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Recently discovered traveling-wave solutions to the Navier–Stokes equations in plane shear
geometries provide model flows for the study of turbulent drag reduction by polymer additives.
These solutions, or “exact coherent states”(ECS), qualitatively capture the dominant structure of the
near-wall buffer region of shear turbulence, i.e., counter-rotating pairs of streamwise-aligned
vortices flanking a low-speed streak in the streamwise velocity. The optimum length scales for the
ECS match well the length scales of the turbulent coherent structures and evidence suggests that the
ECS underlie the dynamics of these structures. We study here the effect of viscoelasticity on these
states. The changes to the velocity field for the viscoelastic ECS, where the FENE-P model
calculates the polymer stress, mirror the modifications seen in experiments of fully turbulent flows
of polymer solutions at low to moderate levels of drag reduction: drag is reduced, streamwise
velocity fluctuations increase while wall-normal fluctuations decrease, and smaller wavelength
structures are suppressed. These modifications to the ECS are due to the suppression of the
streamwise vortices. The polymer molecules become highly stretched in the wavy, streamwise
streaks, where the flow is predominately elongational, then relax as they move from the streaks into
and around the streamwise vortices, where the flow is predominately rotational. This relaxation of
the polymer molecules produces a force that directly opposes the fluid motion in the vortices,
weakening them. Since the pressure fluctuations have their greatest magnitude(i.e., they are most
negative) in the cores of the vortices, a reduction in vortex strength leads to a decrease in the
magnitude of the pressure fluctuations. The pressure fluctuations redistribute energy from the
streamwise velocity fluctuations to the Reynolds shear stress, so a decrease in their magnitude leads
to a reduction in turbulent drag. For the viscoelastic ECS, we also find that after the onset of drag
reduction(at Weissenberg number, We<7) there is a dramatic increase in the critical wall-normal
length scale at which the ECS can exist. This sharp increase in length scale mirrors experimental
observations and is also consistent with the observed shift to higher Reynolds numbers of the
transition to turbulence in polymer solutions. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1775192]

I. INTRODUCTION

The decrease due to polymer additives of skin friction in
turbulent flow has received much attention since the discov-
ery of the phenomenon in the 1940s.1–4 Very small polymer
concentrations, on the order of ten parts per million by
weight, can lead to reductions in drag of 50% or greater. At
these small concentrations the properties of the solution mea-
sured in simple shear flows do not deviate appreciably from
those of the pure solvent. However, in extensional flows,

large stresses are generated due to the polymer contribution
to the extensional viscosity. It is recognized that the exten-
sional behavior of the polymers is key to the phenomenon of
drag reduction, but a detailed knowledge of how polymer
stretch and relaxation interact with turbulent structure is not
available. The goal of the present work is to better under-
stand this interaction, particularly in the context of near-wall
turbulence.

Observations of drag-reducing fluids indicate that, at
least near the onset Reynolds number for drag reduction, the
effects of the polymer are confined primarily to the near-wall
buffer layer,1,5–8 which is the most important region for the
production and dissipation of turbulent energy.9 From experi-
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mental observations and direct numerical simulation(DNS)
of turbulent flows, the dominant structures of the buffer re-
gion are found to be pairs of counter-rotating, streamwise-
aligned vortices.10,11These vortices pull slower moving fluid
away from the wall, forming low-speed, streamwise velocity
streaks. There is a characteristic behavior of these streaks
known as “bursting” that produces turbulent kinetic energy
in the buffer region. During a “bursting” event, the down-
stream end of a streak moves rapidly away from the wall.
This part of the process, known as “ejection,” has positivevy8
(wall-normal fluctuating velocity) and negativevx8 (stream-
wise fluctuating velocity). Continuity demands that the
“ejection” be accompanied by a “sweep” that brings fast-
moving fluid near the wall(i.e., vy8,0 andvx8.0). The pro-

duction of kinetic energy is −vx8vy8]V̄/]y, where V̄ is the
mean velocity in thex-direction (and overbar denotes en-
semble average).11 Given this equation for production, it is
easy to see that the signs of the velocities associated with
both “ejections” and “sweeps” give positive kinetic energy
production.

In flows exhibiting drag reduction, the structure of the
buffer region is modified. Most notably, the wall-normal
thickness of the buffer region increases,1 the coherent struc-
tures in this region shift to larger length scales,5,12–14and the
bursting rate decreases.5 These structural changes are accom-
panied by changes in the root-mean-square(rms) velocity
fluctuations and Reynolds stresses. Namely, the wall-normal
and spanwise fluctuations are reduced while, at least at low
to moderate degrees of drag reduction, the streamwise veloc-
ity fluctuations are enhanced.15 Streamwise vorticity fluctua-
tions are also decreased.12 Perhaps most importantly, the
Reynolds shear stress decreases.12,16,17 These changes be-
come more pronounced as the extensional viscosity of the
polymer solution is increased.8,16,18,19

Due to the importance of the buffer region structures in
the production of turbulent energy and the observation that
these structures are modified in drag-reducing flows, they are
the focus of the present study. To perform the study in a
well-controlled way, we make use of an “exact” model of
these structures, the family of so-called “exact coherent
states”(ECS) recently found in plane shear flows.20–26 The
ECS are traveling-wave solutions of the Navier–Stokes equa-
tions that capture the dominant buffer region structure, i.e.,
counter-rotating, streamwise-aligned vortex pairs that flank
streaks in the streamwise velocity.9,26,27 The structure of an
ECS in plane Couette flow is seen in Fig. 1. The isosurfaces
of streamwise vorticity clearly show a counter-rotating pair
of streamwise vortices, while the contours of streamwise ve-
locity show the high speed(white) and low speed(black)
streaks brought about by the vortices. This is the same struc-
ture that is seen to dominate the buffer region. Traveling
wave solutions of this structure are found in plane Couette
and Poiseuille flows using both constant vorticity and no-slip
boundary conditions as well as in pipe flow.26,28For the vari-
ant of plane Couette flow studied here, which is described in
detail in Sec. II, there is a trivial(laminar) solution to the
Navier–Stokes equations at all Reynolds numbers, Re. At
Re<100, two traveling-wave solutions appear as further de-

tailed in Sec. III. The simultaneous appearance of two steady
states as a parameter increases, Re in this case, is a saddle-
node bifurcation, also referred to as a limit point or fold.29

While both of these solutions are unstable, one of these
states, which we will call the “high drag” state due to its
lower mean velocity at a given Reynolds number, has greater
stability relative to the “low drag” ECS–the “high drag” so-
lutions have one more stable direction in phase space than
the “low drag” solutions. Experimentally, Bottinet al. have
stabilized an ECS-like steady state in a Couette flow with
countermoving walls by placing a thin, spanwise-oriented
wire in the zero-velocity plane.30 The wire provides a finite
amplitude disturbance to the flow as well as pinning the lo-
cation of the flow pattern.

