
Research Article

Polymer Concentration and Solvent Variation Correlation
with the Morphology and Water Filtration Analysis of Polyether
Sulfone Microfiltration Membrane

Muhammad Azeem U. R. Alvi,1 Muhammad Waqas Khalid,1 Nasir M. Ahmad ,2

Muhammad Bilal K. Niazi,2 Muhammad Nabeel Anwar,1 Mehwish Batool,3

Waqas Cheema,2 and Sikandar Rafiq 4

1School of Mechanical and Manufacturing Engineering, Department of Biomedical Engineering and Sciences,
National University Of Sciences and Technology, Islamabad, 44000, Pakistan
2School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
3Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
4Department of Chemical Polymer & Composite Material Engineering, University of Engineering & Technology,
Kala Shah Kaku Campus, Pakistan

Correspondence should be addressed to Nasir M. Ahmad; nasir.ahmad@scme.nust.edu.pk

Received 13 November 2018; Revised 22 January 2019; Accepted 28 January 2019; Published 3 March 2019

Academic Editor: Haiqing Lin

Copyright © 2019 Muhammad Azeem U. R. Alvi et al. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Micro	ltration 
at sheetmembranes of polyether sulfone (PES)were fabricated by incorporating varying concentrations of polymer
and investigated the in
uence of substituting solvents. �e membranes were prepared via immersion precipitation method.
Di�erent solvents that included NMP (N-methyl-2-pyrrolidone), DMF (dimethylformamide), and THF (tetrahydrofuran) were
used to analyse their e�ect on the performance and morphology of the prepared membranes. Two di�erent coagulation bath
temperatures were used to investigate the kinetics of membrane formation and subsequent e�ect on membrane performance.
�e maximum water 
ux of 141 ml/cm2.h was observed using 21% of PES concentration in NMP + THF cosolvent system. �e
highest tensile strength of 29.15 MPa was observed using membrane prepared with 21% PES concentration in NMP as solvent and
coagulation bath temperature of 25∘C.�e highest hydraulic membrane resistance was reported for membrane prepared with 21%
PES concentration in NMP as solvent. Moreover, the lowest contact angle of 67∘ was observed for membrane prepared with 15% of
PES concentration in NMP as solvent with coagulation bath temperature of 28∘C. Furthermore, the Hansen solubility parameter
was used to study the e�ect on the thermodynamics of membrane formation and found to be in good correlation with experimental
observation and approach in the present work.

1. Introduction

Drinkable water resources are declining every year leading
to exploring viable options for water reusability to treat
and purify it [1]. Membrane technology is extensively used
worldwide among various techniques to purify water [2].
Micro	ltration membranes are considered economical for
water treatment to reduce themicrobial and colloidal sources
in water [3]. �ese membranes are pressure driven mem-
branes and can also be used as pretreatment for reverse

osmosis and nano	ltration water puri	cation processes [1, 3].
Micro	ltration membranes typically have a pore size ranging
from 0.1 to 10 �m in size. �ese membranes are able to
separate out bacteria and suspended particles [4] as well as
macromolecules with a molecular weight less than 100,000
g/mole [5].

For the preparation of micro	ltration membranes, dif-
ferent polymers are used commercially such as polyvinyli-
dene 
uoride, polyvinyl alcohol, chitosan, polyvinyl chlo-
ride, polyacrylonitrile, polypropylene, polyvinyl alcohol,
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polyimide, cellulose acetate, and polyether sulfone (PES) [6].
All these polymers are used for their various characteris-
tics. For a speci	c polymer to be useful, it must possess
various characteristics such as excellent high heat aging
resistance, good mechanical properties, and environment
durability [7]. Polyethersulfone (PES) is one of the most
commonly used polymers for fabrication of micro	ltration
membrane. PES is an amorphous thermoplastic polymer
and has the highest number of moieties in the polymer
repeating unit in the sulfone group. Hence, the PES is
the most hydrophilic in the sulfone group polymers [8].
Moreover, PES has high mechanical strength, stability at pH
from 2 to 13 and chemical resistance, which makes it quite
suitable to be used as membrane material [9, 10]. PES is
soluble in aprotic polar solvents such as dimethylformamide
(DMF), N-Methyl-2-pyrrolidone (NMP), etc. Furthermore,
tetrahydrofuran (THF) [11] is borderline aprotic polar sol-
vent and used as a cosolvent with NMP as main solvent
[12].

