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Recently discovered traveling-wave solutions to the Navier—Stokes equations in plane shear
geometries provide model flows for the study of turbulent drag reduction by polymer additives.
These solutions, or “exact coherent stat@sC9), qualitatively capture the dominant structure of the
near-wall buffer region of shear turbulence, i.e., counter-rotating pairs of streamwise-aligned
vortices flanking a low-speed streak in the streamwise velocity. The optimum length scales for the
ECS match well the length scales of the turbulent coherent structures and evidence suggests that the
ECS underlie the dynamics of these structures. We study here the effect of viscoelasticity on these
states. The changes to the velocity field for the viscoelastic ECS, where the FENE-P model
calculates the polymer stress, mirror the modifications seen in experiments of fully turbulent flows
of polymer solutions at low to moderate levels of drag reduction: drag is reduced, streamwise
velocity fluctuations increase while wall-normal fluctuations decrease, and smaller wavelength
structures are suppressed. These maodifications to the ECS are due to the suppression of the
streamwise vortices. The polymer molecules become highly stretched in the wavy, streamwise
streaks, where the flow is predominately elongational, then relax as they move from the streaks into
and around the streamwise vortices, where the flow is predominately rotational. This relaxation of
the polymer molecules produces a force that directly opposes the fluid motion in the vortices,
weakening them. Since the pressure fluctuations have their greatest magnéuydbey are most
negativg in the cores of the vortices, a reduction in vortex strength leads to a decrease in the
magnitude of the pressure fluctuations. The pressure fluctuations redistribute energy from the
streamwise velocity fluctuations to the Reynolds shear stress, so a decrease in their magnitude leads
to a reduction in turbulent drag. For the viscoelastic ECS, we also find that after the onset of drag
reduction(at Weissenberg number, Wer) there is a dramatic increase in the critical wall-normal
length scale at which the ECS can exist. This sharp increase in length scale mirrors experimental
observations and is also consistent with the observed shift to higher Reynolds numbers of the
transition to turbulence in polymer solutions. 2004 American Institute of Physics
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I. INTRODUCTION large stresses are generated due to the polymer contribution
to the extensional viscosity. It is recognized that the exten-
The decrease due to polymer additives of skin friction insional behavior of the polymers is key to the phenomenon of
turbulent flow has received much attention since the discoverag reduction, but a detailed knowledge of how polymer
ery of the phenomenon in the 194JU§.Very small polymer stretch and relaxation interact with turbulent structure is not
concentrations, on the order of ten parts per million byavailable. The goal of the present work is to better under-
weight, can lead to reductions in drag of 50% or greater. Atstand this interaction, particularly in the context of near-wall
these small concentrations the properties of the solution medurbulence.
sured in simple shear flows do not deviate appreciably from  Observations of drag-reducing fluids indicate that, at
those of the pure solvent. However, in extensional flows|east near the onset Reynolds number for drag reduction, the
effects of the polymer are confined primarily to the near-wall
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mental observations and direct numerical simulaiDiNS)

of turbulent flows, the dominant structures of the buffer re-
gion are found to be pairs of counter-rotating, streamwise-
aligned vortices®'! These vortices pull slower moving fluid
away from the wall, forming low-speed, streamwise velocity
streaks. There is a characteristic behavior of these streak:
known as “bursting” that produces turbulent kinetic energy
in the buffer region. During a “bursting” event, the down- 20§
stream end of a streak moves rapidly away from the wall. 1
This part of the process, known as “ejection,” has posizlziye :
(wall-normal fluctuating velocity and negativev;, (stream-

wise fluctuating velocity Continuity demands that the
“ejection” be accompanied by a “sweep” that brings fast-

moving fluid near the walfi.e., v/,.<0 andv’ >0). The pro- FIG. 1. “Exact coherent state” in plane Couette flow with constant vorticity
9 ( EL - Ux ) —_ P boundary conditions. “High drag” state at Re=110. The contours atg of