The appearance of the ECS presages the transition to
turbulence. For Couette flow with no-slip boundary condi-
tions, the ECS appear at Re<128,26 while persistent turbu-
lence is seen experimentally for Re*325.30 In channel flow,
the ECS arise at Re<650;26 experimentally, the transition to
turbulence is at Re<1000.31 For pipe flow Re<1300 (Ref.
28) for the appearance of the ECS and Re<2100 (Ref. 32)
for transition. Note that these experimental values for transi-
tion are for the existence of persistent, fully developed tur-
bulence, but intermittent turbulent spots can appear well be-
low these values.

For the ECS in plane Poiseuille flow, the optimum di-
mensions of the structure compare very favorably to the
length scales of the turbulent coherent structures found via
direct numerical simulation(DNS) and experiment.26 Here,
the optimum length scales correspond to the minimum Rey-
nolds number at which the Newtonian ECS exist(Ret

=44.21 for the case of channel flow). The optimum spanwise
length, Lz

+=105.51, closely matches the streak spacing of
one-hundred wall-units measured in experiments over a wide
range of Reynolds numbers.9 (Throughout this work, the1
superscript indicates that the length is scaled by the viscous
length scalen /ut, where theut=Îtwall /r is the friction ve-
locity andn is the total, zero-shear-rate kinematic viscosity.)
Minimal channel flow, i.e., flow in the smallest computa-
tional domain that reproduces the velocity field statistics of
near-wall turbulence, gives a range for the streamwise length

FIG. 1. “Exact coherent state” in plane Couette flow with constant vorticity
boundary conditions. “High drag” state at Re=110. The contours are ofvx

(white is positive, black is negative). The constant vorticity surfaces are
vx

+=−0.36(dark gray) andvx
+=0.36 (light gray)
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of 250–350, compared toLx
+=273.73 for the ECS, and a

spanwise length that is again approximately 100 wall units.33

The statistics of the near-wall region are faithfully captured
in the minimal channel flow up toy+<40, while the wall-
normal size of the optimum ECS isDy+=44.21. It should be
pointed out that this minimum channel contains a single
wavelength of a wavy streak and a pair of quasistreamwise
vortices, which is the same structure seen in the ECS. An-
other invariant length scale in near-wall turbulence is the
peak in the production of turbulent kinetic energy aty+

<12;11 the channel flow ECS also captures this length
scale.34 The optimum ECSquantitativelycapture the length
scales of near-wall turbulence.

Beyond capturing the observed length scales of the
buffer region structures, recent research also indicates that
the ECS are saddle-points in phase space around which the
strange attractor29 of near-wall turbulence is built. Recent
studies by Kawahara and Kida35 and Toh and Itano36 find
periodic solutions in minimal channel flows that are bifurca-
tions of the ECS. The bursting trajectories in fully turbulent
flows seem to be built around these periodic solutions. A
further indication of this comes from a study by Jiménez and
Simens that applies a numerical filter to DNS of channel
flow to isolate the near-wall region from the main-stream
turbulence.37 The simplest(nontrivial) flow structure, found
when the numerical mask is aty+<50, is a traveling-wave
solution that has qualitatively the same structure as the ECS.
The length scales of this traveling wave(Lx

+<250, Dy+

<50, andLz
+<150) are similar to the optimum values for the

channel flow ECS described above. As the mask moves fur-
ther away from the wall, these traveling-wave solutions bi-
furcate into quasiperiodic solutions. These solutions then
evolve into the bursts of full-scale turbulence with the flow
being essentially turbulent when the numerical filter reaches
y+<70. These results, along with the existence of the ECS
indicate that staggered streamwise vortex traveling wave pat-
terns are autonomous in wall-bounded shear flows and pro-
vide, at least in part, the foundation on which the near-wall
turbulent fluctuations are built.

The self-sustaining process that underlies the ECS, mak-
ing them autonomous, consists of three interacting, concur-
rent subprocesses: streak formation, streak instability, and
vortex regeneration.38,39 The counter-rotating, streamwise-
aligned vortex pairs pull fluid with low streamwise velocity
up from near the wall while, at the opposite side of a vortex,
higher velocity fluid is pulled toward the wall. This leads to
a spanwise stratification of the streamwise velocity(i.e.,
streaks in the streamwise velocity). The spanwise inflections
in the streamwise velocity lead to a three-dimensional
Kelvin–Helmholtz-like instability40 that concentrates wall-
normal vorticity. This concentrated wall-normal vorticity,
through a nonlinear interaction with the mean shear, is tilted
and stretched in the streamwise direction, reenergizing the
streamwise vortices. In studying the viscoelastic ECS, we
aim to understand how the polymer affects one or all of the
subprocesses that comprise this mechanism.

We have previously studied viscoelastic ECS with low-
extensional-viscosity polymer solutions.41 That work pro-
vided some structural insight into the mechanism of drag

reduction. The polymer molecules become highly elongated
as they move through the streamwise streak. As they move
out of the streak and into one of the vortices, the polymer
molecules relax. This relaxation produces a polymer force
that opposes the vortex motion. The polymer force thus
weakens the vortex by slowing the fluid moving into it. The
weakening of the vortices leads to collapse of the mechanism
that sustains the ECS,39 and ultimately to a reduction in drag.
This mechanism is also supported by elastic energy argu-
ments proposed in a recent DNS study by Minet al.42 In
their study, they find that during drag reduction turbulent
energy is transformed into elastic energy by the stretching of
the polymer near the wall. The vortices of the buffer region
then lift this elastic energy up where it is released as turbu-
lent kinetic energy or dissipated in the buffer and log regions.
In the present study, we study the viscoelastic ECS for high
extensional viscosity solutions, mapping out how their exis-
tence region changes with ECS and tracking the changes in
the flow structure both directly and through the Reynolds
stress budgets. These results allow us to flesh out our previ-
ous work and show in some detail the mechanism by which
the polymer leads to drag reduction and the associated
changes in velocity statistics in this class of flows.

