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Abstract 

Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats were successfully 

fabricated via electrospinning. Composite mats reinforced by both unmodified and modified 

HNTs with a dispersant BYK-9076 were prepared at the HNT contents of 0, 1, 5 and 10 

wt%/v. The influence of HNT content and modification was investigated comprehensively, 

based on several characterisation techniques such as scanning electron microscopy (SEM), X-

ray diffraction (XRD) analysis, mechanical testing, differential scanning calorimetry (DSC), 

thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). 

Typical modified Halpin-Tsai model and modified Halpin-Tsai laminate hybrid model in 

conventional composite theory were used, which were found difficult to predict the entire 

experimental data of elastic moduli for PLA/HNT composite mats, possibly arising from the 

nanosized effect of HNTs and some electrospun PLA nanofibres within composite mats. 

Keywords: A. Nanoparticles; A: Polymer-matrix composites (PMCs); C: Analytical 
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1. Introduction  

     Nanofibrous structures often show exceptionally high specific surface area with the 

nanoscaled effect to produce high surface energy, surface reactivity, high thermal and 

electrical conductivity and high strength for fabricated materials [1].  Electrospinning is 

regarded as one of cheapest and most straightforward material-processing techniques to 

produce continuous nanofibres with fibre diameters generally ranging from a few nanometres 

to less than 1µm. Its fundamental principle lies in the action of electrostatic forces to 

overcome the surface tension of polymer/composite solutions so that a charged fluid jet from 

solution droplets can be further elongated into fibrous structures in an applied high electrical 

field. With the evaporation of solvents during electrospinning, fibrous structures are collected 

onto a ground collector or rotating mandrel to form non-woven mats with very large surface-

to-volume ratios. Electrospun fibre mats are widely used in the fields of tissue engineering 

[2], wound healing [3], drug delivery [4-6], electronics [7] and air filtration [8].   

     Electrospun nanocomposites are of great concern since they can be simply generated 

through the addition of nanofillers into a polymer solution, thus resulting in a nanocomposite 

fibre membrane/mat. Researchers have studied different types of organic or inorganic 

nanofillers used in electrospinning, which comprise carbon nanotubes (CNTs) [9], nanoclays 

[10], HNTs [11-15] as well as carbon black nanoparticles [16]. In particular, dissimilar to 

popular platelet-like montmorillonite (MMT) clays, HNTs have been less extensively 

researched, which, however, show the great potential to replace CNTs with hollow tubular 

structures due to their unique chemical properties, abundant availability as well as cost-

effectiveness. HNTs are a typical aluminosilicate in the kaolinite family [17]. The diameter of 

HNTs can be ranging from 100 to 300 nm with an approximate length of 1-3 µm [15]. Poly 

(lactic acid) (PLA) is a widely used biopolymer that is synthesised by the condensation of 

lactic acid or through ring opening polymerisation of lactide as the diester of lactic acid [18]. 
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PLA is generally extracted from natural plants or crops such as corn with good 

biocompatibility, biodegradability, mechanical properties, easy processibility and light 

weight for medical and automotive applications [19-21]. Electrospun PLA/HNT composite 

mats become excellent material media, particularly for tissue scaffolding and effective drug 

delivery. For instance, HNTs entrap different active agents or enzymes such as drugs, 

proteins and marine biocides either in their inner lumen or within spaces of aluminosilicate 

shells [22, 23]. Furthermore, the incorporation of nanofillers such as HNTs can compensate 

for typical drawbacks of PLA like poor barrier properties, low thermal stability and limited 

toughness [24]. The other noteworthy point is that in a PLA/HNT nanocomposite system, 

HNTs are capable of resisting the harmful PLA degradation products to local tissues due to 

their hydroxide groups in the hollow tubular structure [15].    

     The objective of this study is to investigate the effects of HNT content and modification 

on fibre morphology, mechanical and thermal properties of electrospun PLA/HNT composite 

mats to further explore the feasibility of HNTs as the potential reinforcements within 

prepared composite mats. 