duction of kinetic energy is U;,(v;,ﬁV/ﬂy, whereV is the  (white is positive, black is negatiyeThe constant vorticity surfaces are
mean velocity in thex-direction (and overbar denotes en- y=-0.36(dark gray and»;=0.36(light gray)
semble averagé’ Given this equation for production, it is

easy to see that the signs of the velocities associated with ied i he simul ; q
both “ejections” and “sweeps” give positive kinetic energyta'e in Sec. lll. The smutaneous appearance o tyvo steady
production. states as a parameter increases, Re in this case, is a saddle-

In flows exhibiting drag reduction, the structure of the nodg bifurcation, also referred fo as a limit point or fod.
buffer region is modified. Most notably, the wall-normal While both of these solutions are unstable, one of these

thickness of the buffer region increagethe coherent struc- states, which We.W'” call.the high drag” state due o its
tures in this region shift to larger length scaléZand the lower mean velocity at a given Reynolds number, has greater

. stability relative to the “low drag” ECS—the “high drag” so-
bursting rate decreaseé3hese structural changes are accom-; . Lo
. : . lutions have one more stable direction in phase space than
panied by changes in the root-mean-squ@ms) velocity

. tre “low drag” solutions. Experimentally, Bottiet al. have
fluctuations and Reynolds stresses. Namely, the wall-normal, _, .. o : .
and spanwise fluctuations are reduced while, at least at Iovsvtablhzed an ECS-like steady state in a Couette flow with

P . ' . countermoving walls by placing a thin, spanwise-oriented
FO modera’_ce degrees of drag reductlon_, the stre_amW|se Veloﬁiire in the zero-velocity pIan%O. The wire provides a finite
ity fluctuations are enhancétd Streamwise vorticity fluctua- amplitude disturbance to the flow as well as pinning the lo-
tions are also decreasé%jPerhaps most importantly, the

17 cation of the flow pattern.
Reynolds shear stress decredSes: These changgs be- The appearance of the ECS presages the transition to
come more pronounced as the extensional viscosity of th

| lution is i £}61819 furbulence. For Couette flow with no-slip boundary condi-
polymer solution is increased.” ™

: , _tions, the ECS appear at Re1282° while persistent turbu-
Due to the importance of the buffer region structures inance is seen experimentally for Re825% In channel flow,

the production of turbulent energy and the observation thaf, Ecs arise at Re6502° experimentally, the transition to
these structures are modified in drag-reducing flows, they arg, 1y lence is at Re 1000%* For pipe flow Re= 1300 (Ref.

the focus of the present study. To perform the study in ®8) for the appearance of the ECS and~Re100 (Ref. 32
well-controlled way, we make use of an “exact” model of for transition. Note that these experimental values for transi-
these structures, the family of so-called “exactzscoheren{ion are for the existence of persistent, fully developed tur-
states”(EC9 recently found in plane shear flof%*°The  pylence, but intermittent turbulent spots can appear well be-
ECS are traveling-wave solutions of the Navier—Stokes equagy these values.

tions that capture the dominant buffer region structure, i.e., For the ECS in plane Poiseuille flow, the optimum di-
counter-rotating, streamwise-aligned vortex pairs that flanknensions of the structure compare very favorably to the
streaks in the streamwise velocit§®*’ The structure of an  |ength scales of the turbulent coherent structures found via
ECS in plane Couette flow is seen in Fig. 1. The isosurfacegirect numerical simulatiogDNS) and experimerﬁ‘? Here,

of streamwise vorticity clearly show a counter-rotating pairthe optimum length scales correspond to the minimum Rey-
of streamwise vortices, while the contours of streamwise venolds number at which the Newtonian ECS exife.
locity show the high speedwhite) and low speedblack  =44.21 for the case of channel flpvirhe optimum spanwise
streaks brought about by the vortices. This is the same strugength, L;=105.51, closely matches the streak spacing of
ture that is seen to dominate the buffer region. Travelingone-hundred wall-units measured in experiments over a wide
wave solutions of this structure are found in plane Couetteange of Reynolds numbetsThroughout this work, ther