An important advantage of asymmetric membranes is a
dense skin layer with porous substructure. Skin layer o�ers
selectivity and permeability, whereas the sublayer provides
mechanical strength. Asymmetric polymeric membranes
formed by immersion precipitation method are based on
liquid-liquid phase separation [13–17]. It has been sug-
gested that gelation is responsible for the formation of skin.
Furthermore, porous sublayer is formed by liquid-liquid
phase separation by growth and nucleation [13, 15, 18–
22]. �ermodynamics and kinetics of membrane formation
plays vital role in the morphology and performance of
membranes [23]. �ermodynamics of membrane formation
can be studied by Hansen solubility parameters (HSP)
[24]. �ermodynamics require that the free energy of mix-
ing must be zero or negative for the solution process to
occur at the same time. �e membrane formation depends
on both solvent-nonsolvent and polymer-solvent demixing
[25].

�e kinetics of membrane formation can be controlled
by temperature of coagulation bath [24]. �e parameters
such as polymer concentration [26], solvent [27], coagu-
lation bath [28], conditions for preparation [29], polymer
solution temperature, air moisture, and evaporation time
before the wet phase have signi	cant impact on the mor-
phology and properties of the prepared membranes [30].
A change in one or more parameter leads to a change in
the properties of the membrane as discussed elsewhere [31–
33].

In consideration of the above, the present work is focused
on the investigation of e�ect of polymer concentration vari-
ation and di�erent solvents substitution in the dope solution
used for the performance of 
at sheet micro	ltration mem-
branes. �e structure and properties such as tensile strength,

ux, contact angle, and membrane hydraulic resistance of
prepared membranes are analysed and correlated with the
composition and concentration of polymer solution. More-
over, the Hansen solubility correlated parameters were used
to study the thermodynamics and kinetics of the membrane
formation.

2. Materials and Methods

2.1. Materials. Polyethersulfone, NMP, DMF, and THF were
purchased from Sigma Aldrich. All the chemicals were used
without further puri	cation. Deionized water was used in the
fabrication of membranes.

2.2. Preparation of Membranes. �e 
at sheet membranes
were prepared by phase inversion method using casting
machine. Five di�erent formulations were prepared as shown
in Table 1. PES was dissolved in respective solvent and stirred
for 24 hours.�eprepared solutionswere casted at room tem-
perature (23∘C) on nonwoven polypropylene/polyethylene
fabric Novatexx 2471, (Freudenberg Germany) placed on
a glass plate. Solvent was applied on the support material
before casting the polymer solution on the support material
[35]. Casting was done by casting machine. �en the casted
	lm was immersed in coagulation bath (25∘C and 28∘C) for
5 mins to let the demixing complete. A�er the formation
of membranes, these were dried under ambient conditions
and kept for characterization testing [36, 37]. �e graphical
abstract is shown in Figure 1.

2.3. Membrane Hydraulic Resistance (MHR). �e MHR is
the resistance of membrane to the feed 
ow. MHR is the
indication of tolerance of membrane towards pressure and
was calculated by [38]

�� =
��
��

(1)

where�� is themembrane resistance (KPaml-1cm2h1),�� is
the transmembrane pressure (KPa), and �� is the water 
ux
(ml cm-2h-1).

2.4. Fourier Transform Infrared Spectroscopy (FTIR). Bruker
Alpha ATR spectrometer was used for IR characterization
of the membranes. FTIR was carried out to investigate the
change in functional groups of formulated membranes using
di�erent solvents and variations in polymer concentration.
All the samples were tested in their natural state using ATR.
�e samples were cut into 1 x 0.5 cm in dimension and placed
on the IR window.

2.5. Contact Angle Analysis. �e contact angle was measured
by sessile drop measurement technique to determine the
extent of hydrophilicity or hydrophobicity of the formulated
membranes. Typically, 5�L drop of distilled water was placed
on the surface with a needle tip. A magni	ed image of the
drop was then taken with a digital camera; static contact
angle of the droplet was calculated using ImageJ LBADSA
(Low-Bond Axisymmetric Drop Shape Analysis) so�ware in
degrees. �e reported data was average of four determina-
tions at di�erent points on the prepared membrane and then
mean and standard deviation were calculated.

