
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 6707–6723

August 1–6, 2021. ©2021 Association for Computational Linguistics

6707

Polyjuice: Generating Counterfactuals
for Explaining, Evaluating, and Improving Models

Tongshuang Wu1 Marco Tulio Ribeiro2 Jeffrey Heer1 Daniel S. Weld1,3

1University of Washington 2Microsoft Research 3Allen Institute for Artificial Intelligence
wtshuang@cs.uw.edu marcotcr@microsoft.com {jheer,weld}@cs.uw.edu

Abstract

While counterfactual examples are useful for

analysis and training of NLP models, cur-

rent generation methods either rely on man-

ual labor to create very few counterfactuals,

or only instantiate limited types of perturba-

tions such as paraphrases or word substitutions.

We present Polyjuice, a general-purpose coun-

terfactual generator that allows for control

over perturbation types and locations, trained

by finetuning GPT-2 on multiple datasets of

paired sentences. We show that Polyjuice pro-

duces diverse sets of realistic counterfactuals,

which in turn are useful in various distinct

applications: improving training and evalua-

tion on three different tasks (with around 70%

less annotation effort than manual generation),

augmenting state-of-the-art explanation tech-

niques, and supporting systematic counterfac-

tual error analysis by revealing behaviors eas-

ily missed by human experts.

1 Introduction

Counterfactual reasoning — mentally simulating

what would have happened if conditions were dif-

ferent — is a common tool for making causality as-

sessments (Kahneman and Tversky, 1981), which

in turn are crucial for model evaluation, error anal-

ysis, and explanation (Miller, 2019). For example,

in Figure 1, “It is great for kids” is perturbed into

multiple variations, each providing unique insights

by simulating what would have happened if the

sentence was different.

Applications of counterfactual reasoning to NLP

generally specify the relationship x ✮ x̂, and then

create x̂ according to the relationship. As a re-

sult, prior work has tailored counterfactual gen-

erators for different applications, only collecting

subsets of x̂ that are useful for the specific task.

For example, to support model training and eval-

uation, human annotators create counterfactuals

It is great for kids.

It is great for kids→adults.

It is great→scary for kids.

delete

lexical

negation

It is great for kids.

Polyjuice generates ̂xi

Original x Select

for use cases

B

A C

f(̂xi)

—

+

+

+

+

f(x)

+

It is great for kids

Training

Evaluation

Explanation D

Error Analysis

It is not great for kids.

It is great for kids→no one.

Figure 1: Overview: (A) given a sentiment analysis in-

stance x, Polyjuice1generates (B) various counterfactu-

als x̂, which are then (C) selected for downstream use.

e.g., in (D) we select counterfactual explanations that

complement a black box explanation: though “great”

and “kids” are deemed important, perturbing them may

not affect the prediction f (x) = f (x̂) = positive, reveal-

ing model failures not covered by feature attributions.

that change the groundtruth labels by manually

rewriting instances (Gardner et al., 2020; Qin et al.,

2019) or defining perturbation functions (Ribeiro

et al., 2020). Manual rewrites are costly (e.g., 4–5

minutes per counterfactual (Kaushik et al., 2020))

and susceptible to systematic omissions (e.g., hu-

man annotators may cover great ✮ not great, but

miss kids ✮ no one in Figure 1B). Meanwhile, au-

tomated generators for model analysis and expla-

nation usually focus on other relationships, e.g.,

generating x̂ that have different model predictions

than x (Ross et al., 2020; Zhang et al., 2019a). As

a result, they neglect prediction-preserving counter-

factuals that are equally important for understand-

ing or shaping model behaviors, like kids ✮ no one

and great ✮ scary linked to Figure 1D.

However, counterfactual generation does not

have to be task-specific. The same set of counter-

factuals in Figure 1 can support a variety of applica-

1We open source Polyjuice at https://github.com/
tongshuangwu/polyjuice.

mailto:wtshuang@cs.uw.edu
mailto:marcotcr@microsoft.com
mailto:dan@cs.washington.edu
https://github.com/tongshuangwu/polyjuice
https://github.com/tongshuangwu/polyjuice

6708

tions. Moreover, for cases like model explanation

and analysis, a general-purpose pool of counterfac-

tuals may be preferable, as the relationship of inter-

est can be more exploratory and user-oriented (Wu

et al., 2019). In this work, we formalize the task

of counterfactual generation, disentangling genera-

tion from the application of counterfactuals. Given

an input x (Figure 1A), our generator produces a set

of counterfactuals X̂ = {x̂1, x̂2, ...} with application-

agnostic relationships x ✮ x̂i (Figure 1B). After-

wards, we use application-specific selection meth-

ods to find subsets of x̂ that are most effective for a

given use case (Figure 1C).

We frame the generation step as conditional text

generation, and finetune GPT-2 (Radford et al.,

2019) into a generator called Polyjuice using

(x, x̂) pairs. To allow for targeted counterfactu-

als, we also design control codes like negation

or delete (Figure 1B), and adopt fill-in-the-blank

structures (Donahue et al., 2020) to specify where

the perturbation occurs and how. Intrinsic evalua-

tion shows that Polyjuice generates x̂ that are fluent,

diverse, and close to x, and that the control mecha-

nisms retrieve perturbations that would likely not

be sampled from off-the-shelf language models.

With simple selection heuristics, we show that

a single Polyjuice model can significantly aid hu-

mans in diverse downstream applications.2 For

counterfactual training and evaluation (§3), hu-

mans label Polyjuice counterfactuals rather than

creating them from scratch. They produce train-

ing data that significantly improve model general-

ization, as well as contrast sets that help identify

model vulnerabilities (Gardner et al., 2020), with

around 70% less annotation effort. In another ap-

plication, Polyjuice produces counterfactual expla-

nations (§4), providing significant insight on top

of state-of-the-art explanation techniques. Finally,

Polyjuice supports counterfactual error analysis

(§5). It allows users to explore related counterfac-

tuals (e.g., the model responds differently to differ-

ent negation forms in Figure 1B), and to aggregate

individual counterfactuals into patterns in order to

gain systematic understanding of model behavior.

2 General-Purpose Counterfactuals

2.1 Definition and Desiderata

Given an instance x, a generator g produces a set

of counterfactuals X̂ = {x̂1, x̂2, ...} with various re-

2We demonstrate Polyjuice in semi-automatic settings, but
as discussed in §2.2, it can also work automatically.

It is great for kids. <|perturb|>

[negation]

It is [BLANK] great for [BLANK]. [SEP]

not [ANSWER] children [ANSWER]

<|endoftext|>

It [BLANK] great [BLANK]. [SEP]

is not [ANSWER] for children [ANSWER]

[BLANK] [SEP]

It is not great for children. [ANSWER]

̂x

code

B

A

x

̂x

̂x

1

2

3

4

5

6

7

8

9

Figure 2: (A) Polyjuice prompt format, which concate-

nates the original x, the control code, and the x̂ (“It is

not great for children” converted to an infilling struc-

ture). At generation time, Polyjuice accepts prompts

that just include x (Line 1), or optionally with the code

and the [BLANK]s (Lines 2–3), and fills in the blanks

sequentially with spans separated by [ANSWER]s (Line

4). (B) Polyjuice allows blanking at different granular-

ities (even the entire sentence), such that Lines 3–4 in

(A) can be replaced by Lines 6–7 or 8–9.

lationships x ✮ x̂i. For example, great ✮ not great,

kids ✮ no one in Figure 1B are both instances of the

negation relationship. Each (x, x̂) pair shares mul-

tiple relationships — these two are also instances

of the label flipping relationship if the task is sen-

timent analysis (but might not be for other tasks).

As illustrated in §1, knowing which relationships

apply aids selection for downstream applications.

We expect g to produce counterfactuals x̂ that

are (1) close to x, preferably only involving the

minimal changes necessary to establish a certain ef-

fect (Pearl, 2018), allowing users to make causality

assessments. The generated x̂ should also be (2) flu-

ent, i.e., grammatically correct (Morris et al., 2020)

and semantically meaningful (e.g.,“Colorless green

ideas sleep furiously” is not meaningful (Chom-

sky, 2002)). Fluency operationalizes “probable”

counterfactuals in the context of NLP; as Kahne-

man and Tversky (1981) stated, humans strongly

favor counterfactuals that are close to the origi-

nal instance, but also prefer those that could have

easily happened without assuming rare events or

strange coincidences. Further, as a general-purpose

generator, g should produce counterfactuals with a

measure of (3) control over relationships x ✮ x̂,

such that the counterfactuals can vary with the

object-of-attention in each application (the “focus

rule” (Kahneman and Tversky, 1981)). Finally, we

expect g to output a (4) diverse set of x̂ in terms of

relationships, covering a large variety of “what-ifs”

for different applications (Pearl, 2018).