and Poiseuille flows using both constant vorticity and no-slipsuperscript indicates that the length is scaled by the viscous
boundary conditions as well as in pipe flé6%° For the vari- length scalev/u,, where theu,=\7,./p is the friction ve-

ant of plane Couette flow studied here, which is described itocity and v is the total, zero-shear-rate kinematic viscoyity.
detail in Sec. Il, there is a triviallaminap solution to the  Minimal channel flow, i.e., flow in the smallest computa-
Navier—Stokes equations at all Reynolds numbers, Re. Afional domain that reproduces the velocity field statistics of
Re=100, two traveling-wave solutions appear as further denear-wall turbulence, gives a range for the streamwise length
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of 250-350, compared th;=273.73 for the ECS, and a reduction. The polymer molecules become highly elongated
spanwise length that is again approximately 100 wall utiits. as they move through the streamwise streak. As they move
The statistics of the near-wall region are faithfully capturedout of the streak and into one of the vortices, the polymer
in the minimal channel flow up tg*~40, while the wall- molecules relax. This relaxation produces a polymer force
normal size of the optimum ECS isy*=44.21. It should be that opposes the vortex motion. The polymer force thus
pointed out that this minimum channel contains a singleweakens the vortex by slowing the fluid moving into it. The
wavelength of a wavy streak and a pair of quasistreamwisgeakening of the vortices leads to collapse of the mechanism
vortices, which is the same structure seen in the ECS. Anthat sustains the EC8 and ultimately to a reduction in drag.
other invariant length scale in near-wall turbulence is theThis mechanism is also supported by elastic energy argu-
peak in the production of turbulent kinetic energy yit ~ ments proposed in a recent DNS study by Minal:* In
~12;* the channel flow ECS also captures this lengththeir study, they find that during drag reduction turbulent
scale® The optimum ECSjuantitativelycapture the length energy is transformed into elastic energy by the stretching of
scales of near-wall turbulence. the polymer near the wall. The vortices of the buffer region
Beyond capturing the observed length scales of thdhen lift this elastic energy up where it is released as turbu-
buffer region structures, recent research also indicates thégnt kinetic energy or dissipated in the buffer and log regions.
the ECS are saddle-points in phase space around which tfe the present study, we study the viscoelastic ECS for high
strange attractét of near-wall turbulence is built. Recent extensional viscosity solutions, mapping out how their exis-
studies by Kawahara and Kittaand Toh and ltar§ find  tence region changes with ECS and tracking the changes in
periodic solutions in minimal channel flows that are bifurca-the flow structure both directly and through the Reynolds
tions of the ECS. The bursting trajectories in fully turbulentstress budgets. These results allow us to flesh out our previ-
flows seem to be built around these periodic solutions. APus work and show in some detail the mechanism by which
further indication of this comes from a study by Jiménez andhe polymer leads to drag reduction and the associated
Simens that applies a numerical filter to DNS of channelchanges in velocity statistics in this class of flows.
flow to isolate the near-wall region from the main-stream
turbulence3.7 The Simplesl(nontrivial) flow structure, found II. MATHEMATICAL FORMULATION AND SIMULATION
when the numerical mask is §t =50, is a traveling-wave pETAILS
solution that has qualitatively the same structure as the ECS.
The length scales of this traveling wave; ~250, Ay* The present study focuses on a variant of plane Couette
~50, andL} ~ 150) are similar to the optimum values for the flow. (The effects of viscoelasticity on the channel flow ECS
channel flow ECS described above. As the mask moves fulvill be addressed in subsequent studieBenoting the
ther away from the wall, these traveling-wave solutions bi-Streamwise direction as the wall-normal direction ag, and
furcate into quasiperiodic solutions. These solutions therihe spanwise, or vorticity, direction aswe consider a flow
evolve into the bursts of full-scale turbulence with the flow With boundary conditions
being essentially turbulent when the numerical filter reaches
y*=70. These results, along with the existence of the ECS —
indicate that staggered streamwise vortex traveling wave pat- N
terns are autonomous in wall-bounded shear flows and provherev,, vy, andv, are the streamwise, wall-normal, and
vide, at least in part, the foundation on which the near-wallspanwise components of the velocity, respectively. The
turbulent fluctuations are built. characteristic velocityJ, which is the velocity of the unidi-
The self-sustaining process that underlies the ECS, makectional laminar solution at the upper boundary, and the
ing them autonomous, consists of three interacting, concuralf-height of the channélare used to scale the velocity and
rent subprocesses: streak formation, streak instability, angositions, respectivelithough we will report results in wall
vortex regeneratioﬁg.'?’9 The counter-rotating, streamwise- units, with y* measured from the bottom boundayy -1).
aligned vortex pairs pull fluid with low streamwise velocity These “constant vorticity” boundary conditions provide an
up from near the wall while, at the opposite side of a vortex,advantage over no-slip conditions in that they allow us to
higher velocity fluid is pulled toward the wall. This leads to model only the buffer region in our domain by eliminating
a spanwise stratification of the streamwise veloditg., the viscous sublayer. The use of no-slip boundary conditions
streaks in the streamwise velogityfhe spanwise inflections does not qualitatively change the behavior of the E€sor
in the streamwise velocity lead to a three-dimensionathis flow, a trivial base state existg(y)=ye, for —1<y=<1.
Kelvin—Helmholtz-like instability° that concentrates wall- Periodic boundary conditions are used in the streamwise and
normal vorticity. This concentrated wall-normal vorticity, spanwise directions. For this study, the wavelength of the
through a nonlinear interaction with the mean shear, is tiltedtructures in the streamwise and spanwise directiond are
and stretched in the streamwise direction, reenergizing the27/0.40 L;~160 at Re=20.5 and L,=2m/1.0 (L]
streamwise vortices. In studying the viscoelastic ECS, we=64), respectively.
aim to understand how the polymer affects one or all of the In our formulation, timet is scaled withl/U, and pres-
subprocesses that comprise this mechanism. surep with pU?, wherep is the fluid density. The stress due
We have previously studied viscoelastic ECS with low-to the polymers, is nondimensionalized with the polymer
extensional-viscosity polymer solutiofls That work pro- elastic moduluss=7,/\, where, is the polymer contribu-
vided some structural insight into the mechanism of dragion to the zero-shear-rate viscosity ands the time con-