2.6. Mechanical Testing. Mechanical testing was carried out
for the preparedmembranes according to the standardASTM



Advances in Polymer Technology 3

Table 1: Composition of prepared membranes.

Serial No. Membrane Codes Polyether sulfone Concentration (Wt %) Solvents

1. M1 15 % NMP

2. M2 18 % NMP

3. M3 21 % NMP

4. MS-1 21 % DMF

5. MS-2 21 % 70% NMP, 30% THF.
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Figure 1: Graphical abstract.

D882. �e tensile properties of the membranes were deter-
mined using Trapezium-X Universal testing machine (AG-
20KNXD Plus Shimadzu corporation, Japan).�emaximum
load limit was 20kN.�e strain rate was 3mm/sec. �e gauge
length of the samples was 2 cm, while the total sample length
was 7 cm. �e width of the samples was 1.1 cm and thickness
was 0.03 cm.

All the samples were tested at room temperature. �e
mechanical testing was performed to evaluate the e�ect of
polymer concentration increment and solvent variation on
the prepared membranes.

2.7. Scanning Electron Microscopy. �e topographical and
cross-sectional morphologies of membranes were studied by
scanning electron microscopy (JOEL JSM-6490A Analytical
scanning electron microscope Japan). Membranes were cut

into 0.25cm2 samples. For cross-sectional morphology, these
were immersed in liquid nitrogen for approximately 60
seconds to freeze. A�er freezing, themembranes were broken
into smaller fragments to perform SEM of cross section.
�e samples were gold coated using JFC-1500 Ion sputtering
unit.

2.8. Pure Water Flux. Filtration cell was used to test the
permeation characteristics of the fabricated membranes at
di�erent pressures of 26.66, 39.99, 53.32, 66.66, and 79.99 kPa
for determination of water 
ux. For this purpose, 	ltration
equipment was attached to a vacuum pump with adjustable
pressure gauge to obtain desirable pressure to permeate the
water through the prepared porous membranes. For each
experiment, 20 ml of water was taken in the fritted glass
funnel and then pressure was applied by the vacuum pump
to permeate the water through the membrane placed on glass
support base. Flux was calculated using the equation

� = ��.� (2)

where v is the volume of water, a is the e�ective membrane
area, and t is the permeation time.

2.9. Hansen Solubility Parameter (HSP). HSP is valuable in
explaining the in
uence of parameters such as polymer,
solvents, and nonsolvent on membrane preparation. �e
thermodynamics and kinetics of the membrane fabrication
must be considered to explain the fabrication process and its
relation to themembrane performance.�e thermodynamics
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mainly depend on the chemical potential of the process
parameters [39]. �erefore, the HSP can be an important
tool to discuss their in
uence on the membrane structure
formation [40]. �e solubility parameter of polymer and
solvent by Hansen solubility parameter can be de	ned as

�t = √�d2 + �p2 + �h2 (3)

where �� is Hansen solubility parameter, �� is energy from the
dispersion bonds, ��is energy from dipolar intermolecular
forces, and �ℎ is the energy from the hydrogen bonds.

�e polymer solvent interaction can be de	ned as

���−�

= √((��,� − ��,�)2 + (��,� − ��,�)2 + (�	,� − �	,�)2
(4)

Polymer and nonsolvent interaction is given by

���−
�

= √(��,� − ��,
�)2 + (��,� − ��,
�)2 + (�	,� − �	,
�)2
(5)

Solvent and nonsolvent is given by

���−
�

= √(��,� − ��,
�)2 + (��,� − ��,
�)2 + (�	,� − �	,
�)2
(6)

�e calculations based on these relations can be used to
predict and understand the membrane structure formation
[41]. �e Hansen solubility parameter values of polymer,
solvent, nonsolvent, and their interaction with each other are
given in Table 2.

