested sludge 7 20 14 14 79/21/0
Primary sludge 4.5 20 15 13 42/58/0

Primary-/digested sludge 7.5 30 14 12 84/16/0
Excess sludge 7 30 5 10 59/20/20
Excess sludge 6.5 20 4 8 60/20/20

Primary-/digested sludge 6 * 30 5 7 75/25/0
Excess sludge 6 * 20 7 6 24/76/7
Excess sludge 6 * 30 5 6 67/33/0

Primary-/digested sludge 6 * 20 2 3 57/43/0
Excess-/digested sludge 6 * 30 4 3 100/0/0
Excess-/digested sludge 8 30 3 3 76/0/24
Excess-/digested sludge 7.5 20 7 2 100/0/0
Excess-/digested sludge 6 * 20 2 1 100/0/0

* Marks conditions pH-controlled.

Table 2 also shows the composition of the VFA. The results varied strongly between 24/76/7

(%Ac/%Pro/%Bu) and 100/0/0 depending on the used raw material. Primary sludge produced none

butyric acid and acetic and propionic acid in nearly two equal sections. Excess sludge on the other

hand produced up to 21% butyric acid, while the one to one mixture of primary and digested sludge

produced the most acetic acid (up to 84%) of all tested raw materials. The results show that the raw

material has a major influence on the VFA composition.

As the use of primary sludge resulted in highest DA and showed only small variations in VFA

composition under the tested conditions, it was chosen as raw material and used in all further tests.

Beside the ability to produce VFAs, primary sludge has other advantages as raw material for

the PHA production. As primary sludge is a mixture of organic material, water and fermenting

microorganisms no longsome biological adaptation-phase or biomass recirculation for the fermentation

process was necessary. During all experiments primary sludge showed nutrient limited conditions, as

described in Chapter 2.2.1. This is of particular significance given that nutrient limited conditions are

essential for the later PHA production [19,37].

3.1.2. Temperature

The aim of the investigations at two temperature levels was to ascertain if the VFA production at

ambient temperature (20 ◦C) can reach the same VFA production compared with heating the sludge.

In six out of eight tested combinations a temperature increase from 20 to 30 ◦C caused a higher

VFA production as shown in Table 2. The experiment confirmed the results of [32], who stated that

the VFA concentration increases with higher fermentation temperature. Using primary sludge as

raw material (under pH-controlled conditions) the temperature change from 20 to 30 ◦C caused a DA

increase from 14% to 31%.

The general assumption that the acidification rate is higher at 30 ◦C than at 20 ◦C could not

be confirmed. Only three out of eight tested combinations reached their VFA maximum at 30 ◦C in

a shorter span of time than at 20 ◦C. Four out of them even reached their VFA maximum at 20 ◦C

in a shorter span of time than at 30 ◦C. The results can be seen in Table 2. Primary sludge under
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pH-controlled conditions obtained its VFA maximum after 7 days at 20 ◦C and after 9 days at 30 ◦C.

Nevertheless, the fact that the DA of primary sludge under pH-controlled conditions at 30 ◦C was

twice as high as the DA at 20 ◦C is all the more important as the VFA production at 30 ◦C lasted only

about 30% longer.

The variation of temperature has a wide range of influence on the VFA composition, depending

on the used substrate. As primary sludge was already chosen as substrate for the optimisation tests,

only its VFA composition was of interest for further tests. However, in the case of primary sludge the

temperature change investigated resulted only in marginal changes in the VFA composition.

Consequently, a temperature around 30 ◦C for the further experiments was considered

as reasonable.

3.1.3. pH

As illustrated in Figure 4, no big difference in the maximum VFA concentration between pH = 6

and pH = 8 was observed. A pH value of 7 yielded the highest result with 18,286 mgVFA/L after a RT

of 10 days. The fermentation at pH = 10 reached significantly worse results with a maximum of 10,050

mgVFA/L only at 18 days retention time. This is in contrast to the results of [31] showing the best result

at pH = 9 with excess sludge and food waste as source material and [32] yielding the highest result at

pH = 11 with excess sludge as raw material.

 
Figure 4. VFA concentrations during tests at different pH levels.