II. MATHEMATICAL FORMULATION AND SIMULATION
DETAILS

The present study focuses on a variant of plane Couette
flow. (The effects of viscoelasticity on the channel flow ECS
will be addressed in subsequent studies.) Denoting the
streamwise direction asx, the wall-normal direction asy, and
the spanwise, or vorticity, direction asz, we consider a flow
with boundary conditions

]vx

]y
= 1, vy =

]vz

]y
= 0 at y = ±1, s1d

where vx, vy, and vz are the streamwise, wall-normal, and
spanwise components of the velocity,v, respectively. The
characteristic velocityU, which is the velocity of the unidi-
rectional laminar solution at the upper boundary, and the
half-height of the channell are used to scale the velocity and
positions, respectively(though we will report results in wall
units, with y+ measured from the bottom boundaryy=−1).
These “constant vorticity” boundary conditions provide an
advantage over no-slip conditions in that they allow us to
model only the buffer region in our domain by eliminating
the viscous sublayer. The use of no-slip boundary conditions
does not qualitatively change the behavior of the ECS.26 For
this flow, a trivial base state exists,vsyd=yex for −1øyø1.
Periodic boundary conditions are used in the streamwise and
spanwise directions. For this study, the wavelength of the
structures in the streamwise and spanwise directions areLx

=2p /0.40( Lx
+<160 at Ret=20.5) and Lz=2p /1.0 sLz

+

<64d, respectively.
In our formulation, timet is scaled withl /U, and pres-

surep with rU2, wherer is the fluid density. The stress due
to the polymertp is nondimensionalized with the polymer
elastic modulusG=hp/l, wherehp is the polymer contribu-
tion to the zero-shear-rate viscosity andl is the time con-
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stant for the polymer—the polymer model is described be-
low. For a traveling wave solutionvsx−Cvt ,y,zd, whereCv
is the wave speed, the momentum balance and the equation
of continuity are

− Cv
]v

]x
+ v · = v = − = p + b

1

Re
¹2v

+ s1 − bd
1

Re

1

We
s= · tpd, s2d

= ·v = 0, s3d

wherehs is the solvent viscosity, We=lU / l is the friction
Weissenberg number, andb=hs/ shs+hpd. The Reynolds
number Re is based on the total zero-shear-rate viscosity,
Re=rUl / shs+hpd and we define the friction Reynolds num-
ber as the full height of the channel—i.e., the wall-normal
extent of the streamwise vortices—expressed in wall units,
so Ret=2ÎRe.

We seek “sinuous” solutions that satisfy the shift-reflect
symmetry

vxsx,y,zd = vxsx + Lx/2,y,− zd,

vysx,y,zd = vysx + Lx/2,y,− zd,

vzsx,y,zd = − vzsx + Lx/2,y,− zd,

and the “Couette” symmetry

vxsx,y,zd = − vxsLx/2 − x,− y,z+ Lz/2d,

vysx,y,zd = − vysLx/2 − x,− y,z+ Lz/2d,

vzsx,y,zd = vzsLx/2 − x,− y,z+ Lz/2d.

Solutions satisfying these latter three conditions travel with
the mean velocity of the trivial solution so they have wave
speedCv=0 independent of Re or We.

We calculate the polymer stress using an idealized poly-
mer model, a solution of elastic dumbbells. Each molecule
consists of two beads, where the mass and drag of the mol-
ecule are concentrated, connected by a finitely extensible
nonlinear elastic(FENE) spring. An approximation of the
FENE spring, introduced by Peterlin, provides a closed con-
stitutive equation for the conformation of the dumbbell. This
is the FENE-P model,43 which, written for a solutionasx
−Cvt ,y,z,td becomes

a

1 − tra
b

+ WeS ]a

]t
− Cv

]a

]x
+ sv · = ad − ha · = vj

− ha · = vjTD = S b

b + 2
Dd, s4d

tp =
b + 5

b F a

1 − tra
b

− S1 −
2

b + 2
DdG , s5d

wherea is the nondimensional conformation tensor andb is
proportional to the contour length of the polymer—tra can-
not exceedb. Many authors use a slightly different form of
the FENE-P model, in which the factorsb/ sb+2d, sb+5d /b,

and 2/sb+2d in the above equations are replaced by 1, 1, and
0, respectively. This difference is negligible in the present
situation, whereb.103.

It is well-recognized that extensional rheology plays a
key role in turbulent drag reduction. A simple measure of the
importance of extensional polymer stress is the magnitude of
the parameter

Ex =
2

3

bhp

hs
=

2

3

bs1 − bd
b

. s6d

This parameter represents the ratio between viscous and
polymer stresses in extensional flow, and its definition fol-
lows from the asymptotic expansion for high elongation rates
of the extensional viscosity for the FENE dumbbell model.43

In uniaxial extension with extension rate«̇,

Ex = 1⇔ tp = tv as «̇ → `, s7d

⇔h+ = 3hs as «̇ → `, s8d

wheretv is the solvent contribution to the stress andh+ is the
extensional viscosity of the solution. Since turbulent flows,
as well as the ECS that we study here, are extensional on
average, one would expect to see a significant effect of the
polymer on the flow once Ex*1. For real drag-reducing
solutions, Ex values can be orders of magnitude greater than
1. For example, our results in this study are for Ex=100 and
b=0.97, which corresponds tob=4850. This value ofb cor-
responds to a solution of 250 000 MW polyethylene oxide in
water. Since under the conditions studied here, polymer ex-
tensions in the viscoelastic ECS are generally much less than
the maximum possible extension(see Fig. 10 and related
discussion), we do not expect the results to qualitatively
change at higher Ex values.

Given the relative simplicity of the FENE-P model com-
pared to real polymers, a natural question is its fidelity to real
polymer dynamics in complex flows. To address this point,
we have previously compared FENE-P to more realistic
bead-spring-chain models for calculating the stresses in the
flow field of a Couette flow ECS.44 We performed Brownian
dynamics simulations of 20-spring chains, with hydrody-
namic and excluded volume interactions among the polymer
segments explicitly included, as they moved along Lagrang-
ian trajectories in the ECS. Comparing the FENE-P results to
the “exact” results from the chain models, we found that the
FENE-P model qualitatively captured the spatial variations in
polymer stress. The largest quantitative differences in the
stresses were seen when the polymer chains were stretched
to near their full extension. For theb value and Weissenberg
number range used in the present study the polymer stretch
in the viscoelastic ECS is generally less than 30% of the full
extension(again, see Fig. 10 and related discussion). For
these low relative levels of polymer extension, only small
quantitative differences between FENE-P and the bead-
spring-chain models were seen. For these reasons, we believe
that the FENE-P model will adequately capture the effects of
polymers on the ECS in the parameter range studied here.

The conservation and constitutive equations are solved
through a Picard iteration. The velocity field of a Newtonian
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ECS, as computed in Ref. 24(or, for higher Ex values, a
viscoelastic solution found for lower We or Ex values), is
first used to calculate the polymer stress tensortp by insert-
ing the velocity field in the evolution equation fora and
integrating for a short length of time, usually one time unit
sl /Ud. For thistp, a steady state of the momentum and con-
tinuity equations is found by Newton iteration. The resulting
velocity field v is used to compute the newtp, and the pro-
cess is repeated until the velocity and polymer stress fields
converge to a steady state(in a reference frame traveling
with the wave speed). This Picard iteration, while not opti-
mal, obviates a large-scale Newton iteration(,106 un-
knowns in a nonsymmetric, indefinite problem).