)
=1, vy:j:o aty==+1, (1)
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stant for the polymer—the polymer model is described beand 2{b+2) in the above equations are replaced by 1, 1, and

low. For a traveling wave solution(x—C,t,y,z), whereC,

0, respectively. This difference is negligible in the present

is the wave speed, the momentum balance and the equatisituation, wherep> 10°.

of continuity are
N 1
-C,—+Vv:-Vv=-Vp+B—V¥u
v P+Bre

11
*1-PraweY ™ )

V. .v=0, (3)

where 7 is the solvent viscosity, WexU/I is the friction
Weissenberg number, an@=7s/(7s+7,). The Reynolds

number Re is based on the total zero-shear-rate viscosit
Re=pUl/(7s+ 1,) and we define the friction Reynolds num-

ber as the full height of the channel—i.e., the wall-normal
extent of the streamwise vortices—expressed in wall units,

so Re= 2\Re.

We seek “sinuous” solutions that satisfy the shift-reflect

symmetry
U (X,Y,2) = uy(X+ L /2.y, - 2),

vy(X,Y,2) =vy(X+L,J2,y,~ 2),

vAX,Y,2) = —v,(x+LJ/2)y,~2),
and the “Couette” symmetry
U, (X,Y,2) == v, (L2 = X,—y,z+ LJ2),

vy(X,Y,2) = - v (L2 -%,-y,z+L,J/2),

vAXY,2) =v L2 =X, y,z+ L,J]2).