Although pH = 7 yielded the best result, methane production turned out to be an issue at this

pH-value. After about 15 days the acetate concentration was falling rapidly and the overall VFA

concentration after 18 days was less than 44% of the maximum (Figure 4). During this period more

than 15 Vol.% methane was detected in the reactor via gas measurement. To prevent methanogenic

conditions a pH-level of 6 has to be kept [38]. Consequently, further investigations were performed

under pH = 6, although it produced about 12% less VFA within the batch experiments.

The variation of pH-level showed a strong influence on the VFA composition. Changing the pH

from 6 to 7 within the batch experiments caused a constant decrease in the acetic acid ratio as shown

in Table 3. In the same tests, the propionic acid ratio increased, while the butyric acid ratio decreased

to zero. At pH = 8 conditions a reverse trend was observed. With 60% the maximum acetic acid ratio

as well as the minimum propionic acid ratio (37%) was detected, while butyric acid was produced in

small amounts (3%). In comparison to pH = 8, a reduction of acetic acid and propionic acid production

was detected at the highest tested pH-level (pH = 10), while the butyric acid ratio increased to the
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highest level (8%) observed. In contrast to the other pH-values tested, formic acid was produced at pH

= 10 with a ratio of 16.

Table 3. VFA composition and DA in dependence of pH or RT and WD.

Batch Semi Continuous

pH Ac/Pro/Bu DA pH RT and WD Ac/Pro/Bu DA

(%) (%) (day and %) (%) (%)

6 45/51/4 29 6 4 and 25 49/38/13 15
6.5 37/61/2 29 6 4 and 50 46/47/7 14
7 28/72/0 39 6 4 and 75 48/45/7 14
8 60/37/3 29 6 6 and 25 51/38/11 22
10 45/31/8* 14 6 6 and 50 46/48/6 17

6 8 and 25 46/41/13 20
6 8 and 50 43/49/8 19

* Missing to 100% is formate.

3.1.4. RT and WD

To get an idea about how much adapted bacteria are needed in the reactor to produce the most

VFAs a wide range of RT and WD was tested. RT = 2 days and WD = 50% yielded poor results (VFAmax

< 2000 mgVFA/L) and after 10 days of semi-continuous operation the test was shut down. Therefore,

these results are not shown. Further results ranged in a broad band between 5000 mgVFA/L and

10,000 mgVFA/L.

Obviously, the VFA production with short RTs and small WDs fluctuated less than using long RTs

and large WDs, what can be explained by the changing composition of the introduced primary sludge.

These changes of the used primary sludge are mostly due to weather events. A rainfall after a period

of dry weather can transport a huge amount of organic matter to the WWTP. Daily changes in the

waste water’s composition or different contents during the week could be another reason for changing

the primary sludge’s composition. Smaller WD stabilises the fermentation process because only little

material is turned over and the reactor is less sensitive to heterogeneous primary sludge input.

Figure 5 shows the average VFA concentration over a period of 40 days for all investigated

combinations. Both, RT and WD influenced the VFA production. With higher WD the VFA

concentration was decreasing at all tested RTs. The highest overall VFA concentration was reached at a

RT of 6 days with a WD of 25%. Longer and shorter RTs (with a WD of 25%, too) resulted in lower

VFA concentrations.

In order to have a high PHA-production in the second stage the VFA production rate (PR) is more

important than the VFA concentration, which could, if it exceeds a certain value, lead to a substrate

inhibition [23]. Therefore, the PR was calculated on Equation (4). A RT = 4 days and WD = 25% yielded

the top production rate with PR = 1913 mgVFA/(L×d) at a VFA concentration of 7653 mgVFA/L on

average [4].

The variation of RT influenced the VFA composition only slightly as shown in Table 3. Acetic acid

and propionic acid were produced in a similar range, while butyric acid was always the smallest part.

Nevertheless, the variation of WD had an effect. With a WD of 25% the fraction of propionic acid was

about 20% smaller throughout all tests, compared to a WD of 50% and 75%, while the butyric acid

ratio was nearly twice as much. The acetic acid ratio with a WD of 25% was slightly higher than for

any other WDs.