2. Material fabrication 

     PLA 3051D pellets (molecular weight MW=93500 g/mol) were obtained from 

NatureWorks, USA, and chloroform and methanol solvents were purchased from Sigma-

Aldrich Ltd, Australia. The premium ultrafine HNT powders, as a typical aluminosilicate, 

were donated by Imerys Tableware Asia Ltd, New Zealand. BYK-9076 dispersant solution, 

with the composition of alkylammonium salt of a high molecular-weight copolymer, was 

supplied by Byk-Chemie, Australia to alleviate the HNT sedimentation during 

electrospinning process with reasonable particle dispersion, as recommended in the previous 

literature [11, 25]. 
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     PLA pellets were initially dissolved in chloroform and methanol (volume ratio: 2:1). They 

were further mixed at room temperature by a bench top orbital shaking incubator for 3 h to 

achieve the desirable 7 wt%/v PLA solution. Then unmodified HNT particles were dried at 

80°C under vacuum for 12 h, and further added to prepare PLA/HNT solutions at the HNT 

contents of 0, 1, 5 and 10 wt%/v. On the other hand, 20 g unmodified HNTs were directly 

added to a 60 ml chloroform and methanol solution (volume ratio: 2:1), and subsequently 

mixed with a 0.5 ml BYK-9076 dispersant solution. The resulting mixed solution was 

ultrasonicated for 15 min, and then dried to remove any moisture/solvent from modified 

HNTs at 160°C with the aid of a magnetic stirrer at 400 rpm. Modified HNT powders were 

again mixed separately with initially prepared 7 wt%/v PLA solutions to achieve the same 

HNT contents for comparison. 

     The electrospinning process was conducted on a NaBond NEU commercial nanofibre 

electrospinning unit, purchased from NaBond Technologies Co., Ltd, Shenzhen, China. 

Prepared PLA/HNT solutions were transferred into a 10 ml plastic syringe that was attached 

to a hypodermic metal needle (inner diameter: 0.56 mm) via a 75 cm syringe extension tubing 

set with Luer lock connections. The solution-contained syringe was then placed into the 

Nabond syringe pump, which was automatically operated at a constant feed rate of 3.4 ml/h 

to control the fluid flow through the needle tip. The high voltage power supply embedded to 

the electrospinning unit was set at 20 kV. A plate collector covered by aluminium foil was 

placed with a needle-to-collector distance at 13 cm. Solvent removal was achieved by using 

the internal fan under the ventilation system. All prepared solutions were ultrasonicated for 

over 20 min prior to the electrospinning process to acquire the solution homogeneity.  

3. Characterisation methods  

        The fibrous structures of non-woven PLA/HNT composite mats, produced with various 

HNT contents, were investigated by an EVO 40XVP scanning electron microscope (SEM) at 
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an accelerating voltage of 10 kV. All SEM samples were sputter coated with platinum. With 

the aid of embedded Zeiss smart SEM software, average fibre diameters and associated 

standard deviations were determined. These measurements were based on the on-screen 

measurements of at least 15 fibres from each of scanned SEM images. To identify the 

embedded HNTs on the surfaces of PLA fibre matrices, material element analysis was also 

conducted via a Zeiss Neon 40EsB Focussed Ion Beam (FIB) attached to an energy 

dispersive X-ray spectroscopy (EDS) system at the accelerating voltage of 10 kV. 

       Wide angle X-ray diffraction (XRD) analysis was made using a Bruker D8 ADVANCE 

diffractometer, Germany to assess the HNT intercalation level of composite mats based on 

related d-spacing values. The Cu-Kα source (wave length λ = 0.1541 nm) was operated at 40 

kV and 40 mA. All XRD samples were scanned from 2θ = 5–40º at a scan rate of 0.014º /s. 

        The tensile properties of composite mat samples in size of 80 mm ×25 mm were 

evaluated by a Lloyds EZ50 universal testing machine (load cell: 50 N) at the crosshead 

speed of 40 mm/min with a sample gauge length of 50 mm. Over three samples were used for 

test reproducibility. Tensile modulus and strength data were calculated accordingly, along 

with reported standard deviations. The thickness of mats was measured using a micrometer at 

three different mat positions to record the average thickness data in range of 590-830 µm. 

       The DSC thermal analysis was undertaken with a DSC6000 Perkin Elmer, USA in a 

cryofill liquid nitrogen cooling system to evaluate the melting and crystallisation behaviour 

of composite mats. About 5-8 mg DSC samples, consisting of PLA fibre mats and PLA/HNT 

composite mats, were heated from 25 to 200ºC with a heating rate of 10ºC/min, and then 

underwent the isothermal condition at 200 ºC for 5 min to remove thermal history. 