6709

Control code Definitions and Polyjuice-generated Examples Training Datasets

negation A dog is not embraced by the woman. (Kaushik et al., 2020)

quantifier A dog is ✮ Three dogs are embraced by the woman. (Gardner et al., 2020)

shuffle To move (or swap) key phrases or entities around the sentence.
A dog ✮ woman is embraced by the woman ✮ dog.

(Zhang et al., 2019b)

lexical To change just one word or noun chunk without altering the POS tags.
A dog is embraced ✮ attacked by the woman.

(Sakaguchi et al., 2020)

resemantic To replace short phrases without altering the remaining dependency tree.
A dog is embraced by the woman ✮ wrapped in a blanket.

(Wieting and Gimpel, 2018)

insert To add short phrases without altering the remaining dependency tree.
A dog is embraced by the little woman.

(McCoy et al., 2019)

delete To remove short phrases without altering the remaining dependency tree.
A dog is embraced by the woman.

(McCoy et al., 2019)

restructure To alter the dependency tree structure, e.g., changing from passive to active.
A dog is embraced by ✮ hugging the woman.

(Wieting and Gimpel, 2018)

Table 1: We design a list of control codes to guide generation. We show Polyjuice-generated counterfactual

examples, and the representative training datasets for each corresponding pattern. Details are in Appendix A.

2.2 Conditional Counterfactual Generation

We frame counterfactual generation as a condi-

tional text generation task using language mod-

els (LMs), and train Polyjuice by finetuning GPT-

2 (Radford et al., 2019) using the following prompt

design (alternative LMs could also have been used).

Prompt format design. To ensure that x̂ is close

to x rather than arbitrary text, we condition the gen-

eration on x, followed by a special token (Line 1

in Figure 2A). In Line 2, we have control codes

(Keskar et al., 2019) such as negation. We design

them to specify types of perturbation from among

lexical, syntactic, or semantic aspects (see Table

1), inspired by prior work that categorizes manu-

ally created counterfactuals (Kaushik et al., 2020;

Gardner et al., 2020). As an additional layer of

control over x ✮ x̂, we allow users to specify where

changes happen by having the LM infill [BLANK]

tokens (Donahue et al., 2020), rather than generat-

ing arbitrary counterfactuals (Lines 3–4).

Finetuning GPT-2 — a causal LM for predicting

next tokens — additionally allows us to exercise

control at various levels of granularity. At gener-

ation time, if the user provides only the original

example, Polyjuice will generate the control code,

the blank locations, and the infilling (Lines 2–4).

Alternatively, the user can specify the control code,

or the control code and the blanks, to exercise dif-

ferent degrees of control depending on the applica-

tion. As later shown in §4 and §5, such control is

important for different use cases.

Training data. To train a conditional model, we

combine six existing sentence-pair datasets, each

containing a subset of the desired phenomena in

Table 1. Further, we find naturally occurring sen-

tence pairs (filtered by edit distance to guaran-

tee closeness) in non-paired datasets including

CommonGen (Lin et al., 2020), Natural Ques-

tions (Kwiatkowski et al., 2019), and SQuAD (Ra-

jpurkar et al., 2016), such that the resulting dataset

contains diverse counterfactuals.3

We translate these sentence pairs into the format

given in Figure 2A. For each (x, x̂), we compute its

primary control code using part-of-speech tags and

dependency trees. For example, negation occurs

when we observe changes to negation modifiers or

specific words like “supposedly”, and shuffle oc-

curs when we have overlap between tokens deleted

and added. When multiple changes occur, we la-

bel it with the control code which most signifi-

cantly changes the semantics of the correspond-

ing subphrase as computed by SBERT (Reimers

and Gurevych, 2019). For example, in Figure 2A,

negation (great ✮ not great) is more significant

than lexical (kids ✮ children). To balance the dis-

tribution (Table 7 in Appendix A), for each dataset,

we extract control codes from all the (x, x̂),4 and

randomly sample up to 10,000 instances per codes.

In order to allow for flexible blanking at gener-

ation time, we generate multiple training prompts

per pair, covering different dependency tree struc-

3We exclude data related to our applications, e.g., PAWS-
QQP (Zhang et al., 2019b).

4We use sentences in a pair interchangeably as x and x̂ to
learn the control codes both ways.

6710

Model
Diversity Closeness

Self-BLEU ↓ Levenshtein ↓ Syntactic ↓

Polyjuice 0.34 0.25 2.13
GPT-2 0.18 0.70 6.35
T5 0.12 9,52 3.50
RoBERTa 0.47 0.14 1.32

Table 2: Intrinsic evaluations: Polyjuice counterfactu-

als are closer to the original instance than non-fintuned

GPT-2 and T5, and more diverse than RoBERTa. Com-

putational details are in Appendix A.2.

tures related to the perturbed spans (Figure 2B),

including (1) just the changed tokens, (2) the asso-

ciated parsing structures, (3) the merged changes,

and (4) the entire sentence. We eventually obtain

657, 144 prompts from 186, 451 pairs.

Fluency filtering. While the original GPT-2 pro-

duces fluent text, some combinations of control

codes and blanks cause Polyjuice to generate non-

sensical results. Following Morris et al. (2020), we

score both x and x̂ with GPT-2, and filter x̂ when

the log-probability (on the full sentence or the per-

turbed chunks) decreases by more than 10 points

relative to x. Fully automated uses of Polyjuice

(e.g., adversarial attacks) may benefit from stricter

constraints, at the cost of diversity (as surprising

changes may be filtered even if they are fluent).

2.3 Intrinsic Evaluation

We evaluate Polyjuice on closeness and diversity

by comparing its perturbations on 300 randomly

selected sentences with baselines that use more or

less context from x: (1) non-finetuned GPT-2, (2)

token-infilling RoBERTa (Liu et al., 2019) and (3)

span-infilling T5 (Raffel et al., 2020).

As shown in Table 2, Polyjuice generates coun-

terfactuals that are close to the original instance,

measured by syntactic tree (Zhang and Shasha,

1989) and Levenshtein edit distance (Levenshtein,

1966). In contrast, non-finetuned GPT-2 generates

arbitrary text instead of perturbations when given

the starting tokens of a sentence, as it only lever-

ages context in a single direction. As for infilling

models, Polyjuice counterfactuals are more diverse

(measured by self-BLEU (Zhu et al., 2018)) than

RoBERTa ones, which is restricted to word sub-

stitution. Meanwhile, T5 displays higher diversity

but less closeness, probably due to the fact that it

does not consider the original masked tokens when

generating x̂. For example, in Figure 1 “It is great

for kids,” T5 replaces “for kids” with “idea”, “to

meet you,” whereas Polyjuice generates “for kids

yet adults can enjoy,” “for any audience.”

We evaluate controllability by comparing

Polyjuice with T5 as well as with GPT-2 finetuned

on prompts without codes. We verify that the codes

improve the success rate of generating counterfac-

tuals with the desired perturbation types set out in

Table 1 by as much as 42% for perturbations such

as negation and insert. For example, given

“It is [BLANK] great for kids,” baselines generate

“also,” “fun and,” rather than “not” (negation).

We further verify the fluency for Polyjuice coun-

terfactuals in three tasks/datasets: (1) Sentiment

Analysis, SST-2 (Socher et al., 2013), (2) Nat-

ural Language Inference (NLI), SNLI (Bowman

et al., 2015), and (3) Duplicate Question Detection

(QQP) (Wang et al., 2019). We randomly select

100 sentences per dataset, generate 3 x̂ per x, and

ask crowd workers to rate whether they are “likely

written by native speakers.” The workers rated

most counterfactuals as fluent: 78% in SST-2, 76%

in QQP, and 86% in SNLI. In subsequent sections,

we show these rates are suitable for applications

where people “team up” with Polyjuice.