As a stable VFA composition is necessary for high quality PHA production the possible fluctuation

of the VFA composition during the whole test period is important. Figure 6 is exemplary for all

semi-continuously operated tests and shows the concentrations of acetate, propionate and butyrate

at RT = 4 days, WD = 50% during the whole test period of 44 days. After a starting phase of 10 days
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(not shown in the figure) the semi-continuous operation began. Due to the change in the operation

method (from batch to semi-continuously) a transition phase with a decrease in VFA concentration was

observed for the first six days of semi-continuous operation. Fluctuations in the VFA concentration

between day six and day 44 were due to the changing concentration and composition of the introduced

primary sludge. Although a fluctuation in VFA concentration after the fermentation step was observed,

only small changes in the VFA composition were detected. Thus, it was possible to show that the

variability of the raw material primary sludge did not affect the VFA composition significantly.

r’s composition or different contents during the week could be another reason for 
e primary sludge’s composition. 

 
Figure 5. VFA concentration in dependence of RT and WD.

 
Figure 6. Development of the VFA concentration and composition at RT = 4 days, WD = 50%.

3.2. PHA Production

The acidified primary sludge from phase 1 was used for the production of PHA in step two where

the influence of different operating conditions was investigated.
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3.2.1. Substrate Concentration

The results of the conducted experiments are displayed in Table 4. It appears that higher

PHA concentrations were gained at the lower substrate concentration tested. The maximum PHA

concentration of 25.9% based on cell dry weight (CDW) was reached at a pH of 7 and a reactor

temperature of 20 ◦C. With a VFA concentration of 2000 mg/L and a reactor temperature of 20 ◦C the

highest PHA concentration achieved was 4.8% CDW, only and therefore much less than at a substrate

concentration of 1200 mg/L at the same temperature. This confirms the observations of [8,23,39] that

an increasing substrate concentration could result in a substrate inhibition.

Table 4. PHA production in dependence of two tested substrate concentrations.

Substrate Conc. Temp. pH PHA PHB/PHV

(mgVFA/L) (◦C) (% CDW) (% CDW/% CDW)

1200 20 * 13.2 7.0/6.2
1200 20 7 25.9 13.2/12.7
1200 30 * 3.4 2.3/1.1
2000 20 * 4.8 3.3/1.5
2000 20 7 1.8 <2/1.8
2000 30 * 5.8 3.8/2.0

* Marks conditions without pH-control.

Furthermore, the experiment at the higher temperature and the lower substrate concentration

(30 ◦C, 1200 mg/L) leads to a significant lower PHA production than at 20 ◦C and 1200 mg/L. This

indicates that a reactor temperature of 20 ◦C may be preferable for a primary sludge based PHA

production (see also Chapter 3.2.2).

PHA composition did not show any dependence regarding to substrate concentration. During all

tests higher proportions of PHB than PHV were produced. About twice as much PHB (than PHV) was

produced at all experiments at a substrate concentration of 2000 mg/L and at 30 ◦C with 1200 mg/L,

while a nearly equal proportion of both PHAs was reached at 1200 mg/L and 20 ◦C.

3.2.2. Temperature

Table 5 displays the results of the PHA production at different temperatures. As the bacteria

metabolism is slower at lower temperatures a very long feast-phase was observed at 15 ◦C. To ensure a

sufficiently long famine-phase the cycle time of 24 h was doubled at all test with a reactor temperature

of 15 ◦C. Figure 7 shows the length of the feast-phase based on the reactors oxygen concentrations. The

very long feast-phase at 15 ◦C (around 22 h) is clearly visible. All other feast-phases at 20 ◦C or 30 ◦C

were significantly shorter and not longer than 600 min. A somewhat surprising fact was that a faster

bacteria metabolism at 30 ◦C did not result in a shorter feast-phase than at 20 ◦C. These observations

are in contrast to [40], who stated that shorter fest-phases are observed at higher temperatures. At

the same time, they confirm the results of [41], who gained the highest PHA concentration at reactor

temperatures around 20 ◦C. This effect may origin in the fact, that the used sewage sludge was already

adopted to temperature around 20 ◦C.
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Table 5. PHA production in dependence of the reactor temperature.

Temp. pH CT PHA PHB/PHV

(◦C) (h) (% CDW) (% CDW/% CDW)

15 7 24/48 4.2 2.5/1.7
15 8 24/48 3.9 2.5/1.4
20 7 24 25.9 13.2/12.7
20 * 24 13.2 7.0/6.2
30 7 24 0.6 <2/0.6
30 * 24 3.4 2.3/1.1

* Marks conditions without pH-control.