Solutions satisfying these latter three conditions travel with
the mean velocity of the trivial solution so they have wave

speedC,=0 independent of Re or We.

It is well-recognized that extensional rheology plays a
key role in turbulent drag reduction. A simple measure of the
importance of extensional polymer stress is the magnitude of
the parameter

2 2b(1-
37 3 B

This parameter represents the ratio between viscous and

polymer stresses in extensional flow, and its definition fol-

lows from the asymptotic expansion for high elongation rates
f the extensional viscosity for the FENE dumbbell motfel.

n uniaxial extension with extension rate

(6)

Ex=1< 7,=7,ase — o, (7)

< 77+:37733.Sé_>oo, (8)

wherer, is the solvent contribution to the stress agids the
extensional viscosity of the solution. Since turbulent flows,
as well as the ECS that we study here, are extensional on
average, one would expect to see a significant effect of the
polymer on the flow once Ex1. For real drag-reducing
solutions, Ex values can be orders of magnitude greater than
1. For example, our results in this study are for Ex=100 and
B=0.97, which corresponds to=4850. This value ob cor-
responds to a solution of 250 000 MW polyethylene oxide in
water. Since under the conditions studied here, polymer ex-
tensions in the viscoelastic ECS are generally much less than
the maximum possible extensiqsee Fig. 10 and related
discussiol, we do not expect the results to qualitatively
change at higher Ex values.

Given the relative simplicity of the FENE-P model com-
pared to real polymers, a natural question is its fidelity to real
polymer dynamics in complex flows. To address this point,

We calculate the polymer stress using an idealized polyje” have previously compared FENE-P to more realistic
mer model, a solution of elastic dumbbells. Each moleculgq»q_gpring-chain models for calculating the stresses in the
consists of two beads, where the mass and drag of the My, fie|q of a Couette flow EC4* We performed Brownian
ecule are concentrated, connected by a finitely eXtenS'blaynamics simulations of 20-spring chains, with hydrody-

nonlinear elastigFENE) spring. An approximation of the
FENE spring, introduced by Peterlin, provides a closed con
stitutive equation for the conformation of the dumbbell. This

is the FENE-P modéf® which, written for a solutiona(x
-C,t,y,z,t) becomes

1_atr_a+We<%l—CU%+(v- Va) -{a- Vv}
b
b
—Ha- VV}T) :(sz)ﬁ, (4)
_b+5 L_(l_i)a .
T b |1-te b+2/° | ®)

wherea is the nondimensional conformation tensor dnid
proportional to the contour length of the polymer-e-ttan-

not exceedb. Many authors use a slightly different form of

the FENE-P model, in which the factopg(b+2), (b+5)/b,

namic and excluded volume interactions among the polymer
segments explicitly included, as they moved along Lagrang-
ian trajectories in the ECS. Comparing the FENE-P results to
the “exact” results from the chain models, we found that the
FENE-P model qualitatively captured the spatial variations in
polymer stress. The largest quantitative differences in the
stresses were seen when the polymer chains were stretched
to near their full extension. For thevalue and Weissenberg
number range used in the present study the polymer stretch
in the viscoelastic ECS is generally less than 30% of the full
extension(again, see Fig. 10 and related discuskidfor
these low relative levels of polymer extension, only small
quantitative differences between FENE-P and the bead-
spring-chain models were seen. For these reasons, we believe
that the FENE-P model will adequately capture the effects of
polymers on the ECS in the parameter range studied here.
The conservation and constitutive equations are solved
through a Picard iteration. The velocity field of a Newtonian
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ECS, as computed in Ref. 24r, for higher Ex values, a