3 Counterfactual Evaluation & Training

We ask crowdworkers to label Polyjuice-generated

counterfactuals for Sentiment, NLI, and QQP, for

the purposes of evaluation and training.5 In each

labeling round, the worker is presented with an

original x and its label, and asked to annotate the

groundtruth for three x̂, rejecting non-fluent ones

(details and interface in Appendix B.1).

We use a simple heuristic to select which coun-

terfactuals are presented for labeling, aimed at in-

creasing diversity. Representing each x̂ by its to-

ken changes, control code, and dependency tree

structure, we greedily select the ones that are least

similar to those already selected for labeling. This

avoids redundancy in the labeling set, e.g., common

perturbation patterns such as black ✮ white.

3.1 Evaluation with Contrast Sets

We verify whether Polyjuice counterfactuals can be

used to create contrast sets (Gardner et al., 2020),

i.e., evaluation sets where each instance has a

nearby counterfactual with a different groundtruth,

to better evaluate model decision boundaries. We

5We collect asymmetric counterfactuals (Garg et al., 2019)
by sampling more Duplicate and Entailment examples in QQP
and NLI to perturb, due to the difficulty of flipping other labels.

6711

Task Dev. Orig. set Contrast set ↓ Consistency ↓

Sentiment 94.3 93.8 84.9 (-8.9) 76.1
NLI 86.5 91.6 72.3 (-19.3) 56.4
QQP 91.7 87.5 75.3 (-12.2) 61.1

Table 3: Polyjuice x̂ as contrasts sets, with model accu-

racy on the development set, the original set of x, the

contrast sets, and consistency (cases where the model

predicts both x and x̂ correctly). The performance

drops are similar to that of expert-created sets (Gardner

et al., 2020), on which the accuracy of all classification

models decreases by 9.8 on average, with a consistency

of ≈64.1. This indicates Polyjuice can be used to create

such sets without expert annotators and at less cost.

construct these sets by simply filtering out counter-

factuals that are labeled the same as their original

instances (40%–63% depending on the task).

For each task, we test multiple classifers open-

sourced by Huggingface (Wolf et al., 2020), and re-

port the best performing model for each6 in Table 3

(results for other models are analogous). Polyjuice

contrast sets display performance gaps consistent

with those of Gardner et al. (2020), where the sets

are constructed manually by NLP researchers, even

though we use non-expert annotators who only la-

bel examples rather than creating them.

3.2 Training with Counterfactuals

Following Kaushik et al. (2020), we augment train-

ing sets with counterfactual examples. In all experi-

ments, we finetune roberta-base on datasets of n

original examples and m counterfactuals, which are

generated by Polyjuice (m-polyjuice) or crafted

from scratch by humans (m-CAD from Kaushik et al.

(2020), only available for NLI). To distinguish the

benefit of counterfactuals from that of just adding

more data, we further add a baseline that uses n+m

original examples (m-baseline). In addition to

in-domain test set accuracy, we measure models’

generalization on out-of-domain datasets, as well

as contrast sets and challenge sets. We also evaluate

model capabilities with CheckList (Ribeiro et al.,

2020) for Sentiment and QQP. Reported model

performances are averaged across multiple data

samples and random seeds (Appendix B.2).

For Sentiment, we select random Polyjuice coun-

terfactuals regardless of their labels, as long as an

original x has at least one x̂ that flips the label. For

NLI and QQP, we observed in a pilot study that

6huggingface.co/{roberta-large-mnli,

textattack/roberta-base-SST-2,

ji-xin/roberta_base-QQP-two_stage}

randomly chosen counterfactuals may not be more

effective than the same amount of additional data.

We suspect that Polyjuice lacks domain knowledge

and context for identifying critical perturbations,

and therefore brings benefits redundant with pre-

training (Longpre et al., 2020). Thus, we use the

slicing functions of Chen et al. (2019) to find pat-

terns of interest (e.g., prepositions in NLI), and

perturb those patterns by placing [BLANK]s on the

matched spans. For example, “His surfboard is

beneath him” becomes “His surfboard is [BLANK]

him”, and Polyjuice generates counterfactuals such

as “His surfboard is beneath ✮ next to him.”

Results. Tables 4–6 indicate that Polyjuice aug-

mentation is effective in all tasks: m-polyjuice

maintains in-domain accuracy while consistently

improving or maintaining generalization accuracy

in various out-of-domain and challenge sets. On

NLI, Polyjuice counterfactuals are as effective or

more effective than counterfactuals created from

scratch (m-CAD). Notably, we obtain the largest

gains on challenge and contrast sets (e.g., Break

and DNC in Table 5) or when the out-of-domain

dataset is sufficiently different from the training

domain (e.g., Senti140 and SemEval in Table 4).

Polyjuice also improves results on CheckList tests

that previously had high error rates: it significantly

lowers the error rates on 11 out of 27 QQP tests,7

making 2/27 tests worse. For Sentiment, it im-

proves the model on 5 out of 15 tests, hurting 1.

Here, we only report a low m/n ratio (<10% for

NLI and QQP) to show that a small amount of

augmentation is already beneficial. The results are

similar for other combinations we explored (see

Appendix B.2), except when the ratio of counter-

factual to original data was too high (e.g.,, m = n

may decrease vocabulary diversity or induce addi-

tional data bias, echoing (Khashabi et al., 2020)).

3.3 Discussion

We show that Polyjuice counterfactuals are useful

for evaluation, and more effective than additional

(non-counterfactual) data for training in a variety

of tasks. In contrast to prior work where humans

generate counterfactuals from scratch, we only ask

them to label automatically generated ones, while

still achieving similar or better results.

We believe our approach is more effective than

manual creation (although both are beneficial): in

7The absolute error rate drops for at least 5 points, with a
relative difference of more than 10%.

6712

Model SST-2 Senti140 SemEval Amzbook Yelp IMDB IMDB-Cont. IMDB-CAD

m-baseline 92.9 ± 0.2 88.9 ± 0.3 84.8 ± 0.5 85.1 ± 0.4 90.0 ± 0.3 90.8 ± 0.5 92.2 ± 0.6 86.5 ± 0.2
m-polyjuice 92.7 ± 0.2 90.7 ± 0.4 86.4 ± 0.1 85.6 ± 0.8 90.1 ± 0.0 90.6 ± 0.3 94.0 ± 0.3 89.7 ± 0.5

Table 4: Sentiment model performance, with n=4, 000 and m=2, 000. Bolded cells highlight significant improve-

ments. m-polyjuice maintains the in-domain and out-of-domain accuracies on reviews (SST-2, Amzbook, Yelp,

IMDb Movie Review (Ni et al., 2019; Asghar, 2016; Maas et al., 2011)), improving it on Twitter data (Senti140

and SemEval 2017 (Go et al., 2009; Nakov et al., 2013)) and contrast sets (Gardner et al., 2020; Kaushik et al.,

2020), likely because their distributions are less similar to the original SST-2 training data.

Model SNLI MNLI-m MNLI-mm SNLI-CAD break DNC stress diagnostic

m-baseline 85.7 ± 0.4 86.1 ± 0.2 86.6 ± 0.2 72.8 ± 0.3 86.4 ± 1.5 54.5 ± 0.6 65.1 ± 0.6 56.0 ± 0.8
m-CAD 85.8 ± 0.6 86.6 ± 0.1 85.6 ± 0.3 73.8 ± 0.2 89.4 ± 2.9 55.8 ± 0.9 65.5 ± 0.5 56.4 ± 0.4
m-polyjuice 85.3 ± 0.3 86.0 ± 0.1 86.4 ± 0.0 73.6 ± 0.2 89.1 ± 1.2 57.7 ± 0.3 65.1 ± 0.2 57.5 ± 0.5

Table 5: NLI models, with n=20, 000 and m=1, 574. m-polyjuice improves accuracy on contrast and

challenge sets (Kim et al., 2019; Naik et al., 2018; Glockner et al., 2018; Wang et al., 2019); it exhibits comparable

(or better) gains than m-CAD (manual counterfactuals) with less implementation and annotation effort.