Figure 7. Reactor temperature influence on the feast/famine phase length.

There is no influence on PHA composition due to temperature changes. The results of Chapter

3.2.1 that the PHB/PHV ratio is about 2/1 at lower PHA concentrations produced, was confirmed

(Table 5 at 15 ◦C and 30 ◦C), while both proportion are more or less equal at a higher PHA production

(Table 5 at 20 ◦C).

As listed in Table 5 conditions of 20 ◦C yielded the highest PHA concentrations with 13.2% CDW

and 25.9% CDW. At a reactor temperature of 15 ◦C or 30 ◦C a maximum PHA concentration of less

than 4.5% CDW was reached, only. In consequence further experiments were conducted at 20 ◦C to

achieve the best possible PHA concentration [42].

3.2.3. pH

Table 6 illustrates big differences in the maximum PHA concentration between the tested pH

levels. All tests were operated in batch-mode with a cycle time of one day. The substrate’s pH was

adjusted before adding it into the reactor. An exception was the pH uncontrolled test. This experiment

should clarify if a high PHA production is possible at fluctuating pH value. During the whole cycle

the pH varied between 7.3 at the beginning of the feast-phase and 9.3 at the end of the famine-phase,

with an average pH around 9.
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Table 6. PHA production in dependence of the pH.

pH
PHA PHB/PHV

(% CDW) (% CDW/% CDW)

unc. (av. 9) 13.2 7.0/6.2
6 − −

7 25.9 13.2/12.7
8 28.4 14.7/13.7
9 4.4 3.0/1.4

The experiments with controlled pH values showed highly varying results. While there was no

detectable PHA production at pH = 6, more than 25% CDW was produced between pH 7 and 8, with a

maximum PHA production of 28.4% CDW at pH = 8. Then again, at the highest pH of 9 a low PHA

production of 4.4% was reached only. The experiment without pH control produced around half as

much PHA as the tests at pH 7 or 8. Nevertheless the results of the uncontrolled test were far better

than at the same pH-level of 9 during the controlled test. Still a pH controlled PHA production is

preferable, as the maximum PHA production was obtained at pH controlled operation [42].

pH changes did not influence the PHA composition. As described in Sections 3.2.2 and 3.2.3 the

PHB/PHV ratio is 2/1 at low PHA concentrations and nearly 1/1 at a higher PHA production.

3.2.4. Cycle Time

When using a PHA production based on a bacteria mixed culture a feast/famine regime is

crucial. This is the only way for PHA producing bacteria to gain a significant selection advantage over

other microorganisms.

The produced amount of PHA in dependence of the length of the feast/famine-phase is displayed

in Table 7. A correlation between the cycle time (CT) and the length of the feast-phase was observed,

showing that a longer CT leads to a shorter feast-phase. This could be due to a longer and therefore

harder famine-phase leading to a long period of starvation. It seems that after a bigger starvation, the

bacteria’s substrate uptake is higher and faster than at shorter cycle times. [39] highlights the cycle

time must be such that the complete PHA is metabolised at the end of the famine-phase. This guideline

was confirmed by testing samples, taken at the end of each famine-phase. No PHA was detected

and therefore the required operating condition was kept during all tests. Thus, a cycle time of 24 h

is sufficient.

Table 7. PHA production in dependence of the cycle time.

CT Feast/Famine Feast/Famine-Ratio PHA PHB/PHV

(h) (min) (%/%) (% CDW) (% CDW/% CDW)

24 524/916 36/64 28.4 14.7/13.7
48 500/2380 17/83 18.3 8.0/10.3
72 448/3872 10/90 21.4 8.3/13.1

A former study concluded that the proportion of the feast-phase should not exceed 20% of the CT,

because a longer famine phase could lead to a lower selection pressure on non-PHA accumulating

bacteria [26]. Table 7 shows a feast-phase proportion of 36% at a cycle time of 24 h and therefore nearly

twice as high as suggested by [26]. Regardless, at this cycle time the highest PHA concentration (28.4%