Subsequently, samples were cooled from 200 to 25ºC at the cooling rate of 20 ºC/min. The 

same heating-cooling scan was repeated for the second time. All the DSC thermograms and 

associated thermal parameters such as glass transition temperature (Tg), cold crystallisation 
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temperature (Tcc) as well as melting temperature (Tm) were determined from the first heating 

scan. The degree of crystallinity (Xc) was calculated as [26, 27] 

 

           (1) 

  

Where ΔHm
  and ΔHcc

 are the heat of fusion and heat of cold crystallisation for PLA fibre 

matrices within composite mats in this study, respectively. ΔHm
0 is a 100% crystalline PLA 

material (ΔHm
0 =93 J/g [28]). wf is the weight fraction of HNTs in mat samples.   

        Thermogravimetric analysis (TGA) was performed to assess the thermal stability of 

composite mats by using a TGA/DSC 1 STARe System, METTLER TOLEDO, Australia. 

About 10 mg mat samples were heated from 25°C to 800°C at a ramp rate of 10°C /min 

under the flow of argon gas (flow rate: 100 ml/min). The weight loss was recorded as the 

function of temperature. 

        Fourier transform infrared spectroscopy (FTIR) was employed with a PerkinElmer 

Spectrum 100 FTIR Spectrometer to detect the interaction level between HNTs and PLA 

fibre matrices. FTIR spectra were recorded from 4000 to 550 cm−1 with 4 cm−1 resolution 

based on an attenuated total reflectance (ATR) technique [29].  

4. Mathematical modelling 

     The prediction for mechanical properties of electrospun materials can be an important step 

in the reduction of time and cost for fabricating fibrous structures. The modelling of 

electrospun nanocomposite fibres in comparison with bulk counterparts becomes far more 

complex. Their mechanical properties are dependent on the complete structure morphology as 

well as used nanofillers in terms of filler shape and content. Various investigations have been 

conducted on the prediction of mechanical properties of nanofibrous structures using finite 

element analysis and other mathematically derived simulations [30]. The simplest 
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mathematical form based on a well-known modified Halpin-Tsai model was presented below 

by Ramakrishna et al. [31] to predict Young’s modulus of clay reinforced electrospun 

polymer nanofibres: 

 

                                                                                                      

 

 

and 

 

Where Ec is Young’s modulus of filler-reinforced composites, which can be denoted as 

longitudinal modulus E11 and transverse modulus E22, respectively.  Ef and Em are the elastic 

moduli of fillers and polymer matrices, respectively. k is a proportionality constant [31] that 

can be determined by the best-fitting of experimental data based on the least square method 

[32-35]. vf is the volume fraction of fillers and ξ is a shape factor in relation to filler geometry 

and loading direction. As for tubular fibre-like HNTs, ξ11 =2(L/d) and ξ22 =2 are used for the 

calculations of longitudinal and transverse elastic moduli E11 and E22, respectively [36]. L and 

d are the length and diameter of dispersed HNTs. 

     The drawback of above-mentioned modified Halpin-Tsai model lies in the assumption of 

well-aligned inclusions in unidirectional composites. In reality, it is the general case that most 

composites contain a certain level of filler disorientation. In particular, fibre-like HNTs in 

composite mats also tend to be dispersed with a certain level of misalignment and random 

orientation [12]. Thus a mathematical laminate model [36-38] to account for the completely 

disordered HNTs in all three orthogonal directions can be expressed in the following form:  

 

Where   //E  and E   are composite moduli in the parallel and perpendicular directions to the  

(4) 

𝐸𝑐 = 𝑘   
1 +  𝜉𝜂𝑣𝑓
1 −  𝜂𝑣𝑓  𝐸𝑚  (2) 

  E816.0E184.0EE //c

HNTs

D3ran

𝜂 =  

𝐸𝑓𝐸𝑚 − 1𝐸𝑓𝐸𝑚 +  𝜉 (3) 
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major axes of HNTs, respectively. With the combination of equations (2) and (4), a modified  

Halpin-Tsai laminate hybrid model [36] can be established by using 
11// EE   and 

22EE   

accordingly. Such laminate hybrid model is very useful to predict mechanical properties of 

polymer nanocomposites with 3D random-oriented nanofillers with the closer formation to 

real morphological structures [36]. 