Model QQP PAWS-QQP

m-baseline 84.5 ± 0.6 37.0 ± 0.5
m-polyjuice 84.7 ± 1.0 38.7 ± 0.4

Table 6: Polyjuice with n=20, 000 and m=1, 911 im-

proves accuracy on PAWS-QQP (Zhang et al., 2019b).

terms of implementation effort, the process of just

labeling counterfactuals is the same as labeling

original examples, such that no additional annota-

tor training or separate pipelines are required; in

contrast, Kaushik et al. (2020) set up two separate

crowdsourcing tasks for creating and labeling the

counterfactuals. Further, annotator effort is much

lower, as evaluating examples is easier than creat-

ing them — Kaushik et al. (2020) report an aver-

age of ≈2 minutes per NLI counterfactual prior to

quality validation, while our median time was 10

seconds per counterfactual. Even after our quality

validation (removing noisy annotators, disregard-

ing non-fluent counterfactuals), our rate for NLI is

≈36 seconds per counterfactual (used in Table 5).

In terms of the utility per counterfactual, man-

ual creation and Polyjuice may be complementary.

Manual annotation may be unreliable or incomplete

for certain forms of counterfactuals (Ribeiro et al.,

2018), whereas Polyjuice can miss more complex

or context-dependent changes, and could benefit

from target perturbations that compensate for its

lack of domain knowledge (targeted guidance is

also helpful for human annotators (Huang et al.,

2020)). Thus, it may be important to mix both ap-

proaches (Khashabi et al., 2020). Polyjuice’s flex-

ibility opens up possibilities for hybrids between

human creation and human verification of targeted,

machine-generated counterfactuals.

B

Q1:

Q2:

Predict : = Duplicate (98.2% confident)f(x)

How can I help a friend experiencing

serious depression?

How do I help a friend who is in depression?

Q2: How do I help a ●woman who is in depression?

Q2: How do I help a friend who is ●suicidal?

Q2: How do I ●find a friend who is in depression?

, perturbed Q2̂x f(̂x)

≠

=

=

0.00.1 0.2
weight

in
depression

?
I

help

C

D

A

Figure 3: (A) An instance in QQP where the model pre-

diction f (x) is Duplicate (=) at 98.2% confidence, with

SHAP importance weights for tokens in Q2. Counter-

factual explanations complement SHAP with concrete

examples and surprising behaviors, e.g., (B) shows that

friend ✮ woman surprisingly flips the prediction to Non-

Duplicate (,), despite the low weight on “friend.”

4 Counterfactual Explanations

A popular way of explaining NLP models is to

attribute importance weights to the input tokens,

either using attention scores (Wiegreffe and Pin-

ter, 2019) or by summarizing the model behav-

ior on perturbed instances (e.g., LIME (Ribeiro

et al., 2016) and SHAP (Lundberg and Lee, 2017)).

Though ubiquitous, token scores may not always

reflect their real importance (Pruthi et al., 2020).

Popular packages like LIME or SHAP estimate

scores by masking words, and therefore may not

reflect model behavior on natural counterfactual

cases. For example, the token “friend” in Figure 3A

is not considered important even though a natural

substitution in Figure 3B flips the prediction. The

opposite happens to “in depression,” where a sig-

nificant change makes no difference to the model’s

prediction (Figure 3C). Even perfect importance

6713

scores may be too abstract for users to gain real

understanding (Miller, 2019), e.g., users may not

grasp the significance of a low importance score for

the token “help” without concrete examples such

as the one in Figure 3D.

Since presenting a large number of concrete

counterfactuals would be overwhelming, we pro-

pose a hybrid approach, displaying feature attribu-

tions as a high-level summary, together with a ju-

dicious selection of Polyjuice counterfactuals that

make behaviors concrete and highlight potential

limitations. Following Miller (2019)’s observation

that people look for explanations revealing unex-

pected behavior, we select surprising counterfac-

tuals.8 That is, we estimate the expected change

in prediction with feature attributions, and select

counterfactuals that violate these expectations, i.e.,

examples where the real change in prediction is

large even though importance scores are low (Fig-

ure 3B), and examples where the change is small

but importance scores are high (Figure 3C). Of

course, users can also view additional counterfac-

tuals that perturb tokens of particular interest, a

technique that we explore in the next section.

User evaluation. We study the scenario where

an expert has access to a model and local explana-

tions, and evaluate the additional benefit of show-

ing counterfactuals, i.e., whether they bring new

insights. We evaluate three ways of generating

counterfactuals: (1) Polyjuice-random, a baseline

where we show random Polyjuice counterfactuals,

(2) Expert-surprise, where two graduate students

(non-participants) were given access to the model

and instructed to create counterfactuals that are sur-

prising given the associated SHAP scores, and (3)

Polyjuice-surprise, which uses the selection proce-

dure described in the previous paragraph.

We recruited 13 participants (graduate students

with experience in model explanation), and had

them analyze the aforementioned QQP model. In

each round, users were shown an example, the

model prediction, and a SHAP explanation, as in

Figure 3A. Users were instructed to create up to 10

counterfactuals in order to better understand model

behavior around the example, for which model pre-

dictions were given (users created 6 on average).

Finally, users simulated what the model would do

on six counterfactuals (Hase and Bansal, 2020),

two from each condition (in random order). Coun-

terfactuals where users make mistakes are prefer-

8Details in Appendix C.1.

0% 10% 20% 30% 40% 50%

Error Rate

Polyjuice-random

Expert-surprise

Polyjuice-surprise

C
o

n
d

it
io

n
s

Figure 4: Simulation error rates per condition (higher

the better). Polyjuice-surprise has the highest error

rate, indicating these counterfactuals would add the

most information to users if displayed.

able, as displaying these would add information

that users do not already have.

As shown in Figure 4, humans simulated model

behavior on Polyjuice-surprise counterfactuals

only slightly better than random guessing (45% ±

6%), i.e., these examples display model behavior

that is surprising to users even after seeing ex-

planations and creating their own counterfactuals.

Expert-surprise also had a high error rate, but at

a much higher cost: generating these for just 20

original instances took 1.5–2 hours of expert labor.

While high error rates could be achieved with

unrelated or nonsensical examples, all counterfac-

tuals under evaluation were close to the original

examples, when measured by syntactic tree edit

(≈1.0) or Levenshtein distance (≈0.2), Polyjuice-

surprise being the closest on both. An independent

rater labeled 95% of Polyjuice-surprise counter-

factuals as “likely written by a native speaker,” in

contrast to 85% for Expert-surprise, indicating that

experts sometimes resorted to ungrammatical or

nonsensical sentences to find surprising behaviors.

Qualitatively, the study participants tended to

create counterfactuals by perturbing the token with

the highest weights (84% of their x̂ perturbed to-

kens in the top 15% quantile of weights), not gain-

ing a real understanding of how the other tokens

impact predictions. Participants also made a sig-

nificant number of mistakes even for tokens they

had inspected, e.g., a participant perturbed the ex-

ample in Figure 3A by replacing help ✮ play with,

yielding a Non-Duplicate model prediction. When

faced with help ✮ find in Figure 3D, they incorrectly

assumed the behavior would be the same.

These results indicate that Polyjuice counter-

factuals complement feature attribution explana-

tions by displaying information that users often

miss, even after they have manually explored the

model behavior beyond explanations. Moreover,

Polyjuice counterfactuals for this application were

more surprising and fluent than Expert-surprise,

despite being computed automatically.

6714

, perturbed H through [negation]̂x

P: A woman is holding a baby by a window.

H: This woman is looking out the window.

H: ●No woman is looking out the window.

H: This woman isn’t looking out the window.

H: This woman is not looking out the window.

f(̂x)

Contradiction

Contradiction

Neutral

x f(x)

AUX → AUX not

* → * not

* → * n’t

* → * PART

DET → No

…is not looking…

…aren’t playing…

The→No girls like…

A→No man in…

Coverage (%N→C)

412 (42.3%)

434 (43.5%)

180 (92.8%)

Neutral

 → x f(̂x) Template

A

B

̂x f(̂x)

Figure 5: (A) An NLI case with a Neutral prediction

(underlined f (x̂) are correct). Polyjuice generates coun-

terfactual hypotheses conditioned on the negation

control code. (B) Generalizing perturbations into pat-

terns (Wu et al., 2020). The change DET ✮ no flips

92.8% of predictions from Neutral ✮ Contradiction.