Fractional parameters were derived from the Hansen
parameters using the equations

	� =
��

(�� + �� + �	)
(7)

	� =
��

(�� + �� + �	)
(8)

	ℎ =
�	

(�� + �� + �	)
(9)

�e sum of three fractional parameters remains equal to 1.

	� + 	� + 	ℎ = 1. 0 (10)

3. Results and Discussion

3.1. Fourier Transform Infrared Spectroscopy. �e ATR-FTIR
spectra of the formulated membranes are shown in Figure 2.

�e strong peak of C6H6 benzene ring stretch at 1587 cm-1 is
the aromatic band of polyethersulfone [42].�e sharp peak at

1147 cm-1 is due to S=O group symmetric stretching vibration

[43]. �e peak at 1476 cm-1 is the representative band of C-
S stretch [44]. �e peak around 1240 cm-1 is due to C=C
stretching [45].�eM1, M2, andM3membranes have shown
no e�ect on FTIR spectra. �ere is a di�erence in the spectra
of membranes with solvent variation, i.e., MS-1 and MS-2.

Figure 2(b) has the spectra of polyethersulfonewithNMP,
DMF, and cosolvent system of NMP+THF. �e shi� at 2931

cm-1 is due to symmetric methyl C-H bond stretching in
membrane with DMF [46]. It is attributed to the presence of
residual solvent [47]. While the peaks in the region of 2839

and 2931 cm-1 of membranes with cosolvent system are due
to the presence of C-H stretching vibrations of THF [48].

3.2. Morphological Analyses. Scanning Electron Microscopy
(SEM) was used to understand the e�ect of variability in
polymer and solvent substitution on the morphology of the
prepared membranes. Figure 3 represent the cross-sectional
and surface images of the membranes. In membranes pre-
pared with PES variation, a marked di�erence between the
structures was observed. �e M1 membrane was found to
be more porous than M2 and M3 formulated membranes.
Similarly, the M1 membrane appeared to have thin structures
with cross-sectional length of 14.898 �m. �e support layer
appears to be thinner than the others. �is can be attributed
to the temperature of coagulation bath, whereas a thick
structure of the membrane was observed in M3 membrane
a�er change in the thermodynamics of casting solution and
coagulation bath temperature.

Similarly, a change in structure was recorded when the
membranes were prepared with solvent substitution. In MS-
1 membrane, macrovoids were observed in the cross section.
�e underlying structure of the membrane can be attributed
to high demixing rate of DMF [38, 49]. In MS-2 formulated
membrane, the active layer structure was found to be large. A
persistent increase in 
ux rate was observed with increasing
pressure for this membrane [50]. In Figure 3(a) the structure
of the membrane appears to be thin, whereas in Figures 3(b)
and 3(c) the thickness of the prepared membranes appears to
increase with increase in polymer concentration.�e surface
images of the membranes appear to be rough.

3.3. Contact Angle Analysis. �e contact angle of the fab-
ricated membranes was analysed using Low-Bond Axisym-
metric Drop Shape Analysis (LBADSA) of surface contact
angle of sessile drop based on Young-Laplace equation. �e
LBADSA o�ers 	rst-order approximation solution to the
Young-Laplace equation.�ismethodwas used as a plugin on
ImageJ so�ware [51]. �e capillary forces were the only driv-
ing force for the small droplet. Drop-base diameter de	ned
the spatial resolution of the sessile drop measurement.

Figure 4 represents the contact angle of the fabricated
membranes. It was observed that with the membranes pre-
pared by changing the concentration of polymer (M1, M2,
and M3 membranes) the surface became more hydrophobic
as the concentration of polymer increased [52]. �is can
be attributed to the fact that the hydrophilicity of the
formulatedmembrane depends on the pore size and porosity.
�e 
ux results clearly indicate the trend of hydrophilicity
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Table 2: Hansen solubility parameter values of polymer, solvent, nonsolvent, and their interaction [34].