     The analytical work based on modified Halpin-Tsai model and modified Halpin-Tsai 

laminate hybrid model was conducted in comparison with experimental data according to the 

modelling parameters listed in Table 1. 

5. Results and discussion 

5.1. Fibre morphology 

     The morphology of fibrous structures is presented in Fig. 1, which reveals that most fibres 

are in randomly oriented non-woven formations. The consistently uniform fibres are more 

manifested for composite mats reinforced with modified HNTs, especially at HNT contents 

of 5 and 10 wt%/v, Figs. 1(g) and (h). The average fibre diameters of composite mats, as 

illustrated in Fig. 2, are in range of 966-1163 nm as opposed to that of PLA counterparts at 

1043 nm. The inclusion of unmodified HNTs appears to moderately increase the fibre 

diameter of PLA mats. This phenomenon can be attributed to the enhanced solution viscosity 

due to additional HNTs, which is proven to further induce increased fibre diameters [12]. 

Nevertheless, the use of dispersant for modified HNTs contrarily decreases the fibre diameter 

of PLA/modified HNT composite mats. It is implied that better HNT dispersion may be 

achieved to alleviate the clogging issue, arising from HNT agglomerates during 

electrospining. Overall, PLA/HNT composite mats consist of a majority of electrospun 

microfibres with the fibre diameter of nearly over 1µm regardless of HNT contents. The 

narrow distribution bands of fibre size also signify that the average fibre diameter is not 
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significantly altered by different HNT contents, which is in good accordance with previous 

results from electrospun polycaprolactone (PCL)/MMT composites [10]. 

     EDS spectra to identify compositions of fibrous structures are demonstrated in Fig. 3. 

Apparently, carbon and oxygen elements can be assigned to organic components of PLA 

biopolymer; whereas aluminium and silicon elements are clearly indicative of existing HNTs 

with their chemical structure of (Al2Si2O5(OH)4·nH2O). The additional platinum is most 

likely due to the sputter coating effect during the SEM sample preparation. It is evident that 

HNTs are well embedded on outer surfaces of individual PLA fibres to induce the good 

interfacial interactions. Furthermore, surface roughness of PLA fibres on composite mats is 

inevitably more pronounced due to the HNT dispersion. 

5.2. XRD data 

     The effect of HNT intercalation level was detected from XRD patterns in Fig. 4. Three 

typical XRD peaks for as-received HNT powders appear at 2θ = 12.09, 19.90 and 24.85º in 

accord with reflection planes (001), (020), (110) and (002) with d-spacing values of 0.732, 

0.446 and 0.358 nm [11, 14, 40], respectively. The hydration state of HNTs is based upon the 

presence of interlayer water in HNTs, and can be characterised by a clear sign of 10 Å 

reflection peak for hydrated HNTs and 7 Å reflection peak for dehydrated HNTs in XRD 

patterns [41]. Because of missing 10 Å reflection peak (2θ = 8.76°), as-received HNT 

powders used in this study are fully dehydrated, which are also known as 7 Å-halloysite [11, 

42].  The presence of (002) reflection peak at 2θ = 24.85° also confirms such a dehydrated 

state of HNTs [41, 42]. As for PLA/unmodified HNT composite mats, the intercalation of 

PLA molecules into the interlayers of HNT hollow tubular structure does not take place in 

that d-spacing values for their weak (001) peaks almost remain unchanged at 0.716, 0.732 

and 0.725 nm with the HNT contents of 1, 5 and 10 wt%/v, respectively; whereas (020), (110) 

and (002) peaks become invisible at all. This finding is in good agreement with the previous 
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work on both bulk solid material of PLA/HNT nanocomposites [40] as well as electrospun 

PLA/HNT composite mats [11]. In particular, the formation of elongated PLA molecular 

chains by electrospinning can further hinder the penetration into rolled HNT tubular sheets. 