5 Interactive Analysis

While our use of Polyjuice has so far relied on au-

tomatic selection of counterfactuals, we show in

this section how an analyst can benefit from mul-

tiple counterfactuals per x, make use of controlled

generation for more advanced analysis, and extract

general patterns from individual observations. Our

use case is counterfactual error analysis (Wu et al.,

2019) of RoBERTa finetuned on NLI (used in §3.1),

although the techniques are generally applicable.

There is a known correlation between the la-

bel Contradiction and hypotheses with negation in

NLI datasets (Gururangan et al., 2018), which may

cause models to fail on non-contradiction nega-

tions. We explore this in Figure 5A by generating

counterfactual hypotheses for a random Neutral in-

stance, conditioning only on the original x and the

negation control code. While the first two coun-

terfactuals display this failure mode, there is a sur-

prising inconsistency in model behavior between

“not” and “n’t”. We note that manual analysis may

not explore these three negation forms, and thus

not surface this puzzling behavior.

To verify if the pattern is widespread, we gen-

erate counterfactuals with the negation control

code for a random set of instances correctly pre-

dicted as Neutral (n = 895). To generalize individ-

ual changes into patterns, we extract frequent coun-

terfactual templates with Tempura (Wu et al., 2020)

(details in Appendix D.2), shown in Figure 5B. The

top templates (in bold) show that the model flips

, perturbed H with [BLANK]̂x

H: ●Two women are looking out the window.

H: ●Ten women are looking out the window.

H: ●More than one person…window.

f(̂x)

Neutral

Contradiction

Entailment

[BLANK] looking out the window.

Figure 6: Perturbing the subject of x in Figure 5A

through [BLANK], resulting in erroneous predictions

for different quantifiers (all should be Neutral).

its prediction from Neutral to Contradiction with

roughly the same frequency (≈43%) whether the

negation word is “not” or “n’t”, but flips much more

frequently with a different negation pattern where

a determiner is replaced with “no” (92.8%). While

these behaviors may be correct in some instances,

they often are not (e.g., Figure 5A), and thus would

warrant further exploration, and potential mitiga-

tion strategies (e.g., counterfactual training, §3).

Tangentially, the impact of DET ✮ no might lead

the analyst to explore the impact of perturbing the

subject of hypotheses, which we do in Figure 6 by

placing a [BLANK] on the subject rather than using

a control code. This leads to the discovery of unsta-

ble and erroneous behaviors regarding quantifiers,

which we analyze in more detail in Appendix D.1.

Discussion. Polyjuice is a powerful tool for in-

teractive analysis. Generating multiple counter-

factuals per instance leads to insights that might

be missed by manual analysis, and the steering

provided by control codes and [BLANK]s allow

for analyses that would be non-trivial to do man-

ually (Wu et al., 2019) or with masked language

models (e.g., Figure 5B places negations in various

parts of sentences, and Figure 6 replaces spans with

other spans of varying lengths). Besides error anal-

ysis, an analogous interactive use of Polyjuice may

be suitable for test creation (Ribeiro et al., 2020)

and forms of data augmentation that are more con-

trolled than what we presented in §3.

6 Related Work

Some prior work in training and evaluation re-

lies on humans to generate counterfactuals from

scratch (Gardner et al., 2020; Teney et al., 2020;

Kaushik et al., 2020). Our experiments in §3 indi-

cate that asking humans to label Polyjuice counter-

factuals yields similar or better results at a lower

cost, which motivates an exploration of a mixture

of manual and semi-automated generation. Sim-

ilarly, prior work on analysis relies on experts to

6715

create individual counterfactuals or perturbation

functions (Wu et al., 2019; Ribeiro et al., 2020).

In §5, we show that Polyjuice enhances current

practice by generating multiple counterfactuals that

might have been overlooked, and by providing ab-

stractions that allow for new kinds of analyses.

Prior work on automatically generating counter-

factuals typically has a narrower scope in terms

of the relationships x ✮ x̂. For example, adver-

sarial generators aim to maintain semantics while

changing model predictions (Ribeiro et al., 2018;

Iyyer et al., 2018; Li et al., 2021), whereas concur-

rent work to our own (Madaan et al., 2021; Ross

et al., 2020) automatically generates x̂ that change

predictions for explanation or analysis, with no con-

straints on semantics. However, as shown in §3–§5,

a mix of label-preserving and label-flipping coun-

terfactuals generated by Polyjuice is quite useful

for training, evaluation, explanation, and analy-

sis. Further, general-purpose counterfactuals may

lead to serendipitous discoveries (§5), especially as

Polyjuice is not fine-tuned to the target domain (and

thus less liable to merely replicate what is already

there). Finally, by allowing control through control

codes and [BLANK]s, Polyjuice supports human-

generator collaboration, where a person specifies

desired changes (e.g., perturb the sentence subject).

Such collaboration is hard to imagine using auto-

matic generators with no control, or with coarser

control through predefined style attributes or la-

bels (Madaan et al., 2020; Malmi et al., 2020). To

our knowledge, prior work on controlled genera-

tion (Keskar et al., 2019; Dathathri et al., 2020)

does not address counterfactual generation.

7 Conclusion and Future Work

We propose Polyjuice, a general-purpose generator

that produces fluent and diverse counterfactuals,

allowing for control over the kinds and locations

of perturbations. With simple, task-specific selec-

tion heuristics, Polyjuice supports various down-

stream tasks on different domains, including coun-

terfactual data augmentation, contrast set genera-

tion, counterfactual explanation, and error analysis.

While Polyjuice is broadly applicable, it is not

bias-free: control codes are pre-defined and cer-

tainly not exhaustive, and the model is fine-tuned

on a collection of paired datasets where certain

perturbations are more or less likely (e.g., we ob-

serve that words with negative sentiment tend to

be slightly more likely than positive ones in some

contexts). Collecting naturally occurring counter-

factuals is an important area of future research, as

is the development of generators that allow for con-

trol even without a-priori control codes.

Besides improving the generators, further work

is needed to improve the value of counterfactu-

als. For example, while Polyjuice shows consistent

gains across tasks in data augmentation, the im-

provements on some datasets are not as significant.

This aligns with observations in prior work that

even manual counterfactuals can be marginally ben-

eficial (Kaushik et al., 2020; Huang et al., 2020),

possibly because the original data is already diverse

enough, or the perturbed signal in counterfactuals is

too subtle to affect the model (e.g., when only a sin-

gle word is changed in a long sentence.) We hope

to perform more thorough experiments on tuning

the amount and the distribution of counterfactual

augmentation, as well as other ways of incorporat-

ing counterfactuals, such as having explicit terms

in the loss function for contrasting counterfactu-

als with original data (Teney et al., 2020), or other

forms of contrastive learning.

Although our applications all involved people,

the human-Polyjuice collaboration in labeling and

explanations could benefit from richer interaction

mechanisms. We believe Polyjuice motivates fu-

ture research on more expressive forms of counter-

factual training, where users generate counterfactu-

als together with Polyjuice, and label counterfac-

tual patterns rather than individual instances. Simi-

larly, interactive explanations and analysis are excit-

ing directions, especially as we develop new ways

of selecting, presenting, and aggregating counter-

factuals for various analysis objectives. Having

noted these opportunities, we believe Polyjuice is

already a powerful tool for counterfactual reason-

ing, in particular for tasks where people are directly

involved. Polyjuice is opensource, and available at

https://github.com/tongshuangwu/polyjuice.

Acknowledgements

The work was supported by ONR grant N00014-

18-1-2193, NSF RAPID grant 2040196, NSF

award IIS-1901386, the University of Washing-

ton WRF/Cable Professorship, and the Allen In-

stitute for Artificial Intelligence (AI2). We thank

Jim Chen, Dianqi Li, Scott Lundberg, Hao Peng,

Sameer Singh, Jiao Sun, Victor Zhong, and Sitong

Zhou for their helpful comments, as well as our

user study participants for their valuable input.

https://github.com/tongshuangwu/polyjuice

6716

Ethical Considerations

Our work includes labeling counterfactuals on

crowdsourcing platforms, as well as conducting

user studies with graduate students. As detailed in

Appendix B.1 and C.2, we compensated the MTurk

workers $2.5 for ≈15 minutes of labeling, and the

graduate students $20 for the user study (one hour),

above the U.S. federal minimum wage. The studies

are with IRB approval.

We only finetune GPT-2 rather than training it

from scratch, such that our compute costs are rel-

atively low (around 8 hours for finetuning, Ap-

pendix A). All of our finetuning experiments in-

volved finetuning RoBERTa on smaller datasets.