CDW) was reached. A feast-phase proportion of 17% at a CT of 48 h led to a PHA production of 18.3%

CDW, while at the longest tested CT of 72 h a PHA production of 21.4% CDW was observed with a

feast-phase proportion of 10%. This indicates that a fixed feast-phase proportion is unnecessary and

the demanded operation condition by [39] is preferable. However, more experiments will be necessary

to confirm these results.
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An influence of the cycle time length on the PHA composition is shown in Table 7, also. While all

other experiments reached a higher PHB than PHV proportion a cycle time of 48 h or longer led to a

higher PHV production. This could be due to the fact that the PHA accumulation bacteria produced

PHB at first while the PHV production started later. As no samples were taken at low oxygen levels

during the feast-phase and no uptake rate was measured for the VFAs (acetate, butyrate, valerate)

during the experiments this presumption could not be confirmed.

The preferable operating conditions for the VFA production described in Chapter 3.1 provide VFA

every day. Regarding the pairing of both productions steps (VFA and PHA production) and having in

mind that with a cycle time of one day the highest PHA concentration (28.4% CDW) was yielded, a CT

= 24 h is favourable [42].

3.3. Potential Analysis

3.3.1. Calculation for German Waste Water Treatment Plants

Figure 8 shows the results for possible biopolymer production on German WWTPs. All material

streams and reactor volumes in this figure are theoretical values showing the size of the flows, if the

best substrate for acidification [34] of all German WWTPs with preliminary sedimentation potential

(PSP = more than 10,000 PE) would be used for PHA production.
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Figure 8. Biopolymer potential scheme for European and German (figures in brackets) WWTPs.

First of all, the calculation for the amount of primary sludge in Germany regarding the PEs

(Table 1) connected to German WWTPs is shown in Equation (6).

115, 700, 000 PE × 1.1
LPS

PE × d
= 1, 272, 700, 000

LPS

d
= 127, 270

m3
PS

d
(6)

Around 92% of PEs are coming from WWTPs with preliminary sedimentation potential (Table 1),

on which a primary clarifier is installed or the construction of a primary clarifier would be preferable.

Thus, the actual amount of primary sludge is calculated as follows:

127, 270
m3

PS

d
× 92% = 117, 088.4

m3
PS

d
(7)
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Using these data and the results of own experiments [34,42] and of Chapter 3.1 and 3.2 a calculation

of the possible PHA production through various steps can be performed.

Implementing the best reactor operation method, using a retention time of 4 days and a daily

withdrawal of 25% (Table 1) 117,088.4 m3

d acidified material could be used for PHA production every

day (Equation (8)).

117, 088.4
m3

PS

d
× 4 d × 25

%

d
= 117, 088.4

m3

d
(8)

The total solid (TS) concentration of the acidified material of 35
kg

m3 (Table 1) and the assumed

residual moisture after de-watering via centrifuge of 75% leads to a daily acidified liquid production

of 100,696 m3

d (Equations (9)–(11)).

117, 088.4
m3

d
× 35

kgTS

m3
= 4, 098, 094

kgTS

d
= 4098.1

tTS

d
(9)

The assumed residual moisture of 75% means that the calculated 4098.1 tTS
d biomass is 25% of

the total mass separated by the centrifuge. Accordingly, 75% of the separated total mass is water.

Assuming that the solid phase is completely separated it follows:

4098.1
tTS

d
+

4098.1

25

tTS
d

%
× 75%

tH2O

d
= 16, 392.4

tTS+H2O

d
(10)

With an assumed average density of 1 t
m3 the amount of

117, 088.4
m3

d
−

16, 392.4

1

t
d
t

m3

= 100, 696
m3

d
(11)

of acidified liquid is available for the PHA production step.

Regarding the average VFA concentration of 7653
mgVFA

L (Table 1) the amount of VFA in the

acidified water can be calculated (Equation (12)).

7653
gVFA

m3
× 100, 696

m3

d
= 770.6

tVFA

d
(12)

The substrate is divided into equal parts to both reactors (2a and 2b) of the second production

step so that each reactor is supplied with 50,348 m3

d of acidified liquid (Equation (13)), containing 385.3
tVFA

d (Equation (14)).