Additionally, strong hydrogen bonding [40] between HNT interlayers can be the other reason 

to prevent the intercalation effect, which is not the case for platelet-like MMT clays that can 

be easily inserted with polymeric molecules by mechanical shear stress or chemical 

processing. Hence, it may be implied that a majority of PLA molecules tend to attach to the 

outer surfaces of HNTs as evidenced in Fig. 3. On the other hand, reflection peaks of all 

PLA/modified HNT composite mats in relation to XRD patterns of HNTs completely 

disappeared, which indicates that some crystal structures of HNTs may be potentially 

destroyed, resulting in a sheet-like shape [43, 44]. More interestingly, a weak and board 

scattering reflection was detected at approximately 2θ=16.8° for neat PLA mats. Similar 

reflection peaks were also observed for all PLA/HNT composite mats. This phenomenon 

signifies that both PLA mats and PLA components within composite mats exhibit a 

predominant amorphous nature with minor PLA crystalline structures. Finally, the complete 

disappearance of (020), (110) and (002) peaks for PLA/HNT composite mats may also be 

attributed to the dominant dilution effect [45]. It is also the case for dilution effect in which 

reflection peaks of HNTs may be superimposed to the PLA peak in 2θ range of 10-20°, 

especially for PLA/10 wt%/v HNTs. Such composite mats, due to their fibrous structure with 

high porosity, inevitably possess much smaller amounts of HNTs than bulk solid PLA/HNT 

nanocomposites of the same size. Consequently, insufficient XRD beam diffraction can 

happen for composite mats leading to the peak disappearance as opposed to distinct and sharp 

XRD peaks observed in their solid nanocomposite counterparts [40].  
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5.3. Tensile properties 

     Tensile properties of PLA/HNT composite mats as well as their typical stress-strain curves 

are presented in Figs. 5 and 6, respectively. Consistently high tensile moduli and strengths of 

all composite mats over those of PLA counterparts are indicative of significant reinforcement 

effect of HNTs, as demonstrated in Figs. 5(a) and (b). Moreover, modified HNTs have been 

shown to prevalently contribute to a further enhancement of tensile properties as opposed to 

unmodified HNTs, which is the typical case in Fig. 6. In particular, the maximum increases 

of tensile modulus and strength by 401 and 134% are obtained for PLA/modified HNT 

composite mats at the HNT contents of 10 wt%/v and 1 wt%/v, respectively. Such 

remarkable improvement may directly arise from better HNT dispersion when using BYK 

dispersant. However, the inclusion of 10 wt%/v unmodified HNTs within composite mats 

apparently gives rise to an abrupt drop of tensile modulus comparable to that of PLA. This 

detrimental effect is probably ascribed to a certain extent of unmodified HNT agglomeration 

at high content levels. In general, the increase of the rigidity (i.e. elastic modulus) of a 

composite material is well known when rigid particles such as HNTs are incorporated into 

polymer matrices [31, 39]. The improvement of tensile strength is generally associated with 

the good interfacial bonding for the effective stress transfer from PLA fibre matrices to HNT 

particles, which is proven for both PLA/unmodified HNT and PLA/modified HNT composite 

mats with the aid of SEM micrographs and associated EDS spectra in Fig. 3.  

5.4. DSC measurements 

     DSC thermograms of PLA fibre mats and PLA/HNT composite mats are depicted in Fig. 7, 

along with associated thermal parameters listed in Table 2. It can be found that Tg slightly 

decreases from 54.9ºC for PLA mats to 50-52 ºC for composite counterparts. It may be due to 

the reduction of entanglements and interactions for PLA polymer chains through HNT 

inclusions, thus resulting in a plasticisation effect to promote the motion of polymer chains 
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[46, 47]. However, this effect is quite trivial since the increase of HNT content as well as 

HNT modification cause little alterations of Tg. The peaks of cold crystallisation for 

PLA/HNT composite mats are shifted to lower temperature levels, given by Tcc values in 

range of 79.4-81.6 ºC as opposed to 84.3 ºC for PLA mats. Such material behaviour is a well-

known nucleating effect of HNTs to accelerate the cold crystallisation process of PLA fibre 

matrices, which is in good accordance with previous studies [11, 14, 15, 40, 46]. On the other 

hand, Tm values of composite mats are consistently lower than that for PLA counterparts. 