More critically, with most of our demonstrated

applications using a human-generator hybrid mech-

anism, we stress that the interaction between the

two deserves careful consideration. It has long

been reported that algorithms interacting with hu-

mans can negatively impact the human.9 In our

case, the concern might be that users can develop

an over-reliance on Polyjuice (Bansal et al., 2021)

and hastily accept its generations. Not only can

this decrease users’ creativity (Green et al., 2014),

but it may bias their analysis process: as discussed

in §7, Polyjuice generation is not exhaustive, and

may favor some perturbation patterns over others

in unpredictable ways. In the short term, we plan

to highlight these limitations as part of the model

documentation, while future research should iden-

tify interaction mechanisms, so as to ensure that

Polyjuice or other counterfactual generators sup-

port humans, rather than hindering their perfor-

mance.

References

Nabiha Asghar. 2016. Yelp dataset challenge: Review
rating prediction. arXiv preprint arXiv:1605.05362.

Gagan Bansal, Tongshuang Wu, Joyce Zhou, Ray-
mond Fok, Besmira Nushi, Ece Kamar, Marco Tulio
Ribeiro, and Daniel Weld. 2021. Does the whole
exceed its parts? the effect of ai explanations on
complementary team performance. In Proceedings
of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, New York, NY, USA.
Association for Computing Machinery.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.

9https://www.nytimes.com/

interactive/2017/04/02/technology/

uber-drivers-psychological-tricks.html?_r=0

In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Vincent S. Chen, Sen Wu, Alexander J. Ratner, Jen
Weng, and Christopher Ré. 2019. Slice-based learn-
ing: A programming model for residual learning in
critical data slices. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 9392–9402.

Noam Chomsky. 2002. Syntactic structures. Walter de
Gruyter.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2492–
2501, Online. Association for Computational Lin-
guistics.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating models’ local decision boundaries
via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307–1323, Online. Association for Computational
Linguistics.

Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur
Taly, Ed H Chi, and Alex Beutel. 2019. Counterfac-
tual fairness in text classification through robustness.
In Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society, pages 219–226.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that re-
quire simple lexical inferences. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 650–655, Melbourne, Australia. Association
for Computational Linguistics.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009.

https://doi.org/10.1145/3411764.3445717
https://doi.org/10.1145/3411764.3445717
https://doi.org/10.1145/3411764.3445717
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html?_r=0
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html?_r=0
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html?_r=0
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103

6717

Spence Green, Sida I. Wang, Jason Chuang, Jeffrey
Heer, Sebastian Schuster, and Christopher D. Man-
ning. 2014. Human effort and machine learnabil-
ity in computer aided translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1225–
1236, Doha, Qatar. Association for Computational
Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Peter Hase and Mohit Bansal. 2020. Evaluating ex-
plainable AI: Which algorithmic explanations help
users predict model behavior? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5540–5552, Online. As-
sociation for Computational Linguistics.

William Huang, Haokun Liu, and Samuel R. Bowman.
2020. Counterfactually-augmented SNLI training
data does not yield better generalization than unaug-
mented data. In Proceedings of the First Workshop
on Insights from Negative Results in NLP, pages 82–
87, Online. Association for Computational Linguis-
tics.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational
Linguistics.

Daniel Kahneman and Amos Tversky. 1981. The simu-
lation heuristic. Technical report, Stanford Univ CA
Dept of Psychology.

Divyansh Kaushik, Eduard H. Hovy, and
Zachary Chase Lipton. 2020. Learning the differ-
ence that makes A difference with counterfactually-
augmented data. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Nitish Shirish Keskar, Bryan McCann, Lav Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL - A Conditional Transformer Language
Model for Controllable Generation. arXiv preprint
arXiv:1909.05858.

Daniel Khashabi, Tushar Khot, and Ashish Sabharwal.
2020. More bang for your buck: Natural perturba-
tion for robust question answering. In Proceedings
of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 163–
170, Online. Association for Computational Linguis-
tics.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what different
NLP tasks teach machines about function word com-
prehension. In Proceedings of the Eighth Joint Con-
ference on Lexical and Computational Semantics
(*SEM 2019), pages 235–249, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:452–466.

VI Levenshtein. 1966. Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021.
Contextualized perturbation for textual adversarial
attack. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5053–5069, Online. Association for
Computational Linguistics.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823–1840,
Online. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shayne Longpre, Yu Wang, and Chris DuBois. 2020.
How effective is task-agnostic data augmentation for
pretrained transformers? In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 4401–4411, Online. Association for Computa-
tional Linguistics.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 4765–4774.

https://doi.org/10.3115/v1/D14-1130
https://doi.org/10.3115/v1/D14-1130
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://doi.org/10.18653/v1/2020.emnlp-main.12
https://doi.org/10.18653/v1/2020.emnlp-main.12
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://www.aclweb.org/anthology/2021.naacl-main.400
https://www.aclweb.org/anthology/2021.naacl-main.400
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.394
https://doi.org/10.18653/v1/2020.findings-emnlp.394
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

6718

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Aman Madaan, Amrith Setlur, Tanmay Parekh, Barn-
abas Poczos, Graham Neubig, Yiming Yang, Ruslan
Salakhutdinov, Alan W Black, and Shrimai Prabhu-
moye. 2020. Politeness transfer: A tag and generate
approach. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1869–1881, Online. Association for Computa-
tional Linguistics.

Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Dip-
tikalyan Saha. 2021. Generate your counterfactu-
als: Towards controlled counterfactual generation
for text. Proceedings of the AAAI Conference on
Artificial Intelligence.

Eric Malmi, Aliaksei Severyn, and Sascha Rothe. 2020.
Unsupervised text style transfer with padded masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8671–8680, Online. As-
sociation for Computational Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artificial Intelli-
gence, 267:1 – 38.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wilson.
2013. SemEval-2013 task 2: Sentiment analysis in
Twitter. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Pro-
ceedings of the Seventh International Workshop on

Semantic Evaluation (SemEval 2013), pages 312–
320, Atlanta, Georgia, USA. Association for Com-
putational Linguistics.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 188–197, Hong
Kong, China. Association for Computational Lin-
guistics.

Judea Pearl. 2018. Causal and counterfactual inference.
The Handbook of Rationality, pages 1–41.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Gra-
ham Neubig, and Zachary C. Lipton. 2020. Learn-
ing to deceive with attention-based explanations. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4782–
4793, Online. Association for Computational Lin-
guistics.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra
Bhagavatula, Elizabeth Clark, and Yejin Choi. 2019.
Counterfactual story reasoning and generation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5043–
5053, Hong Kong, China. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should I trust you?": Explain-

https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/2020.acl-main.169
https://doi.org/10.18653/v1/2020.acl-main.169
https://doi.org/10.18653/v1/2020.emnlp-main.699
https://doi.org/10.18653/v1/2020.emnlp-main.699
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://www.aclweb.org/anthology/C18-1198
https://www.aclweb.org/anthology/S13-2052
https://www.aclweb.org/anthology/S13-2052
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/2020.acl-main.432
https://doi.org/10.18653/v1/2020.acl-main.432
https://doi.org/10.18653/v1/D19-1509
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/2939672.2939778

6719

ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pages
1135–1144. ACM.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Alexis Ross, Ana Marasović, and Matthew E. Peters.
2020. Explaining nlp models via minimal con-
trastive editing (mice).

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 34(05):8732–8740.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Damien Teney, Ehsan Abbasnedjad, and Anton van den
Hengel. 2020. Learning what makes a difference
from counterfactual examples and gradient supervi-
sion. In Computer Vision – ECCV 2020, pages 580–
599, Cham. Springer International Publishing.

Vijay V Vazirani. 2013. Approximation algorithms.
Springer Science & Business Media.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11–20, Hong Kong, China. Associ-
ation for Computational Linguistics.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence em-
beddings with millions of machine translations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 451–462, Melbourne, Australia.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 747–763, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tongshuang Wu, Kanit Wongsuphasawat, Donghao
Ren, Kayur Patel, and Chris DuBois. 2020. Tem-
pura: Query analysis with structural templates. In
CHI ’20: CHI Conference on Human Factors in
Computing Systems, Honolulu, HI, USA, April 25-
30, 2020, pages 1–12. ACM.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019a. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5564–5569, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kaizhong Zhang and Dennis Shasha. 1989. Simple
fast algorithms for the editing distance between trees
and related problems. SIAM journal on computing,
18(6):1245–1262.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019b.
PAWS: Paraphrase adversaries from word scram-
bling. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1298–1308, Minneapolis, Minnesota. Association
for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy-
gen: A benchmarking platform for text generation
models. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-
12, 2018, pages 1097–1100. ACM.