100, 696 m3

d

2
= 50, 348

m3

d
(13)

770.6 tVFA
d

2
= 385.3

tVFA

d
(14)

In order to achieve the required loading rate of 1.2
kgVFA
m3×d

in both reactors of the second production

step, the volume of Reactor 2a (sum over Germany) and 2b (sum over Germany) should be 321,083 m3

each (Equation (15)).

385, 300
kgVFA

d

1.2
kgVFA
m3×d

= 321, 083.3 m3 (15)

Reactor 2a is operated with a retention time of 2 days, a daily withdrawal of 50% of the reactors

volume and a total solid concentration of TS = 5
gTS
L (Table 1). Due to the fact that there is no biomass

sedimentation before the removal of the material, the withdrawn material can be considered as fully

mixed. Therefore, the amount of bacteria must double every cycle to achieve a constant concentration of

total solids. During the own experiments it was shown that this necessary condition was fulfilled [42].
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The removal of 50% of the reactor volume leads to the amount of substrate, which has to be filled

in the Reactor 2b every day (Equation (16)).

321, 083.3
m3

d
× 50% = 160, 541.7

m3

d
(16)

The emptying and refilling process at the beginning of every cycle is represented in Figure 3. In

order to reach a VFA concentration of 1.2
kgVFA

m3 × d
and regarding to the fact that the VFA concentration

at the end of a cycle is zero, a substrate with a VFA concentration of 2.4
kgVFA

m3 × d
is needed if half of the

reactors volume is exchanged.

Equation (16) shows the required amount of substrate for one day for one reactor regarding the

needed VFA concentration. Hence the amount of VFA rich liquid of 50,348 m3

d (Equation (13)) has to be

diluted with 110,193.7 m3

d fresh water (Equation (17)).

160, 541.7
m3

d
− 50, 348

m3

d
= 110, 193.7

m3

d
(17)

When calculating the amount of dilution water it should be noted that the large amount of water

is due to the reactors comparatively low total solid concentration of TS = 5
gTS
L , which was installed

during the experiments in [42]. This concentration is used for the potential analysis as well, to keep the

calculation as close as possible to the operation conditions of the carried out experiments. Of course, a

much higher solid concentration could be installed, leading to significantly smaller reactor volumes as

well as less dilution water. As the amount of dilution water does not affect the result of the potential

analysis it was kept.

As described, the biomass concentration in Reactor 2a was 5
gTS
L at the end of a cycle. Regarding

the withdrawal of 50% of the reactor’s volume a total of

321, 083.3
m3

d
× 5

kgTS

m3
× 5% = 802, 708.3

kgTS

d
= 802.71

tTS

d
(18)

biomass is transferred into Reactor 2b. This reactor also had a dry matter content of 5
kgTS

m3 after the

PHA production step (Table 1). Considering a cycle time of one day and the volume of 321,083 m3, the

amount of biomass in Reactor 2b sums up to (Equation (19)):

321, 083.3 m3

1 d
× 5

kgTS

m3
= 1, 605, 416.5

kgTS

d
= 1605.4

tTS

d
(19)

With the reached PHA concentration of 28.4% of the cell dry weight (CDW) [42] the daily amount

of biopolymer is calculated in Equation (20).

1605.4
tTS

d
× 28.4%

PHA

TS
= 455.9

tPHA

d
(20)

Finally, the possible annual amount of PHA production on German waste water treatment plants

can be calculated in Equation (21).

455.9
tPHA

d
× 365.25

d

a
= 166, 517.5

tPHA

a
(21)

Dividing the reactor volume (sum of all production stages) of 1,110,518 m3 by the people’s

equivalent with preliminary sedimentation potential of 106.56 Mio. PE (Table 1) results in a reactor

volume (sum of all production stages) per capita of around 10.4 L/PE. Each PE can contribute to

the production of 1.6 kgPHA/(PE×a). Keeping in mind that the aeration tank volume on a WWTP

with 100,000 PE sums up to 10,000 m3–15,000 m3 an additional reactor volume of approximately
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1050 m3 would be needed for the biopolymer production, only. Thus, the extra volume would not

be disproportional.

3.3.2. Estimation for European Waste Water Treatment Plants

The Biopolymer potential for European WWTPs are calculated similar to Section 3.3.1 and also

shown in Figure 8.