This finding can be explained by incomplete crystalline structures formed by the HNT 

heterogeneous nucleation with thinner and/or less perfect crystalline lamella [39, 47]. As a 

result, composite mats tend to have lower melting points than that of PLA mats with more 

complete crystalline structures. The change of Xc becomes less pronounced in range from 

10.5-13.4% as compared with 13.2% for PLA mats, which is also indicative of prevalent 

amorphous structures of PLA fibre mats and PLA/HNT composite mats in aforementioned 

XRD results.   

5.5. Thermal stability 

     The TGA results to characterise thermal stability of PLA fibre mats, PLA/HNT composite 

mats, as-received HNTs and HNTs/BYK are demonstrated in Fig. 8. The major parameters 

including T5%, T50%, T95% as well as Td1, Td2 and Td3 are listed in Table 3. T5%, T50%, T95% refer 

to decomposition temperatures at 5, 50 and 95% mass loss taking place in TGA curves, 

respectively. Td1, Td2 and Td3 are corresponding temperatures of maximum degradation rate 

for degradation peaks 1, 2 and 3 in derivative thermogravimetric (DTG) curves. As-received 

HNTs induce relatively high T5% and Td3 above 430 ºC compared to HNTs/BYK, which is 

expected due to the better thermal resistance of raw HNTs as 1:1 phyllosilicate with tubular 

structures. Irrespective of HNT modification, onset temperatures at 5% mass loss for 

PLA/HNT composite mats become much lower in range from 242-249ºC relative to 284 ºC 
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for PLA counterparts. A similar decreasing trend is also manifested at 50% mass loss while 

increasing the HNT content appears to alleviate the reduction level of T50% for both 

unmodified and modified HNT composite mats. The decrease of thermal stability at the 

above-mentioned two onset temperature levels is ascribed to the catalytic role of HNTs on the 

PLA pyrolysis with the existence of Si-OH and Al-OH acid sites on HNT external surfaces 

[48, 49]. However, when the mass loss reaches 95%, T95% values for composite mats 

conversely have monotonic increases with increasing the HNT content up to maximum 402.9 

and 420.8 ºC for 10 wt% HNT and modified HNT inclusions, respectively (T95% = 370.0 ºC 

for PLA mats). HNT modification results in relatively high T95% values for composite mats 

except for 5 wt%/v HNT inclusions. All composite mats possess three degradation steps with 

three distinct maxima as opposed to one degradation step for PLA mats, Fig. 8(b). The main 

maxima indicators Td2 and Td3 to reflect the temperatures of maximum degradation rate also 

reveal the increasing tendencies with increasing HNT contents, which is more pronounced for 

HNT modified composite mats. In particular, Td3 values in range from 354.7-362.7ºC for 

composite mats are consistently higher than that of PLA mats at 354.1 ºC. As mentioned 

elsewhere [47, 50], hollow tubular structure of HNTs may promote the entrapment of volatile 

degradation products inside lumens, and thus delay the mass transfer and increase the thermal 

stability of PLA fibre matrices. Modified HNTs may also be better dispersed with higher 

randomness of lumen ends to achieve more efficient entrapment phenomenon.  It is still 

uncertain about the appearance of first and second degradation steps, as characterised by Td1 

in the temperature range of 280.8-294.5 ºC and Td2 from 305.46 to 311.22 ºC for all 

PLA/HNT composite mats. However, it may be associated with the iron impurity of as-

received HNTs such as Fe2O3 [50], which is in good accordance with TGA results of 

polyurethane / Fe2O3 nanocomposites [51].    
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5.6. FTIR spectra 

     FTIR spectra of PLA mats, HNT powders and PLA/HNT composite mats are 

demonstrated in Fig. 9. Neat PLA mats exhibit carbonyl stretching C=O bands at 1751 cm–1. 

HNT powders reveal two intense bands at 3621 and 3694 cm−1 to represent the O-H group 

vibration. The other relevant peaks at 1005 and 910 cm–1 are associated with the stretching of 

Si-O and Al-OH groups, respectively. The single PLA band at 1266 cm–1 has been sharpened 

when embedded with HNTs and HNTs/BYK to form PLA/HNT composite mats. It is 

suggested that a reasonable contribution of HNT bands with wave numbers of 1117, 1027 

and 1005 cm–1 is due to the stretching of Si–O. Furthermore, vibration bands of surface 

hydroxyl groups and O-H groups, originally detected in HNTs’ spectrum at 3621 and 3694 

cm–1, become very weak for most PLA/HNT composite mats. A new strong absorbance peak 

takes place at 1721 cm–1 for PLA/HNT composite mats, indicating the clear interaction 

between HNTs and C=O carbonyl group. However, the effect of BYK dispersant on the 

change of bonds for composite mats appears to be quite insignificant. 