The momentum and continuity equations are discretized
using a Fourier–Galerkin formulation with typically a 7
31937 grid. The conformation tensora is discretized with
a third-order, compact upwind difference scheme45 (see also
Refs. 46 and 47 for applications of compact differences to
polymer drag reduction). In this, as in most previous compu-
tational studies of polymers in turbulent flows, we have
found it necessary to add an artificial stress diffusivity,
s1/ScRed¹2a, to Eq. (4) to achieve numerical stability. The
Schmidt number Sc=n /D, which is the ratio of the momen-
tum diffusivity to stress diffusivity, is set to a value of 1. This
value of Sc, though artificially small, is greater or of the
same order of magnitude as that used in many DNS
studies.12,17,48,49In the range of Sc where solutions can be
obtained, the bifurcation diagrams shown below are very in-
sensitive to its value. The stress diffusion term is integrated
implicitly by the Crank–Nicholson method with the other
terms of the equation integrated using the Adams–Bashforth
method. This equation is solved on a finer mesh than the
momentum, continuity pair, typically 32332332. Higher
resolutions(832138 for the momentum, continuity pair
and 48348348 for the polymer stress) show less than 0.1%
change in the Fourier amplitudes of the velocity compared to
the lower resolutions.

III. RESULTS

A. Existence of the ECS

Throughout this study, we analyze the Newtonian and
viscoelastic exact coherent states at fixed streamwise and
spanwise lengths:Lx=2p /0.4 andLz=2p (Lx

+<160 andLz
+

<64 at Ret=20.5). The bifurcation diagram, which shows
the solutions of Eqs.(2) and(3) as Re increases, is given in
Fig. 2. These solutions are plotted using the maximum in the
rms wall-normal velocity fluctuations for the solution,vy8

21/2.
(Hereafter, an overbar indicates that the variable is averaged
over the streamwise and spanwise directions.) The trivial
base state in this geometryfvsyd=sy,0 ,0dg exists at all Re
and would appear as a horizontal line at maxvy8

21/2=0 if it
were plotted in Fig. 2. At Re<105sRet<20.5d for the New-
tonian flow (solid curve), two new solutions that have non-
zero wall-normal velocity appear via a saddle-node bifurca-
tion. These are the ECS. The solutions with higher maximum
wall-normal fluctuations at a given Re, i.e., solutions on the
upper branch of the bifurcation diagram, we call “high drag”
solutions due to their lower mean velocity aty=1 compared

to the lower branch, or “low drag,” solutions. The “high
drag” ECS are more important to the dynamics of the turbu-
lent coherent structures, as explained in Sec. I, and are the
main focus of this study. All results should be assumed to be
for the “high drag” states unless otherwise indicated.

For the viscoelastic flow at We=7, the dotted curve in
Fig. 2, the ECS again appear via a saddle node bifurcation.
However, the bifurcation occurs at a Reynolds number,
Remin<107 sRet<20.7d, that is higher than the Re for the
appearance of the Newtonian ECS. As the Weissenberg num-
ber increases to We=9(dashed curve) and We=11(dash-
dotted curve), the Re where the bifurcations occur likewise
increase to Re<112 sRet<21.2d and Re<127 sRet

<22.4d, respectively. Accompanying this change in the Re at
which the bifurcation occurs are changes to the flow field as
indicated by the decrease in the maximum of the rms wall-
normal velocity fluctuations at a given Re as We increases.
This change in the wall-normal velocity is more dramatic for
the “high drag” state than for the “low drag” state. Figure 3
shows the streamwise velocity for both the “high drag” and
“low drag” states aty+=11 (i.e., on a plane parallel to the
walls). Since the “low drag” ECS have weaker streamwise
vortices and are essentially less “three-dimensional,” i.e., the
streamwise streaks have a weakerx-dependence, they are
less effective than the “high drag” states at stretching the

FIG. 2. Bifurcation diagram for Newtonian and viscoelastic ECS withLx

=2p /0.4, Lz=2p and for the viscoelastic solutions Ex=100sb=4850d and
b=0.97. —, Newtonian,…, We=7; – – –, We=9; –·–, We=11.

FIG. 3. Streamwise velocity contours for the “high drag” and “low drag”
exact coherent states for Re=124 aty+=11 (the center of the channel).
Range:vx

+=7.8 (light gray) andvx
+=−7.8 (dark gray).
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polymer at a given We, leading to a smaller change in max
vy8

21/2 in the “low drag” states. Further results for the rms
wall-normal velocity fluctuations and other statistics of the
flow will be presented and interpreted subsequently.

To gain a better understanding of how the existence of
the ECS is affected by the addition of polymer, we look at
how the minimum value of Reynolds number at which the
ECS can exist, Remin (the bifurcation points in Fig. 2),
changes with Weissenberg number. This curve of Remin,
given in Fig. 4, separates the region where the ECS can exist
(above the curve) from the region where no ECS exist. At
low We, there is only a small difference between the Remin

values for the Newtonian and viscoelastic ECS. At We<7
the minimum Re for the viscoelastic ECS increases above
that for the Newtonian. As Weissenberg number increases
further, there is a dramatic increase in Remin with the bifur-
cation point for We=16 appearing at a Reynolds number
almost twice that of the Newtonian ECS. The importance of
this increase in Remin is seen more easily when one notes that
the Reynolds number is simply related to the wall-normal
length scale of the structure measured in wall units,Dy+, by
the relation Re=sDy+d2/4. In experiments, the thickness of
the buffer region(the wall-normal extent of this region in
wall units) is known to increase as drag reduction increases.
The results for the viscoelastic ECS closely mirror this in-
crease inDy+. For this reason, we will refer to the We above
which the critical value ofDy+ for the viscoelastic ECS is
greater than for the Newtonian ECS as the onset Weissenberg
number Weonset. As seen in Fig. 4, Weonset<7, which agrees
well with onset values from two recent DNS studies of poly-
mer drag reduction,19,42 which find onset at We<6. This
close agreement in Weonset is perhaps somewhat fortuitous
since the DNS studies are for fully turbulent channel flows,
not the Couette ECS flows studied here.

The dramatic increase in Remin once We*7 may also be
related to the observation that transition to turbulence in a
polymer solution is delayed to higher Re than in the New-
tonian case.8,14 Evidence suggests that the existence of ECS
is a prerequisite for transition(cf. the Introduction). If this is
the case, then an increase in the Reynolds number at which
the ECS exist implies a corresponding increase in the transi-
tion Reynolds number, as is found experimentally.