S, P, NS.
Dispersion
Parameter

(�d) (MPa)0.5

Polar
Parameter

(�p)
(MPa)0.5

Hydrogen
Bonding
Parameter

(�h)
(MPa)0.5

Total
Solubility
Parameter
(�T)

(MPa)0.5

Polymer Solvent
Interaction
(�P-S)
(MPa)0.5

Polymer-
Non-Solvent
Interaction
(�P-NS)

(MPa)0.5

Solvent-Non-
Solvent

Interaction
(�S-NS)

(MPa)0.5

NMP 18.0 12.3 7.2 22.9 2.96 - 35.37

DMF 17.4 13.7 11.3 24.8 4.20 - 31.13

THF 16.8 5.7 8.0 19.4 5.94 - 35.83

NMP +THF 21.85 2.68 35.38

PES 19.6 10.8 9.2 24.19 - - -

WATER 15.6 16.0 42.3 47.8 - 33.74 -
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Figure 2: ATR-FTIR spectra of membranes prepared by (a) polymer concentration variation and (b) membranes prepared by solvent
variation.

(a) (b) (c) (d)

(e)

microvoid

(f) (g)

Figure 3: SEM Images. (a) M1 cross-sectional, (b) M2, (c) M3 cross-sectional, (d) M1 Surface, (e) M3 Surface, (f) MS-1, and (g) MS-2.
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Figure 5: Water 
ux of membranes prepared by polymer concen-
tration variation and solvent variation.

in the formulated membranes [45], whereas the contact
angle was observed to decrease with change of solvents in
formulated membranes (MS-1 and MS-2), as compared to
M1 formulated membrane. �is can be explained by Hansen
solubility parameters, such as faster demixing rate in MS-
1 which resulted in porous structure, hence hydrophilicity,

whereas, inMS-2, the �P-S value dropped to 2.68MPa1/2.�is
resulted in relatively less thermodynamically stable solution
and better demixing leading to porosity on surface [53].

3.4.Water FluxAnalyses. �ewater 
ux of all themembranes
was measured to determine their water permeability. All the
membranes were tested for water 
ux at di�erent pressures

under steady state conditions. �e water 
ux has a direct
relation to the porosity of the top layer including the number
of pores and their size [54]. Figure 5 represents the pure
water 
ux of the formulatedmembranes recorded at di�erent
pressures, with at least 4 determinations of each pressure.

�e M1 membrane had high values of water 
ux. Results
were supported by SEM analysis as seen in Figure 5. �e
sublayer channels were smaller than the membrane with
highest level of PES, i.e., M3 using NMP as solvent. �e
underlying channel system aided the 
ow of water through
the membrane at a faster rate. Moreover, the increase of
pressure also in
uenced the water 
ux. However, the per-
meability of the membrane also increased due to underlying
morphology of the membranes.

Furthermore, the pure water 
ux reduced with increase
in concentration of polymer in prepared membranes. It can
be attributed to increase in thickness and formation of dense
skin layer with increase in polymer concentration. Similarly,
the productivity of the formulated membrane for liquid
separation also decreased [55]. On the other hand, the dilute
polymer solution formed a thin and porous skin layer with
increased values of 
ux at di�erent pressures as evident from
SEM analyses.

By increasing the concentration of polymer, the viscosity
of the polymer solution increased, and the coagulation
was slowed down due to strong interaction of solvent and
polymer. Moreover, it also resulted in molecules aggregation
of polymer because the interaction of polymer and water as
nonsolvent was higher. As a consequence, it decreased the
dissolving capacity of polymer for solvent [56]. �e mem-
brane with high polymer concentration and high viscosity
can slow down the di�usional exchange rate of NMP and
water in the sublayer structure of themembrane.�is resulted
in the slowdown of the precipitation rate at the sublayer level
[57].

For M1 formulated membrane, high 
ux rate was
observed in membranes prepared with PES concentration
variation. �is may be attributed to decrease in the thickness
of surface during polymer-rich phase [40].

Meanwhile, in MS-1 formulated membrane the pure
water 
ux was observed to be higher than the M3 membrane
as the top skin of themembranewas even thinner. SEM image
analysis shows similar structure.�is can be attributed to the
volatile nature of the THF. During dry phase the THF on
the surface of the casted membrane was evaporated forming
more porous structure. �e MS-1 formulated membrane had
higherwater 
ux values then theM3membrane.�epresence
of DMF in the cast solution facilitated the formation of pores
on themembrane surface. A�er immersion in the nonsolvent
bath the formation of more porous structure was facilitated
[35, 40, 58, 59].