6. Mathematical modelling of electrospun composite mats 

     The prediction of tensile moduli of electrospun composite mats is illustrated in Fig. 10, 

which is based on two mathematical models including modified Halpin-Tsai model and 

modified Halpin-Tsai laminate hybrid model. For simplicity, the elastic modulus of 

electrospun PLA fibre matrices is assumed to be constant in Table 1 since the variation of 

average fibre diameter is not significant in terms of HNT contents irrespective of HNT 

modification. This hypothesis is assessed from the criterion of determined matrix modulus as 

a function of fibre diameter in [31]. By fitting individual experimental data, the k values are 

detected in range from 1.11 to 2.36. For unmodified HNT inclusions, modified Halpin-Tsai 

laminate hybrid model is in better agreement with experimental data of composite mats, 
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especially for modelling the modulus drop at the high HNT content of 10 wt%/v. Similarly, 

the same model fits better for composite mats with modified HNT inclusions, particularly in 

excellent accordance with those data at 1 and 5 wt%/v. This finding may imply that HNT 

dispersion tends to be more randomly oriented within PLA fibre matrices in 3-D dimensions. 

Unfortunately, both models fail to predict the entire trends of experimental modulus data, 

which suggests the size effect of HNTs and electrospun PLA fibres partially at nanoscaled 

level significantly influence mechanical properties of their composite mats, thus resulting in 

the invalidity of conventional composite models. 

7. Conclusions 

     PLA/HNT composite mats were successfully achieved by electrospinning in order to 

understand the influence of HNT contents and modification within composite fibrous 

structures. Uniform fibre morphology with average fibre diameters around 1 µm was found 

mainly in composite mats reinforced with modified HNTs at 5 and 10 wt%/v. XRD results 

demonstrate that no HNT intercalation effect occurs and PLA molecules tend to attach to 

outer surfaces of HNTs. HNT modification is also confirmed to benefit the significant 

enhancements of tensile moduli and strengths for composite mats. The addition of HNTs and 

their unique tubular structures lead to the accelerated cold crystallisation of PLA fibre 

matrices as well as the improved thermal stability of composite mats, respectively. HNTs and 

carbonyl group appear to interact very closely, but the use of BYK dispersant has little impact 

on the bond groups. Halpin-Tsai laminate hybrid model has the capacity to better predict 

experimental data for tensile moduli of composite mats than modified Halpin-Tsai model at 

certain HNT contents. However, neither of models offers the consistent fitting with their 

overall experimental modulus trends.     
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Fig. 1. SEM images of electrospun composite mats at different HNT contents: (a) 0 wt%/v 

(i.e. neat PLA), (b) unmodified 1 wt%/v HNTs, (c) unmodified 5 wt%/v HNTs, (d) 

unmodified 10 wt%/v HNTs, (e) modified 1 wt%/v HNTs, (f) modified 3 wt%/v HNTs, (g) 

modified 5 wt%/v HNTs, (h) modified 10 wt%/v HNTs. All the scale bars represent 10 µm. 

Fig. 2. Effect of HNT contents on average fibre diameters for PLA/unmodified HNT and 

PLA/modified HNT composite mats.  

Fig. 3. EDS spectra of PLA/HNT composite mats: (a) 5 wt%/v unmodified HNTs, (b) 5 

wt%/v modified HNTs, (c) 10 wt%/v unmodified HNTs and (d) 10 wt% modified HNTs. 

Circles within built-in EDS images indicate embedded HNTs. 

Fig. 4. XRD patterns of PLA/HNT composite mats and as-received HNT powders. 
 

Fig. 5. Tensile properties of PLA/unmodified HNT and PLA/modified HNT composite mats: 

(a) tensile modulus and (b) tensile strength. 

Fig. 6. Typical stress-strain curves of PLA mats and PLA/HNT composite mats. 