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/2012.13985
http://arxiv.org/abs/2012.13985
https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.1609/aaai.v34i05.6399
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.1145/3313831.3376451
https://doi.org/10.1145/3313831.3376451
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080

6720

Dataset negation quantifier lexical resemantic insert delete restructure shuffle global

CAD 3,274 292 8,143 2,603 960 952 220 36 3,466
Contrast 336 436 1,607 1,291 589 586 275 149 877
HANS 50 0 0 0 3,926 3,926 494 1,602 2
ParaNMT 2,797 825 10,000 10000 6,442 6,205 5,136 1,417 10,000
PAWS 81 1,815 10,000 10000 3,630 3,403 4,551 10,000 10,000
WinoGrande 3,011 94 10,000 6,927 120 124 453 65 3184
Crawled 0 0 5,000 0 5,000 5,000 0 108 5,000
Total 9,549 3,462 44,750 30,821 20,667 20,167 11,129 13,377 32,529

Table 7: The datasets used for finetuning Polyjuice, and the control code distributions.

A GPT-2 as Counterfactual Generator

A.1 Training Data and Parameters

We combine several datasets to finetune Polyjuice.

Contrast set. Authors of 10 existing NLP

dataset each manually perturbed 100–1,000 in-

stances to change the gold label, so to inspect a

model’s local decision boundary (Gardner et al.,

2020). The perturbation patterns vary based on

the tasks and the annotators, allowing us to learn

diverse strategies. To make sure we can use the

contrast set to evaluate the Sentiment model, we

excluded the IMDb movie review from the training.

Counterfactually-augmented data (CAD).

Kaushik et al. (2020) crowdsourced counterfactuals

for IMDb movie review (1.7k), which we split into

paired sentences to match the text length of other

datasets. CAD’s perturbation patterns also vary

based on the task, but can especially contribute

to negation. As NLI is in our demonstrating

applications, we did not use their 6.6k SNLI

counterfactuals.10

WinoGrande is a large-scale dataset of 44k in-

stances for testing common sense problems (Sak-

aguchi et al., 2020). It contains sentences that differ

only by one trigger word (e.g., one noun), making

it most suitable for learning lexical exchanges.

ParaNMT-50M contains 50 million English-

English sentential paraphrase pairs, covering vari-

ous domains and styles of text, as well as different

sentence structures (Wieting and Gimpel, 2018).

PAWS (Zhang et al., 2019b) contains pairs

with high text overlaps, created through controlled

word swapping, best demonstrating shuffle and

restructure. We used its 49k Wikipedia parts.

HANS (McCoy et al., 2019), a challenge set for

NLI, contains 10k pairs of premises and hypotheses

created based on 10 heavily fallible syntactic tem-

plates, and therefore compensates rarer structural

changes that may be missed by PAWS.

10Similarly, though QQP is suitable for training Polyjuice,
we omitted it so QQP can be used in our evaluation.

Crawled We additionally crawl naturally occur-

ring sentence pairs from non-paired datasets boost

some specific patterns and increase lexical diversity.

This include (1) CommonGen (Lin et al., 2020),

sentences with common sense concepts; (2) Natural

Questions (Kwiatkowski et al., 2019), collections

of queries issued to Google Engines (and therefore

involve various paraphrases of similar user intents),

and (3) SQuAD (Rajpurkar et al., 2016), whose

paragraphs involve Wikipedia knowledge. We es-

timate close pairs using edit distance, and broadly

accept those with less than 60% editing. To exclude

tricky cases (e.g.,“how do I not be” can be incor-

rectly regarded as negation for “how do I recover

it”), we only augment the most determined patterns:

lexical, insert, delete, and shuffle.

To balance the distribution (Table 7), for each

dataset, we extract control codes from all the (x, x̂),

and randomly sample up to 10,000 instances per

codes. Still, quantifier and negation have less

training data compared to other codes. Fortunately,

these codes tend to be limited to more specific

patterns (“more than”, “not”, “never”) when com-

pared to “broad” codes like lexical, and thus

even a small sample is enough to learn them. We

finetuned an off-the-shelf GPT-2 model from Wolf

et al. (2020) for 10 epochs with an initial learning

rate 5e-5, a batch size of 8, and a sequence length

of 120 (but any LM can potentially be used). We

select the best epoch based on the evaluation loss

on a holdout set of size 5,000. The training took

around 8 hours on two Titan RTXs.

A.2 Intrinsic Evaluation Details

A.2.1 Closeness and Diversity

Similar to Madaan et al. (2021), we compare the

diversity and closeness of Polyjuice with alterna-

tive generators, i.e., RoBERTa and T5, representing

masked language models that prioritize word and

span substitution, and original GPT-2, representing

the standard generative model not conditioned on x.

For a given x and its counterfactuals X̂, we approx-

6721

imate diversity using self-BLEU (Zhu et al., 2018)

within X̂. Meanwhile, closeness is the average dis-

tance between x and every x̂ ∈ X̂, both with the

normalized word level Levenshtein edit distance

((Levenshtein, 1966), used in MiCE (Ross et al.,

2020)), and syntactic tree edit distance ((Zhang and

Shasha, 1989) in GYC (Madaan et al., 2021)).

We run the three generators on 300 sentences

in total. In GPT-2, we take the first two words

of an x as the input context (prompt), limit the

length of the generation to be similar to x, and

collect 10 counterfactuals. As for RoBERTa and

T5, we repeatedly perturb x for three times, each

time randomly placing up to three [MASK] tokens,

and ask the generator to generate 5 counterfactu-

als through beam search, following Ribeiro et al.

(2020). Polyjuice uses the same blank (mask)

placement as in RoBERTa and T5, but we addi-

tionally enumerate through all control codes. For

each x, we randomly sample 5 counterfactuals to

form X̂ per generator.

As shown in Table 2, Polyjuice achieves a bal-

ance between diversity and closeness. Ideally, we

would also like to compare Polyjuice with concur-

rent work (Madaan et al., 2021; Ross et al., 2020),

but these are yet to be open-sourced and require

extensive implementation or finetuning.

A.2.2 Controllability

To evaluate controllability, we compare Polyjuice

with T5, and GPT-2 finetuned on prompts without

codes (called Polyjuice -a), such that both base-

lines consider sufficient context. For each con-

trol code, we compare the control success rate of

Polyjuice and Polyjuice-a on 300 prompts. For

each prompt, we generate counterfactuals through

beam search (beam = 5), and recompute the codes

on the top three generated x̂. We deem the control

successful if at least one of the three recomputed

codes matches the desired control code (though in

Polyjuice-a, we only measure whether the code nat-

urally occurs in the uncontrolled generation.) The

success rate increases by 26%±13% across all con-

trol codes, ranging from quantifier (increasing

6%, from 50% to 56%) to negation (42%, from

5% to 47%). Non-finetuned T5 also achieves less

control (success rate decreases by 33% on average.)

Common failure cases include (1) The con-

trol codes conflict with the blanks, e.g.,“a dog is

embraced by a [BLANK]” would not respond to

negation. (2) x does not have a corresponding pat-

tern, e.g., shuffle is not applicable to “the movie

Figure 7: A sample labeling task: The crowdworkers

annotate three counterfactuals based on their validity

and class label, with respect to the original instance.

is good.” (3) certain salient patterns dominate the

generation probability, e.g., the model tends to per-

turb the quantifier “two” in “two dogs are running,”

regardless of the code.

B Additional Train & Eval Details, §3

B.1 MTurk Labeling Details

Procedure The study started with an introduction

that explained the context and tasks. To familiar-

ize crowdworkers with the task, we asked them to

complete 1-2 training rounds, and explained the

expected labels. Each annotator then completed 22

tasks, labeling 3 counterfactuals of a single exam-

ple in each round, as in Figure 7. The 22 rounds

consisted of 20 actual labeling tasks and 2 extra

“gold rounds” with known correct labels. The gold

cases later served to filter low-quality crowdwork-

ers. The median annotation time was around 15

minutes, and participants received $2.5.