3.5. Mechanical Strength. �e tensile strengths of the formu-
lated membranes with di�erent concentrations and solvents
were investigated. Figure 6 represents the tensile strength,
elongation at break, and modulus of the formulated mem-
branes. As the concentration of polymer was increased, the
tensile strength of the membranes also improved. �is may
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Figure 6: Tensile strength, elongation at break, and modulus of prepared membranes.

be due to the increase in the thickness of the top layer
by enhancing the concentration of the polymer, Meanwhile,
with the membrane prepared by DMF as solvent, the tensile
strength of the membrane decreased as compared to M3.
�is can be attributed to the decrease in thickness of the
top layer of the membrane due to di�erence of hydrogen

bonding value of 11.3 MPa1/2 resulting in faster di�usion
rate of solvent into nonsolvent [38]. However, the tensile
strength increased when NMP+THF was used as a solvent
in formulated membrane as compared to DMF. �is can be
associated with miscibility of NMP with water. �ere is a
reduction in thickness of membrane prepared by DMF and
PES. �is can be explained by the fact that the transport of
NS in the polymer solutionwas slower than transport ofDMF
into water. Results showed that the tensile strength is directly
proportional to the concentration of polymer in formulated
membrane [60]. According to Hansen solubility parameter,
the solvent-nonsolvent interaction of ��	
�−���� is 31.13
MPa1/2, which is less than other solvents used. �e more
miscibility of DMF and nonsolvent allowed rapid demixing
and disturbance in the thermodynamics of the stable casted
solution. �is resulted in formation of thin layer on top, sub-
sequently decreasing the tensile properties of the membrane
[61].

3.6. Membrane Hydraulic Resistance (MHR). MHR is
inversely proportional to the permeate 
ux of the membrane.
MHR was observed at 	ve di�erent pressures. Figure 7
shows the membrane hydraulic resistance of the formulated
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membranes. Membrane hydraulic resistance was measured
by the inverse of the slopes of the pure water 
ux against
pressure linear dependences. MHR is used to determine
the intrinsic resistance of formulated membrane against the
water feed. �e results indicate that the M3 had the highest
MHR measured at all the pressures. It can be explained
by the fact that the MHR is inversely proportional to the

ux and a lowest 
ux was recorded for M3 membrane at
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all the pressures. Moreover, the reason for low 
ux rate can
be attributed to the structure of the formulated membrane.
For membranes prepared with solvent variation (MS-1 and
MS-2), the MS-1 membrane was found to have good intrinsic
resistance because of higher values of MHR calculated [38].

3.7. Correlation with Polymer Concentration. �ree mem-
branes (M1, M2, and M3) were used to observe the in
uence
of polymer concentration. NMP was used as a solvent (S) in
the formulations. �e pure water 
ux data of the membranes
was used to evaluate the e�ect of polymer concentration
on membranes performance [62]. �e M1 membrane had
the highest 
ux values studied at various pressures. As the
polymer concentration was increased, the top layer of the
membrane became less porous as indicated by SEM analysis.
Moreover, the solution became thermodynamically stable
with increase in concentration of PES. As a result, the phase
separation slowed down [63].

According to solubility parameter values, the a�nity of
NMP for nonsolvent (NS) was higher than the a�nity of
PES for NS. �erefore, the di�erence in a�nities resulted in
thermodynamic instability and membrane of the type M1,
resulted in thinner upper surface as evident in SEM analysis,
subsequently more porous surface.

�e pore size of themembrane was reduced with increase
in polymer concentration. �is resulted in low water per-
meability through membrane. �e M3 membrane had the
lowest pure water 
ux. It can be explained by the fact that
the phase separation of PES depends on the thermodynamic
and kinetic factors of polymer, solvent, and nonsolvent. In the
fabrication of M1 and M2, the temperature of coagulant bath
was 28∘C, whereasM3membranewas casted at a temperature
of 25∘C. It was observed that the coagulant bath temperature
controls the S-NS phase of the membrane fabrication. �e

exchange of S-NS increased at 28∘C, as previous 	ndings
support this temperature variation explanation [64]. �e

polymer-solvent interaction value of 2.96 MPa1/2 suggests
better miscibility, leading to delayed demixing of solvent in
nonsolvent. �e pores on upper surface of the membrane
directly a�ect the water permeation across the membrane
[24].