As there are missing data about the amount of connected persons (PEs) for many EU member

states as well as about the amount of municipal waste water, it is impossible to calculate the EU-wide

production of primary sludge analogous to Equations (6) and (7). However, there are data for all 28

EU member states regarding the production of sewage sludge. These data show the dry weight of

sewage sludge in tTS
a (Table 1) and hence their unit must be transferred into m3

a (Equation (22)) to

compare them with the data used for German WWTP in Equation (6). Therefore, an average total solid

concentration of 15
gTS
L or 66.67 m3

tTS
for European sewage sludge (primary and secondary) is assumed.

13, 245, 180
tTS

a
× 66.67

m3

tTS
= 883, 056, 150

m3

a
(22)

On the assumption that the proportion of primary sludge in the amount of sewage sludge is

more or less constant in all member states, the percentage can be calculated (Equation (25)) using the

theoretical yearly amount of primary sludge produced in Germany (Equations (6) and (23)) and the

yearly amount of German sewage sludge (Table 1) (Equation (24)).

115, 700, 000 PE × 1.1
LPS

PE × d
× 365.25

d

a
= 46, 485, 367.5

m3
PS

a
(23)

1, 815, 150
tTS

a
× 66.67

m3

tTS
= 121, 016, 051

m3

a
(24)

46, 485, 367.5 m3
PS

a

121, 016, 051 m3

a

× 100% = 38.4% (25)

Assuming that not all European waste water treatment plants are equipped with a primary

clarifier, the proportion of primary sludge is rounded off to 30%, so that the yearly amount of European

primary sludge sums up to 265 Mio. m3
PS

a (Equation (26)) or 725,303 m3
PS

d (Equation (27)).

883, 056, 151
m3

PS

a
× 30% = 264, 916, 845.3

m3
PS

a
(26)

264, 916, 845.3 m3
PS

a

365.25 d
a

= 725, 302.8
m3

PS

d
(27)

By now, the European biopolymer potential can be calculated analogous to Equations (8)–(21).

The amount of acidified material is:

725, 303
m3

PS

d
× 4 d × 25

%

d
= 725, 303

m3

d
(28)

Using Equations (9)–(11) the amount of acidified liquid can be calculated (Equation (31)):

725, 303
m3

d
× 35

kgTS

m3
= 25, 385, 605

kgTS

d
= 25, 385.6

tTS

d
(29)

25, 385.6
tTS

d
+

25, 385.6 tTS
d

25%
× 75%

tH2O

d
= 101, 542.4

tTS+H2O

d
(30)
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With an average density of 1 t
m3

725, 303
m3

d
−

101, 542.4 t
d

1 t
m3

= 623, 760.6
m3

d
(31)

of acidified liquid can be used within the second PHA production step. This leads to the amount of

VFAs in the acidified water (Equation (32)):

7653
gVFA

m3
× 623, 760.6

m3

d
= 4773.6

tVFA

d
(32)

Analogous to Equations (13) and (14) both reactors of the second production step are supplied

with 311,880 m3

d (Equation (33)) of acidified liquid containing 2386.8 tVFA
d (Equation (34)).

623, 760.6 m3

d

2
= 311, 880.3

m3

d
(33)

4773.6 tVFA
d

2
= 2386.8

tVFA

d
(34)

The reactor volumes (Equation (35)) can be calculated analogous to Equation (15):

2, 386, 800
kgVFA

d

1.2
kgVFA

m3 × d

= 1, 989, 000 m3 (35)

The daily substrate amount for one reactor is (Equation (36)):

1, 989, 000
m3

d
× 50% = 994, 500

m3

d
(36)

Analogous to Equation (17) the amount of dilution water can be calculated (Equation (37)):

994, 500
m3

d
− 311, 880.3

m3

d
= 682, 619.7

m3

d
(37)

With a withdrawal of 50% a biomass transfer to Reactor 2b of 4094.58 tTS
d is necessary

(Equation (38)).