Participants. We recruited participants from

MTurk, limiting the pool to subjects from within

the US with a prior task approval rating of at least

97% and a minimum of 1,000 approved tasks.

Data quality. We applied two filtering strate-

gies: (1) High-quality worker. We only kept data

from participants whose median labeling time per

round was more than 18 seconds and correctly la-

beled at least 4 gold counterfactuals (out of 6), or

who correctly labeled all gold ones. (2) Majority

vote labeling. We collected two annotations per

counterfactual, and only kept those that at least one

annotator deemed valid, and both annotators agreed

on a particular class label. One of the authors la-

6722

4,0004,500 5,000 5,5006,000

Total training size

85

90
A

c
c
u

ra
c
y

SemEval

4,0004,500 5,000 5,5006,000

Total training size

80

85

A
c
c
u

ra
c
y

Amzbook
Dataset

m-polyjuice m-baselineModel

Figure 8: The accuracy trend on two Sentiment datasets,

as the total training datasize (m+n) varies. The blue line

shows an augmentation of m = 2k counterfactuals, and

the blue one represents the corresponding m-baseline.

Though the counterfactuals remains useful on datasets

like SemEval across all m+n, it appears too many coun-

terfactuals may be harmful (Amzbook).

beled a subset of 100 x̂ on 100 x in Sentiment, and

reached high agreement with the majority-voted

results (κ = 0.77, raw labeling agreement 88%).

B.2 Training Details & m/n Ratios, for §3.2

For each (m, n), we created three samples of train-

ing data. Each sample was further averaged over

four random seeds. For each run, we heuristically

picked the initial learning rates 1e-5, 2e-5, 2e-5 for

Sentiment, NLI and QQP, and trained 20 epochs

with a dropout rate of 0.1 and a batch size of 16.

We selected the epoch that had the highest accuracy

on the corresponding validation set, which takes

1/5 of the training data size, with the same ratio of

m/n counterfactual and original examples.

We further explore ratios of added counterfac-

tuals. Take Sentiment as an example: while the

counterfactual remains effective on most datasets,

it hurts the model performance on Amzbook when

the counterfactual takes a large proportion (Fig-

ure 8, Yelp followed a similar but more mild trend).

We suspect that flipping out too much original data

affects the data diversity, and in turn decreases the

model performance. Similarly, Huang et al. (2020)

asserted that augmenting n = 1.7k NLI data with

m = 6.6k counterfactuals did not improve model

generalization accuracy.

C Additional Explanation Details §4

C.1 Selection Methods

Because SHAP weights reflect the average effect of

masking a token t, we also focus on word features

that are abnormal on average.

More concretely, we define the expected change-

in-prediction for perturbing a token t to be the

SHAP importance on it, H[Df(t, x)] = s(t). In

Figure 3, s(t=depression) = 0.276. The actual

prediction change Df(t, x) is the weighted aver-

age of | fp(x) − fp(x̂)| for all the x̂ that affect t

(depression ✮ trouble, depression ✮ a mood), where

fp(x) is the prediction probability of f on x. The

weight corresponds to the number of words modi-

fied in x̂: If e(x̂) denotes the set of edited words in

x, then w(x̂) = 1/|e(x̂)|. Intuitively, the more words

changed in x̂, the less impact each word has; In Fig-

ure 3D, we regard “depression” to be responsible

for half of the impact in in depression ✮ suicidal.

We group x̂ based on their affected words Gt =

{x̂ | t ∈ e(x̂)}. Df(t, x) then becomes:

Df(t, x) =
1

|Gt| + 1

s(t) +
∑

x̂∈Gt

w(t) · | fp(x) − fp(x̂)|

The additional SHAP weight s(t) acts as a smooth-

ing factor to penalize outliers. Then the gap be-

tween the expectation and reality is:

∆Df(t, x) = Df(t, x) −H[Df(t, x)]

We first find the abnormal tokens: (1) t with

small SHAP weight, but x̂ that change t experi-

ence large prediction change on average: tL =

arg maxt∈x ∆Df(t, x), and (2) t with large SHAP

weight, but x̂ with t changed usually have intact

prediction: tU = arg maxt∈x −∆Df(t, x).

Then, we use the most extreme cases within the

groups of GtL and GtU as the concrete counterfac-

tual explanations, based on their prediction change

| fp(x) − fp(x̂)|, and the aggregated SHAP weights

of all the changed tokens:

x̂L = arg max
x̂∈GtL

| fp(x) − fp(x̂)| −
∑

u∈r(x̂)

s(u)

C.2 User Study Details

Figure 9 shows the sample interface. Participants

started by just seeing the reference example and the

model query box on the left hand side. When they

chose to start the task or after they had exhausted

their ten query chances, the query box was disabled,

the tasks on the right were displayed, and the par-

ticipants completed the tasks. We compensated

participants $20 for the one hour study.

D Additional Err. Analysis Details §5

D.1 Additional Case Study: Quantifiers

As a follow-up to Figure 6, we slice the data to find

entailment instances that have numbers in the hy-

pothesis sentence, and perturb their quantifiers.

6723

Figure 9: A sample explanation task for §4

P: Two women having drinks at the bar.

H: Two→Three woman are at a bar.

 → : Entailment → Contradictionx f(̂x)

A

B

P: A boy and a girl gaze in a clothing store window.

H: Two→Three kids are looking in a store window.

 → : Entailment → Entailmentx f(̂x)

Figure 10: The NLI model cannot perform the actual

counting when the exact number is missing from P.

The extracted templates show that the model does

not perform actual counting. When changing one

number to another (NUM ✮ NUM), the model only flips

the label in 64.7% cases, while we would expect

all cases to be like in Figure 10A. An inspection of

instances indicates the model gets confused when

the premise does not contain the same number ex-

plicitly. Indeed, when we filter for such instances

(e.g. Figure 10B), the label flip rate of NUM ✮ NUM

is lowered to 30.2%.

Further, the model only reacts to some quantifier

phrase modifiers. +at least (“at least two women

are at a bar”) will always still result in entailment,

prediction, +only and +exactly flip the predicted

label to neutral 90% of the time (“exactly two

women are at a bar”), but the model only changes

the prediction 52.6% of the time when we add

+more than (“more than two women are at a bar”).

D.2 Representative Perturbation Templates

Similar to Wu et al. (2020), the process of finding

representative perturbation patterns takes two steps:

Extract template. For each x̂, we compare

it with its x, and translate the perturbed spans

into templates using different combinations of

texts, lemmas, sparse and fine-grained part-of-

speech tags. We optionally include surround-

ing contexts determined by the dependency tree

structure (tokens that share the same parents as

the perturbed span). For example, “is not read-

ing” can result in templates t as fine-grained as

is reading ✮ is not reading, or as sparse as +PART.

Meanwhile, “are not playing” also translates to

+PART or +not, but not is reading ✮ is not reading.

As such, the x̂ and templates form a many-to-many

relationship: each x̂ generates multiple templates,

and each template covers a different group of x̂.

Select Representative Templates. To find rep-

resentative changes, we prefer (1) templates that

cover a large number of x̂. Meanwhile, to avoid

overfitting to one instance (e.g., extracting a tem-

plate red ✮ ADJ only because “red” is repeatedly

perturbed in one x), we prefer (2) templates that

perturb various unique x. We also prefer (3) finer-

grained templates, to avoid being unnecessarily

abstract (e.g., to avoid abstracting “not” when it is

the only PART changed.)

With these intuitions, we form the template se-

lection as a weighted set coverage problem. We

see the union of counterfactuals for each x, X̂, as

the entire set of elements. Then, each template

t ∈ T = t1, ..., tm represents a subset of X̂ that con-

tains a number of counterfactuals |t|. We define

the weight as w(t) = g(t)/|t|x, where |t|x quantifies

the unique original x covered by t, and g(t) rep-

resents the sparsity of t (heuristically decreasing

from text to POS). This way, templates that are

too abstract or too focused on a certain x are pe-

nalized by having a high weight. We use a classic

greedy algorithm (Vazirani, 2013) to select a subset

of T ∗ ⊂ T , such that the aggregated coverage is

maximized, and the weight is minimized.