Fig. 7. DSC thermograms of PLA mats and PLA/HNT composite mats. 

Fig. 8. TGA thermograms of PLA mats, PLA/HNT composite mats, as-received HNTs and 

HNTs/BYK: (a) TGA curves and (b) DTG curves. 

Fig. 9. FTIR spectra of PLA mats, as-received HNTs and PLA/HNT composite mats. 

Fig. 10. Prediction of tensile moduli of PLA/HNT composite mats using modified Halpin-

Tsai model and modified Halpin-Tsai laminate hybrid model. 
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Table 1 Mathematical modelling parameters used for PLA/HNT composite mats 

 

  

 

 

 

 

 

                

 

          * Average value chosen based on the length range of HNTs from 1000 to 3000 nm [15]. 

         **Average value chosen based on the diameter range of HNTs from 100 to 300 nm [15]. 

 

Table 2 DSC thermal properties of PLA mats and PLA/HNT composite mats 

Modelling parameter Used value Reference 

Ef   (GPa) 140 [39] 

Em (MPa) 2.259 Our experimental data 

L (nm) 2000* [15] 

d (nm) 200**                 [15] 

ρf (kg/ m3) 2550 Material data sheet 

ρm (kg/ m3) 1250 Material data sheet 

Material sample 

 

Tg (°C) 

 

Tcc (°C) 

 

Tm (°C) 

 

 

ΔHm (J/g) 

 

 

 ΔHcc (J/g) 

 

Xc (%) 

 

PLA 54.87 84.27 153.15 

 

24.90 

 

12.67 13.15 

PLA/1 wt%/v HNT composites 

 

50.75 

 

79.43 

 

149.04 

 

15.77 4.52 

 

12.22 

 

PLA/5 wt%/v HNT composites 

 

51.77 

 

80.41 

 

149.35 

 

15.03 3.22 

 

13.37 

 

PLA/10 wt%/v HNT composites 

 

51.62 

 

80.75 

 

149.66 

 

17.64 

 

6.46 

 

13.36 

 

PLA/1 wt%/v HNTs/BYK 
composites 

 

51.87 

 

 

81.58 

 

 

149.33 

 

 

13.80 4.15 

 

10.48 
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Table 3 TGA data for PLA mats, PLA/HNT composite mats, as-received HNTs and 
HNTs/BYK 

 

PLA/5 wt%/v HNTs/BYK 
composites 

 

51.63 

 

 

81.44 

 

 

149.71 

 

 

16.49 5.71 

 

12.20 

 

 

PLA/10 wt%/v HNTs/BYK 
composites 

 

51.45 

 

 

79.43 

 

 

148.86 

 

 

14.33 

 

3.12 

 

13.39 

 

 

 
Material type 

 

 

T5% 

(ºC) 

 
T50% 

(ºC) 

 

T95%  

(ºC) 

 
Td1   
(ºC) 

 

Td2   
(ºC) 

 
Td3   
(ºC) 

 
PLA 

 

 
284.26 

 
344.00 

 
369.97 

 
 
 

 
 

354.05 
 

PLA/1 wt%/v HNT 
composites 

 

245.37 320.65 376.56 
 
 

291.79 
 
 

308.27 
 
 

357.36 
 
 

PLA/5 wt%/v HNT 
composites 

 

244.59 324.40 394.92 
 
 

294.53 
 
 

305.55 
 
 

354.68 
 
 

PLA/10 wt%/v HNT 
composites 

 

242.19 342.10 402.86 
 
 

280.81 
 
 

311.10 
 
 

362.59 
 
 

PLA/1 wt%/v HNTs/BYK 
composites 

 

248.67 329.27 383.16 
 
 

291.72 
 
 

305.46 
 
 

357.20 
 
 

PLA/5 wt%/v HNTs/BYK 
composites 

 

243.89 331.03 388.99 
 
 

283.61 
 
 

308.42 
 
 

360.17 
 
 

 
PLA/10 wt%/v HNTs/BYK 

composites 
 

 
244.09 

 
340.69 420.79 

 
 

280.91 
 
 

311.22 
 
 

362.73 
 
 

HNTs 437.31       482.84 
 

HNTs/BYK  
                  

 
431.94    
 

 

   
480.20 

 