3.8. Correlation with Solvent Variation. �e solvents vari-
ation was investigated and compared with M3 membrane.
�e concentration of PES was kept constant at 21%. �e
M3 formulated membrane performance in terms of pure
water 
ux was found to be the lowest among the other two
formulatedmembranesM1 andM2.�e temperature of water
bath used for all formulatedmembranes in this part was 25∘C.
In this study, the performance of MS-1 and MS-2 in terms of
pure water 
ux and contact angle was observed to improve.

�e kinetics of the phase inversion also in
uenced the
fabrication of membranes and the interaction of solvents and
nonsolvent during the wet phase, which was the polymer
poor phase, while the temperature of coagulation bath had
e�ect on rapid and delayed demixing rates, as both had
e�ects on themorphology of the resultingmembranes.When
the demixing rate was high, the MS-1 membrane with thin
skin layer was formed. �e reason for this can be explained

from the �S-NS value of 31.13 MPa1/2. �is can be attributed
to high a�nity of DMF towards NS (water) with strong
hydrogen bonding parameter, whereas the demixing rate was
slower in MS-1 membrane because of high value of �S-NS,

i.e., 35.38 MPa1/2. It is interesting to note that the �P-S value
for cosolvent in MS-2 membrane decreased to 2.68 MPa1/2

[24]. Teas graph in Figure 8 was used to observe the relative
positions of polymer, solvents, and nonsolvent. Teas graph
provides theoretical explanation of the solubility of polymer,
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solvent, and nonsolvent with each other. Teas graph translates
polar, hydrogen, and dispersion components into a two-
dimensional graph [34].

4. Conclusions

Polyether sulfone micro	ltration membranes were prepared
by phase inversion method. Moreover, morphology and
performance were correlated with polymer and solvent vari-
ation from the consideration of Hansen solubility param-
eters. �e temperature of coagulation bath had e�ects on
the performance and morphology of prepared membranes.
In polymer concentration correlation, the concentration
increase was found to have a negative e�ect with decreasing

ux, whereas positive e�ects of tensile strength enhance-
ments were observed. Moreover, in solvent variations cor-
relation, the di�erent demixing rate of solvents in non-
solvent a�ected the performance of the membranes. �e
prepared membranes were investigated for their strength,
contact angle, water permeability, surface chemistry, and
morphology.�ermodynamics and kinetics of themembrane
formation were also discussed. For this purpose, Hansen
solubility parameters for the polymer, solvent, and nonsol-
vent were calculated. PES membrane prepared with 21%
polymer concentration in NMP solvent was observed to
undergo relatively less phase separation, hence resulting
in less pores and less water 
ux. Low concentration of
15% PES in NMP resulted in relatively thin membrane but
more pores resulting in higher water permeation across the
membrane. �e contact angle for the membrane prepared
with 15% PES concentration was the lowest while with 21%
PES concentration in NMP was found to exhibit the highest
contact angle. �e contact angle of membrane prepared with
15% PES concentration in NMP was found to be closer
to the membrane prepared with 21% PES in DMF with
values of 67∘ and 68∘, respectively. Moreover, the membrane
prepared with 21 % PES concentration in NMP and THF
cosolvent the contact angle was slightly higher than two
abovementioned membranes. �e water 
ux of membrane
prepared with 21% PES concentration in NMP and THF
cosolvent was the highest and in membrane prepared with
21% PES concentration in NMP solvent the 
ux rate was
the lowest recorded. Furthermore, the membrane hydraulic
resistance of 21% PES concentration in NMP prepared mem-
brane was observed to be the highest. �e tensile strength
of 21% PES concentration in DMF prepared membrane was
the lowest and surprisingly the tensile strength of 21% PES
concentration in NMP and THF cosolvent was somewhat
closest to the 21% PES concentration in NMP prepared
membrane. �e results indicated that the membrane pre-
pared by solvent mixture of NMP and THF had better water

ux performance and better strength as compared to other
membranes.
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