Given what we have learned about the existence of the
ECS, we now look in detail at what happens to the ECS at
constant Reynolds number as the Weissenberg number in-
creases. The mean velocity profiles for the Newtonian and
viscoelastic flows at Re=200sRe=28.3d are given in Fig. 5.
These mean profiles show the typical “S-shaped” curve seen
in fully turbulent plane Couette flows. The maximum mean
velocity in the ECS is reduced compared to the base state
velocity due to enhanced redistribution of the streamwise
momentum by the streamwise vortices. For the viscoelastic
ECS, the mean velocity increases significantly compared to
the Newtonian, illustrating that drag is reduced by the addi-
tion of polymer. For the case in Fig. 5(Re=200, We=16,
Ex=100, andb=0.97), drag is reduced by roughly 8%. Note
that at a slightly higher We, the ECS cannot exist at all at this
Reynolds number —Re=200 is very near the turning point at
We=16. The changes to the streamwise velocity fluctuations,
scaled by the friction velocityut are given in Fig. 6. Keep in
mind that the boundary conditions used in this simulation
eliminate the viscous sublayer, soy+=0 is (roughly) the start
of the buffer region. Near the lower edge of the buffer re-
gion, the streamwise velocity fluctuations are slightly smaller
for the viscoelastic flow, but over most of the domain these
velocity fluctuations increase. This result mirrors observa-
tions in fully turbulent drag reduced flows and is analyzed to
a greater extent in Sec. III B.

Instead of examining how the velocity fluctuations
change over the whole flow domain as in Figs. 5 and 6, we

FIG. 4. Change in the minimum Res=sDy+d2/4d as We increases.Lx

=2p /0.4, Lz=2p, Ex=100, andb=0.97. The dotted line shows the mini-
mum Re for the Newtonian ECS at the same streamwise and spanwise
wavelengths. The solutions studied in Figs. 11 and 12 are marked by3’s.

FIG. 5. Mean streamwise velocity: —, Newtonian—Re=200; – – –,
viscoelastic—Re=200, We=16.0, Ex=100, andb=0.97.

FIG. 6. Fluctuations in the streamwise velocity: —, Newtonian—Re=200;
– – –, viscoelastic—Re=200, We=16.0, Ex=100, andb=0.97. Only half of
the channel is shown; the other half is simply a reflection across the center-
line due to the symmetry of Couette flow.
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now look at how the maximum(or minimum) over the do-
main of a flow variable changes as We increases, at constant
Re. Figure 7 gives such a plot for the streamwise velocity
and vorticity fluctuations at Re=124. At low We, there is
very little change to the maximum values of these variables
compared to the Newtonian. However, as the Weissenberg
number rises above Weonset, the streamwise velocity fluctua-
tions increase rapidly while the streamwise vorticity de-
creases similarly. The increase(decrease) of streamwise ve-
locity (vorticity) gets steeper as the Weissenberg number
approaches where the ECS cease to exist for Re=124(see
Fig. 4). Similar results are seen for the wall-normal and span-
wise velocity fluctuation(Fig. 8). For We smaller than the
onset value,vy8

21/2 and maxvz8
21/2 deviate only slightly from

the Newtonian values. Above this onset value, both wall-
normal and spanwise fluctuations decrease drastically. Since
the magnitudes of bothvy8 andvz8 are greatest at the edges of
the streamwise vortices, we infer that their decrease is due to
the weakening of the vortices, which is consistent with the
rapid decrease of the streamwise vorticity. The changes in
bothvx8 andvy8 affect the Reynolds shear stress, −rvx8vy8. The
Reynolds shear stress is the wall-normal flux of streamwise
momentum and, thus, is the drag due to the velocity fluctua-
tions. Figure 9 shows that the reduction in Reynolds shear
stress is slightly more pronounced at lower We than is seen
for the velocity fluctuations. Above Weonset, −vx8vy8 decreases
dramatically as we saw with the velocity fluctuations. Since
the Reynolds shear stress is the key component of the drag,

this result provides a further indication of drag reduction in
the viscoelastic ECS. The analysis of the Reynolds stress
budgets in Sec. III B will shed more light on this reduction of
Reynolds shear stress.

If the polymers are suppressing the vortices, as indicated
by decreases invy8, vz8, and vx8, then we can expect to see
changes in the pressure fluctuationssp8d because they reach
their greatest magnitude(i.e., they are most negative) in the
vortex cores. Figure 10 shows the minimum of the pressure
fluctuations versus We. From this plot, we again see that
above Weonset, there is a significant change in the flow that
causes the minimum of the pressure fluctuations to increase.
Since p8 is most negative in the cores, this increase inp8
must be due to the weakening of the vortices. This result can
be more easily seen in a plot of isosurfaces of the pressure
fluctuations(Fig. 11) with p8 equal to 60% of the minimum
p8 for the Newtonian ECS at Re=124. By comparing this
figure to Fig. 1, it is obvious that the isosurfaces of negative
p8 correspond to the cores of the streamwise vortices. As the
Weissenberg number increases, the isosurfaces become
smaller, indicating that the strength of the vortices is dimin-
ishing. As will be shown in Sec. III B, this decrease in the
magnitude of the pressure fluctuations has a crucial impact
on the budgets for the Reynolds stresses. Isosurfaces of con-
stant streamwise vorticity, seen in Fig. 12, corroborate the
results from the pressure fluctuations. As We increases, the
vx surfaces grow smaller, consistent with vortex suppression.

FIG. 7. Maxima in the streamwise- and spanwise-averaged fluctuations in
streamwise velocity(—) and streamwise vorticity(– – –) vs We for Re
=124, Ex=100, andb=0.97.

FIG. 8. Maxima in the streamwise- and spanwise-averaged fluctuations in
wall-normal velocity (—) and spanwise velocity(– – –) vs We for Re
=124, Ex=100, andb=0.97.

FIG. 9. Maximum in the Reynolds shear stress vs We for Re=124, Ex
=100, andb=0.97.

FIG. 10. Minimum in the pressure fluctuations(—) and maximum in the
trace of the conformation tensor,a, (– – –) vs We for Re=124, Ex=100, and
b=0.97.
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Understanding that the salient effect of viscoelasticity on
the ECS is the suppression of the streamwise vortices, we
can investigate how this is brought about by studying the
spatial distributions of the polymer stresstp and, more im-
portantly, the force exerted by the polymer on the flowf
=fs1−bd/ReWeg= ·tp. Figure 13 shows the streamwise- and
spanwise-averaged trace of the polymer stress tensor. The
polymer stress is higher near the edge of the domain with the
maximum occurring aty+<2. (By symmetry identical be-
havior is occurring near the upper boundary.) This spatial
position for the maximum in polymer stress coincides with
the streak in the streamwise velocity, indicating that the poly-
mer molecules are highly stretched as they move through the
streamwise streak. Even though the polymers are highly
stretched compared to their equilibrium length, their end-to-
end distance generally remains well below their contour
length. As shown in Fig. 10, the maximum in the stretch
polymerstrad is less than 10% of its greatest possible exten-
sion sbd. Eventually, these highly stretched molecules flow

out of the streaks and toward the channel centerline in the
upwellings at the edges of the streamwise vortices. Since the
polymer stress seen in Fig. 13 decreases toward the center-
line, these molecules must be relaxing as they move into and
around the vortices.(This process of polymer molecules
stretching in the streaks and relaxing at the edges of the
vortices is also confirmed by Brownian dynamics simula-
tions of model polymers along a Lagrangian trajectory in the
ECS.44) The result of this process of stretching and relax-
ation of the polymer is a region of high polymer stress in the
streamwise streak and a region of lower polymer stress
where fluid elements have left the streaks and begun to move
around one of the vortices. Taking the divergence of the
polymer stress gives a force due to the polymer that is di-
rectly opposed to the movement of fluid into the vortex.
Since the fluid elements moving into the vortex are being
slowed by the polymer force, the vortex is weakened. This
vortex suppression leads to the results described in the pre-
ceding paragraphs.