1, 989, 000
m3

d
× 5

kgTS

m3
× 50% = 4, 972, 500

kgTS

d
= 4972.5

tTS

d
(38)

With the described total solid concentration of 5
kgTS

m3 after the PHA production the amount of

biomass in Reactor 2b is (Equation (39)):

1, 989, 000 m3
× 5

kgTS

m3
= 9, 945, 000

kgTS

d
= 9945

tTS

d
(39)

With a cycle time of one day and the reached PHA concentration of 28.4% CDW (Table 1) the

daily amount of PHA sums up to (Equation (40)):

9945
tTS

d
× 28.4%

PHA

TS
= 2824.4

tPHA

d
(40)
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Finally, the possible annual amount of PHA production on European waste water treatment

plants can be calculated in Equation (41).

2824.4
tPHA

d
× 365.25

d

a
= 1, 031, 612.1

tPHA

a
(41)

3.3.3. Summary of the Results and Optimization Potential

The market for biopolymers is predicted to grow continuously [43]. In 2016, a worldwide

biopolymer production of 4.16 Mio. t
a , of which 861,120 t

a or 20.7% [43] suit the criteria of the stringent

definition for biopolymers, introduced in Chapter 1, were achieved. Taking Equation (21) into account

approximately 4.0% of the worldwide biopolymer production (bio- and non-biodegradable) could

be produced just by using primary sludge from German WWTPs. Around 19.3% of the worldwide

biopolymers could be produced on WWTPs in Germany considering the stringent definition, only.

For the biopolymer production on European WWTPs (Equation (41)) approximately 24.7% of

2016’s worldwide biopolymer production (bio- and non-biodegradable) or around 119.8% of 2016’s

worldwide biopolymer production due to the stringent definition could be produced.

Assuming an improved PHA production with an achievable PHA concentration of 0.5
gPHA
gVSS

[44]

or even around 60% CDW [45,46] a total amount of 2,179,446.8 tPHA
a (Equation (42)) could be produced

on European WWTPs by using primary sludge, only.

9945
tTS

d
× 60% × 36, 525

d

a
= 2, 179, 446.8

tPHA

a
(42)

Thus, approximately 52.4% of 2016’s worldwide biopolymer production (bio- and

non-biodegradable) or 253.1% of 2016’s worldwide biopolymer production due to the stringent

definition could be produced in an improved production on WWTPs in the EU.

A large proportion of polymers (biopolymers and those from synthetic production) is used for

packing materials. The PHAs feature similar characteristics like polypropylene (PP), which is the

mostly sold plastic in the EU with 18.8% (around 8.6 Mio. t
a ) market share in 2012 [47]. The potential

analysis for Germany equates to approximately 1.9% of the EUs PP production. Using the calculation

for the EU for PHA production from primary sludge around 12.0% of the conventional PP sold in the

EU could be substituted which is a significant potential.

3.3.4. Plausibility Analysis

As some input parameters do have a strong effect to the calculations, a plausibility analysis was

carried out. All critical parameters, like total solid concentration of the primary sludge, the daily

amount of primary sludge per PE, or the daily amount of primary sludge per PE were analysed and

considered plausible. A more detailed description of the plausibility analysis can be found in [28].

4. Summary and Conclusions

From the results, it could be concluded that the production of high amounts of VFAs with a stable

VFA composition on a WWTP is possible. Using different raw materials shows a strong influences

on degree of acidification and VFA composition. The VFA production and composition is strongly

influenced by a pH-level change in the reactor. A semi-continuous operation method of the reactor with

a short RT and small WD is preferable. With primary sludge as raw material no biomass recirculation

is needed during the fermentation process.

The results showed that the produces VFA are suitable for PHA production in a second stage. This

amount of PHA produced is strongly influenced by the reactors operating conditions (temperature,

pH-level and substrate concentration), while the PHA composition is influenced by cycle time changes.

At preferred conditions, a stable PHB/PHV composition was reached and both PHAs were produced

in nearly the same proportion.
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Nevertheless, further research is needed to couple both processes for constant and long term PHA

production and for upscaling.

The results of the presented potential analysis clearly indicate the possibility to produce large

amounts of PHAs on German and European WWTPs. It has been shown that municipal WWTPs

could be used as a significant source for biopolymers and waste water is an important substituent for

plant-based raw materials in the PHA production.

More than twice the amount of 2016's worldwide biopolymer production could be produced on

European WWTPs with an upgraded operation. Thus, the production of biopolymers on waste water

treatment plants contribute to a recycling of the organic material contained in waste water.
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