viscoelastic solution found for lower We or Ex valjes 06

first used to calculate the polymer stress tengoby insert-

ing the velocity field in the evolution equation fer and &

integrating for a short length of time, usually one time unit |$;>~ f

(I/U). For this7,, a steady state of the momentum and con- é i

tinuity equations is found by Newton iteration. The resulting 04| /

velocity fieldv is used to compute the new, and the pro-

cess is repeated until the velocity and polymer stress fields bifurcation points

converge to a steady stafm a reference frame traveling 00 110 120 130 140

with the wave speed This Picard iteration, while not opti-

mal, obviates a large-scale Newton iterati(}ﬁ]_o6 un- FIG. 2. Bifurcation diagram for Newtonian and viscoelastic ECS ith

knowns in a nonsymmetric, indefinite problgm =g77/0.4, L,=2m and for the vis_cqelastic solu_tio.ns Ex=1(1_ﬁ)=4850 and
The momentum and continuity equations are discretized =97 — Newtonian..., We=7; == - We=9; -, We=11

using a Fourier—Galerkin formulation with typically a 7

X 19X 7 grld The conformation tensar is discretized with to the lower branch, or “low drag," solutions. The “h|gh

a third-order, compact upwind difference schéfrisee also  drag” ECS are more important to the dynamics of the turbu-
Refs. 46 and 47 for applications of compact differences tQent coherent structures, as explained in Sec. I, and are the
polymer drag reductionIn this, as in most previous compu- main focus of this study. All results should be assumed to be
tational studies of polymers in turbulent ﬂOWS, we havefor the “h|gh drag" states unless otherwise indicated.

found it necessary to add an artificial stress diffusivity, For the viscoelastic flow at We=7, the dotted curve in
(1/ScR¢V?a, to Eq.(4) to achieve numerical stability. The Fig. 2, the ECS again appear via a saddle node bifurcation.
Schmidt number Sc#/ D, which is the ratio of the momen- However, the bifurcation occurs at a Reyno|ds number,
tum diffusivity to stress diffusivity, is set to a value of 1. This Re . ~107 (Re.~20.7), that is higher than the Re for the
value of SC, thOUgh artIfICIaIIy Sma”, is greater or of the appearance of the Newtonian ECS. As the Weissenberg num-
same order of magnitude as that used in many DNS$yer increases to We=@lashed curveand We=11(dash-
studies:**"****In the range of Sc where solutions can bedotted curvg the Re where the bifurcations occur likewise
obtained, the bifurcation diagrams shown below are very inincrease to Re 112 (Re,=~21.2 and Re=127 (Re,
sensitive to its value. The stress diffusion term is integrated- 22 4 respectively. Accompanying this change in the Re at
implicitly by the Crank-Nicholson method with the other which the bifurcation occurs are changes to the flow field as
terms of the equation integrated using the Adams—Bashfortfndicated by the decrease in the maximum of the rms wall-
method. This equation is solved on a finer mesh than th@ormal velocity fluctuations at a given Re as We increases.
momentum, continuity pair, typically 3232x32. Higher  Thijs change in the wall-normal velocity is more dramatic for
resolutions(8X21x 8 for the momentum, continuity pair the “high drag” state than for the “low drag” state. Figure 3
and 48< 48x 48 for the polymer streyshow less than 0.1% shows the streamwise velocity for both the “high drag” and
change in the Fourier amplitudes of the velocity compared to|qy drag” states aty*=11 (i.e., on a plane parallel to the

l-.....~~-

the lower resolutions. walls). Since the “low drag” ECS have weaker streamwise
vortices and are essentially less “three-dimensional,” i.e., the
Ill. RESULTS streamwise streaks have a wealkedependence, they are

A Existence of the ECS less effective than the “high drag” states at stretching the

Throughout this study, we analyze the Newtonian and
viscoelastic exact coherent states at fixed streamwise and
spanwise lengthd:,=27/0.4 andL,=2m (L;~ 160 andL]
~64 at Re=20.5. The bifurcation diagram, which shows
the solutions of Eq92) and(3) as Re increases, is given in N
Fig. 2. These solutions are plotted using the maximum in the
rms wall-normal velocity fluctuations for the solutiar{*/2.