As a further indication of the origin of the vortex sup-
pression, Fig. 14 shows a comparison of the wall-normal and
spanwise velocities to the corresponding components of the
polymer force. The upwelling and downwelling associated
with the counter-clockwise rotating vortexsvx,0d are
clearly seen in the right half of thevy plot. The regions where
the wall-normal and spanwise velocities are highest(white
contours) are matched by the negative regions of the polymer
force (black contours) and, likewise, negative regions ofvy

and vz correspond to positivefy and fz. Figure 11 shows
isosurfaces of thex-component of the polymer force at Re
=124. Comparing these isosurfaces to those for the stream-

FIG. 11. Isosurfaces of pressure fluctuations,p8=0.60pN,min8 (dark gray), and
streamwise polymer forces= ·tpdx=−0.0027 (white) and 0.0027(black).
These values of the polymer force are 60% of the minimum and maximum
values of the force at We=6. Re=124sRet=22.27d, Ex=100, andb=0.97.
Top left: Newtonian; top right: We=6; bottom left: We=8; bottom right:
We=10.

FIG. 12. Isosurfaces of streamwise vorticity,vx
+=0.41 (light gray) and vx

+

=−0.41 (dark gray), and streamwise velocity,vx
+=−8.5 (white), and vx

+

=8.5 (black). Re=124sRet=22.27d, Ex=100, andb=0.97. Top left: New-
tonian; top right: We=6; bottom left: We=8; bottom right: We=10.

FIG. 13. Streamwise- and spanwise-averaged polymer stress in the vis-
coelastic ECS. Re=200, We=16.0, Ex=100, andb=0.97.

FIG. 14. Contours of velocity and polymer force atx+=38 for the viscoelas-
tic ECS with Re=124, We=10, Ex=100, andb=0.97. Top left:vy

+, range
−0.96(black) – 0.96(white) top right:vz

+, range −2.14(black) – 2.14(white)
bottom left: fy, range −0.00055(black) – 0.00055(white) bottom right: fz,
range −0.0010(black) – 0.0010(white).
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wise velocity given in Fig. 12, we see that they do occur at
the same spatial positions and that they are anticorrelated
(i.e., fx is negative wherevx is positive and vice versa). Nev-
ertheless, although thex-component of the polymer force is
larger in magnitude than the other two components,fy and fz

are more important in the suppression of the vortices and in
drag reduction. In simulations wherefx is artificially set to
zero, we still see levels of drag reduction comparable to
those seen when all three components are included. This is
becausefy and fz directly counteract the fluid motion in the
streamwise vortices. This anticorrelation of polymer has also
been found in the buffer layer via DNS of drag-reducing
solutions.50

The mechanism by which the polymer suppresses the
streamwise vortices can be summarized as follows: Polymer
molecules become stretched in the streamwise streak, then
relax as they move from the streak into one of the stream-
wise vortices. The relaxation of the polymer molecules pro-
duces a force that directly opposes the motion of the fluid in
the vortex and thus suppresses it. Recall from the Introduc-
tion that the mechanism that underlies the ECS consists of
three subprocesses: streak formation by the streamwise vor-
tices, streak instability, and vortex regeneration. The low-
speed streak in the flow is formed when the counter-rotating
streamwise vortices pull slow moving fluid up from the
lower boundary. Since the vortices are weakened by the
polymer, the extent to which slow moving fluid is pulled up
decreases. If the streak instability is weakened then the
streamwise vortices are further weakened and the self-
sustaining process tends to collapse.

B. Effects on Reynolds stress budgets

To gain more insight into how vortex suppression affects
the velocity fields, we examine the budgets of the Reynolds
stress balance. In their study of a fully turbulent channel flow
with polymer injection at the wall, Walker and Tiederman7

found reduced levels ofvy8 andvx8vy8 and increased levels of
vx8 due to the polymer. Since energy transfer among these
quantities is represented by the pressure-strain correlations in
the Reynolds stress budgets(as described below), they con-
cluded that the polymer alters the processes represented by
these correlations. A DNS study of polymer drag reduction
corroborates this conclusion.18 In light of these results, we
study the Reynolds stress budgets in the viscoelastic ECS to
understand how the mechanism of drag reduction educed in
the previous section inhibits the redistribution processes of
the pressure-strain correlations. In the ECS, the polymer be-
comes highly stretched in the streamwise streaks of the tur-
bulent coherent structures and relaxes as it moves into and
around one of the streamwise vortices flanking the streak.
This relaxation works to “unwind” the vortex and reduce its
strength. Since the mechanism that sustains the coherent
structures39 depends on the vortices to regenerate the stream-
wise streak, the suppression of the streamwise vortices leads
to a collapse of this mechanism and ultimately to drag reduc-
tion. This section looks at the Reynolds stress budgets, in
particular, to understand how the polymer affects the
pressure-strain correlations, giving rise to the decreases in

the Reynolds shear stress, −rvx8vy8, and wall-normal velocity
fluctuations and increases in streamwise velocity fluctua-
tions.

The Reynolds stresses are actually −rvi8v j8 but it is con-
venient and conventional to refer tovi8v j8 as the Reynolds
stresses, which we will do henceforth. In this section, we
scale the Reynolds stresses withut

2 and time with n /ut
2,

whereut is the friction velocity andn is the zero-shear-rate
kinematic viscosity of the solution. The equation for the Rey-
nolds stresses for a polymer solution can be written as

]vi8v j8

]t
+ V̄k

]

]xk
vi8v j8 + Tij

t = Pij + Dij + Rij + Tij
p + «i j + Eij ,

s9d

where the overbar represents an average over the streamwise
and spanwise directions(cf. Ref. 11, Chap. 7). Here the
velocity, pressure, and force due to the polymer
sf =fs1−bd/ReWeg= ·tpd are written as sums of mean and

fluctuating parts(v=V̄ +v8, p= P̄+p8, andf =F̄+ f8). The first
two terms of Eq.(9) are zero for the ECS since they only
include x-derivatives of the averaged quantities[s] /]tdvi8v j8

→−Cvs] /]xdvi8v j8=0 andV̄xs] /]xdvi8v j8=0]. The terms

Tij
t =

]

]xk
vi8v j8vk8 s10d

and

Tij
p = −

]

]xk
svi8p8d jk + v j8p8dikd s11d

are the transport of Reynolds stress by the fluctuating veloci-
ties and the fluctuating pressure, respectively. Note thatT11

p

=0 since there are no gradients of the averaged quantities in
the streamwisex direction. The production term,

Pij = − vi8vk8
]V̄j

]xk
− v j8vk8

]V̄i

]xk
, s12d

generates Reynolds stresses through interaction with the

mean velocity gradient. For shear flows, which haveV̄
=fVxsyd ,0 ,0g, the termsP22 andP33 are zero. Thus, there is
no production of wall-normal or spanwise velocity fluctua-
tions due to the mean shear. The pressure-rate-of-strain term

Rij = p8S ]vi8

]xj
+

]v j8

]xi
D , s13d

is traceless for an incompressible fluid and does not show up
in the equation for turbulent kinetic energy, which is found
by taking 1

2 the trace of Eq.(9). Therefore, this term simply
redistributes energy from the streamwise velocity fluctua-
tions to the wall-normal and spanwise velocity fluctuations.
As stated earlier, there is no production of eithervy8vy8 or vz8vz8
by the term of Eq.(12), so the terms of the pressure-rate-of-
strain act as a pseudoproduction term for wall-normal and
spanwise velocity fluctuations. The pressure-rate-of-strain
term [Eq. (13)] and the pressure transport term[Eq. (11)] are
a decomposition of the velocity-pressure-gradient term,
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II i j = Rij + Tij
p = − vi8

]p8

]xj
+ v j8

]p8

]xi
. s14d

The diffusion and dissipation of Reynolds stresses are given
by

Dij =
b

Re

]2

]xk]xk
vi8v j8 s15d

and

«i j = −
2b

Re

]vi8

]xk

]v j8

]xk
, s16d

respectively. The direct contribution of the polymer stresses
to the Reynolds stress budgets is the velocity-polymer-force
term

Eij = vi8f j8 + v j8f i8. s17d

Note that for the current exact coherent states, vorticity
boundary conditions are used. This choice of boundary con-
ditions eliminates the viscous sublayer. Therefore, when the
wall is referenced in this section, it should be understood that
this refers to the boundary of the buffer layer.

The contributions of the production, dissipation, and dif-
fusion terms to thevx8vx8 budget are compared for a Newton-
ian sRe=200d solution and a viscoelastic solution(Re=200
and We=16) in Fig. 15. For the viscoelastic flow, the pro-
duction term decreases compared to the Newtonian near the
wall. Due to the use of vorticity boundary conditions in this

study, the]V̄x/]y contribution to the production is the same
for both the viscoelastic and Newtonian flow near the wall.
Therefore, this reduction inPxx near the wall must be due to
decreases invx8 and vy8. Farther from the wall, differences

between]V̄x/]y in the viscoelastic and Newtonian flow is
apparent as the production for the viscoelastic flow becomes
greater than for the Newtonian. Since the polymer reduces
the strength of the vortices and thus the pressure fluctuations,

the redistribution of the mean shear is reduced and]V̄x/]y
increases near the centerline for the viscoelastic flow(Fig.
5). The increase in the production term in thevx8vx8 budget
away from the wall is one factor in the increase of stream-

wise velocity fluctuations in this region.(The other factors
increasing these fluctuations are discussed below.) These
trends in the effects of the polymer on the production, diffu-
sion, and dissipation terms in the ECS are qualitatively the
same as found via DNS of drag-reducing fluids.18 Specific
numbers are different because of the differences in geometry
and parameters, but as an example of the relationship be-
tween our ECS results and those from DNS, Dimitropoulos
et al.18 find in channel flow DNS that the maximum value of
P11 is 0.3 for Ret=125, We=50, and Ex<66; for the vis-
coelastic Couette flow ECS at the conditions of Fig. 15 we
find a maximum value of 0.45.

Figure 16 shows the remaining contributions to thevx8vx8
budget. The pressure-rate-of-strain term in this budget de-
creases in magnitude due to the addition of polymer. As
stated above, the pressure-rate-of-strain term acts to transfer
energy from the streamwise velocity fluctuations to the wall-
normal and spanwise fluctuating velocities. Since this term is
reduced in magnitude, the transfer of energy is reduced and
the streamwise velocity fluctuations increase as seen in Fig.
6. The decrease in the pressure-rate-of-strain term is due to
the reduction of the pressure fluctuations. The pressure fluc-
tuations in the ECS deviate most from the mean in the cores
of the vortices. The decrease of vortex strength due to the
polymer causes the magnitude of the pressure fluctuations to
decrease and, likewise, the redistribution due to the pressure-
rate-of-strain term. The direct contribution of the polymer to
the vx8vx8 budget is also seen in Fig. 16. Notice that this con-
tribution is largest near the wall, indicating that the polymer
stretch (and stress) is highest in the streamwise streaks,
which matches the proposed mechanism. The direct contri-
bution of the polymer approaches zero farther from the wall
where the changes in the streamwise fluctuations are largest.
This indicates that the effects of the polymer are more com-
plicated than what is simply captured in the velocity-
polymer-force term.

Figures 17 and 18 show the contributions to thevx8vy8
budgets. The production term, which acts as a sink in this
case, decreases in magnitude for the viscoelastic fluid. How-
ever, the pressure-rate-of-strain term for this budget, which
acts to increase Reynolds shear stress by redistributing en-
ergy from the streamwise fluctuations, also decreases. This is

FIG. 15. The contribution to thevx8vx8 budget of the production, diffusion,
and dissipation terms for NewtoniansRe=200,b=1d and viscoelastic(Re
=200, We=16.0, Ex=100, andb=0.97) solutions. Only half of the domain
is shown—by symmetry all statistical quantities are symmetric across the
Couette cell centerliney+=ÎRe.

FIG. 16. The contribution to thevx8vx8 budget of the pressure-rate-of-strain,
turbulent transport, and velocity-polymer-force terms for NewtoniansRe
=200, b=1d and viscoelastic(Re=200, We=0.16, Ex=100, andb=0.97)
solutions.
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again due to the polymer weakening the vortices and reduc-
ing the pressure fluctuations. The reduction in the pressure-
rate-of-strain term(source) is greater than the increase in
production term, especially near the center of the channel,
and the net effect is a decrease in the Reynolds shear stress.
The velocity-pressure gradient term(Fig. 19), which is the
sum of theRxy andTxy

p terms, decreases for the viscoelastic
ECS. The velocity-polymer-force term is small in this budget
because the polymer are stretched primarily in the stream-
wise direction(so fy8 is small) and stretching primarily occurs
near the wall(so vy8 is smallest wherefx8 is largest). These
results closely match those of Dimitropouloset al.18

Figures 20–22 show the contributions to thevy8vy8 budget.
Recall that for thevy8vy8 budget, the production term is zero
for shear turbulence and also for the ECS. However, the
pressure-rate-of-strain term acts to transfer energy from the
streamwise fluctuating velocity to the wall-normal velocity.
Figure 21 shows that the pressure-rate-of-strain term de-
creases in magnitude in the viscoelastic case, reducing the
transfer of energy between the velocity components. As men-
tioned previously, this change in the pressure-rate-of-strain
term is caused when the polymer reduces the pressure fluc-
tuations by weakening the streamwise vortices. The velocity-
polymer-force term in this budget is small and negative, em-

phasizing again that the effects of viscoelasticity on the
Reynolds stresses are not simply related to the direct contri-
bution of the polymer force.

All of the results presented here qualitatively match
those of the DNS study by Dimitropouloset al.18 The effects
of viscoelasticity on the production(and pseudo-production)
terms can be attributed to the suppression of the vortices by
the polymer. The effects of streamwise vortex suppression
are twofold: First, the redistribution of mean shear due to the
vortices is reduced, increasing the net production of stream-
wise velocity fluctuations by the mean shear. Second, the
pressure fluctuations, which show the largest deviation from
the mean pressure in the vortex cores, are reduced, decreas-
ing the transfer of energy from the streamwise velocity fluc-
tuations to the wall-normal and spanwise directions. The
structural mechanism for drag reduction proposed in the pre-
vious section is consistent with the Reynolds stress results.

IV. CONCLUSIONS

We have studied the effects of viscoelasticity on non-
trivial, traveling-wave solutions in plane Couette flow that
serve as a minimal model for the turbulent buffer region.
These traveling-wave solutions, called “exact coherent
states”(ECS), capture the dominant structure of the buffer
region: pairs of streamwise-aligned vortices that lead to
steaks in the streamwise velocity. The optimum length scales
for the ECS in plane Poiseuille flow quantitatively match the

FIG. 18. The contribution to thevx8vy8 budget of the pressure-rate-of-strain,
turbulent transport, pressure transport, and velocity-polymer-force terms for
NewtoniansRe=200,b=1d and viscoelastic(Re=200, We=0.16, Ex=100,
andb=0.97) solutions.

FIG. 19. The contribution to thevx8vy8 budget of the velocity-pressure-
gradient term for NewtoniansRe=200,b=1d and viscoelastic(Re=200,
We=0.16, Ex=100, andb=0.97) solutions.

FIG. 20. The contribution to thevy8vy8 budget of the diffusion and dissipation
terms for NewtoniansRe=200,b=1d and viscoelastic(Re=200, We
=0.16, Ex=100, andb=0.97) solutions.

FIG. 17. The contribution to thevx8vy8 budget of the production, diffusion,
and dissipation terms for NewtoniansRe=200,b=1d and viscoelastic(Re
=200, We=0.16, Ex=100, andb=0.97) solutions.
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length scales of the turbulent coherent structures observed
in experiments and recent experimental30 and DNS
evidence35–37suggests that the ECS underlie the dynamics of
these structures. In the variant of Couette flow that we study
here, above a certain Weissenberg number Weonset<7, there
is dramatic increase in the minimum Reynolds number at
which the ECS can exist. Since the minimum Reynolds num-
ber is related to the minimum wall-normal size for the exis-
tence of the ECSfsRemin= 1

4sDymin
+ d2dg, one effect of vis-

coelasticity is to shift the mechanism that maintains the ECS
to larger wall-normal length scales, mirroring experimental
observations of buffer region “thickening” in drag reduced
flows. Since evidence indicates that the existence of the ECS
is a prerequisite for transition to turbulence, the increase in
Remin is also consistent with the experimental observed delay
in transition for polymer solutions.

The mechanism that is responsible for the upward shift
of Remin is one of vortex suppression. For the viscoelastic
ECS above Weonset, there is a rapid decrease in the rms,
wall-normal, and spanwise velocity fluctuations and the rms,
streamwise vorticity. Since the magnitudesvy8 and vz8 are
greatest at the edges of the streamwise vortices, the decrease
in their values, and that ofvx8, indicate that the polymer is
weakening the vortices. A result of the suppression of the
vortices is a decrease in the magnitude of the pressure fluc-
tuations in the vortex cores(i.e., they become less negative).

The suppression of the vortices is understood as follows: The
polymers become highly stretched moving through the
streamwise velocity streak and relax as they move out of the
streak, into and around a vortex; the polymer relaxation pro-
duces a force that directly opposes the motion of fluid ele-
ments entering the vortex, slowing them, and weakening the
vortex. While this work has only presented results for the
ECS in plane Couette flow, our preliminary results for vis-
coelastic ECS in plane Poiseuille flow show the same mecha-
nism and qualitatively similar changes to the velocity
fluctuations.34

The proposed mechanism also explains the changes
measured in the Reynolds shear stress,vx8vy8 and fluctuating
velocities at low to moderate levels of drag reduction, as
shown in Fig. 23. In the budget of Reynolds stresses, the
pressure-rate-of-strain term acts to redistribute energy from
the streamwise velocity fluctuations to the wall-normal and
spanwise velocity fluctuations and the Reynolds shear stress.
This redistribution term depends on the pressure fluctuations,
which are of highest magnitude in the vortex cores. Since the
polymer weakens the vortices, the magnitude of the pressure
fluctuations decreases as We increases and, as a conse-
quence, the pressure-rate-of-strain term decreases in magni-
tude. Transfer of energy from the streamwise fluctuations to
the Reynolds shear stress diminishes. The reduction in the
Reynolds shear stress leads to drag reduction.

The viscoelastic ECS comprise a minimal description of
near-wall turbulence in a polymer solutions. They are au-
tonomous, and the effects of polymer on these states mirror
DNS and experimental observations near the onset of drag
reduction: structures shift to larger wall-normal length scales,
streamwise velocity fluctuations are enhanced while wall-
normal and spanwise fluctuations, streamwise vorticity fluc-
tuations and Reynolds shear stress decrease, and drag is re-
duced.

At high levels of drag reduction, the character of drag
reduced flow changes significantly. The log-layer mean ve-
locity gradient(inverse von Kármán constant) is significantly
higher than the Newtonian value over a large fraction of the
channel.1 Furthermore, as the level of drag reduction in-
creases, the streamwise velocity fluctuations(scaled withut)
peak and then decrease,51,52a result that suggests that at high
drag reduction a change in the basic turbulence production

FIG. 21. The contribution to thevy8vy8 budget of the pressure-rate-of-strain,
turbulent transport, pressure transport, and velocity-polymer-force terms for
NewtoniansRe=200,b=1d and viscoelastic(Re=200, We=0.16, Ex=100,
andb=0.97) solutions.

FIG. 22. The contribution to thevy8vy8 budget of the velocity-pressure-
gradient term for NewtoniansRe=200,b=1d and viscoelastic(Re=200,
We=0.16, Ex=100, andb=0.97) solutions.

FIG. 23. Summary of the effects of the polymer on the Reynolds stresses.
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mechanism occurs. The relevance of the viscoelastic ECS in
this regime is not clear.
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