(Hereafter, an overbar indicates that the variable is averaged

over the streamwise and spanwise directiprigie trivial 0 50
base state in this geometfy(y)=(y,0,0)] exists at all Re

and would appear as a horizontal line at mg"/?=0 if it

were plotted in Fig. 2. At Re- 105(Re,~ 20.5 for the New- N
tonian flow(solid curve, two new solutions that have non-

zero wall-normal velocity appear via a saddle-node bifurca-

tion. These are the ECS. The solutions with higher maximum
wall-normal fluctuations at a given Re, i.e., solutions on theFIG. 3. Streamwise velocity contours for the “high drag” and “low drag”

upper branch of the_bifurcation diagram_, we call “high drag” exact conerent states for Re=1241dt=11 (the center of the channel
solutions due to their lower mean velocityyat 1 compared Rangew;=7.8 (light gray) andv}=-7.8(dark gray.

"High Drag” ECS

+
X 100 150

"Low Drag" ECS
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FIG. 4. Change in the minimum Re(Ay*)?/4) as We increasesl, FIG. 5. Mean streamwise velocity: —, Newtonian—Re=200; —--,

=2m/0.4, L,=2m, Ex=100, and3=0.97. The dotted line shows the mini- viscoelastic—Re=200, We=16.0, Ex=100, g8d0.97.
mum Re for the Newtonian ECS at the same streamwise and spanwise
wavelengths. The solutions studied in Figs. 11 and 12 are markedsy
Given what we have learned about the existence of the
ECS, we now look in detail at what happens to the ECS at
polymer at a given We, leading to a smaller change in maxtonstant Reynolds numbgr as the Weissenberg number in-
0921/2 in the “low drag” states. Further results for the rms Créases. The mean velocity profiles for th_e Neyvtoman and
viscoelastic flows at Re=20Re=28.3 are given in Fig. 5.

wall-normal velocity fluctuations and other statistics of the i A .
flow will be presented and interpreted subsequently. These mean profiles show the typical “S-shaped” curve seen

To gain a better understanding of how the existence ofn fully turbulent plane Couette flows. The maximum mean

the ECS is affected by the addition of polymer, we look atVelocity in the ECS is reduced compared to the base state
how the minimum value of Reynolds number at which thevelocity due to enhanced redistribution of the streamwise

ECS can exist, Rg, (the bifurcation points in Fig. 2 momentum by the str_eamwise vortic_es._ .For the viscoelastic
changes with Weissenberg number. This curve of,Re ECS, the mean velocity increases significantly compared to

given in Fig. 4, separates the region where the ECS can exigt’e Newtonian, illustrating that drag is reduced by the addi-

(above the curvefrom the region where no ECS exist. At tlon_ of ponmei. For the case in Fig. (re=200, V\Ioe=16,
low We, there is only a small difference between the,Re EX=100, and3=0.97), drag is reduced by roughly 8%. Note

values for the Newtonian and viscoelastic ECS. Ataye  that at a slightly higher We, the ECS cannot exist at all at this
the minimum Re for the viscoelastic ECS increases abov&eYynolds number —Re=200 is very near the turning point at
that for the Newtonian. As Weissenberg number increase¥/€=16. The changes to the streamwise velocity fluctuations,
further, there is a dramatic increase inRewith the bifur-  Scaléd by the friction velocity, are given in Fig. 6. Keep in

cation point for We=16 appearing at a Reynolds numbefnind that the boundary conditions used in this simulation
almost twice that of the Newtonian ECS. The importance oftliminate the viscous sublayer, g6=0 is (roughly) the start

this increase in Rg, is seen more easily when one notes that®f the buffer region. Near the lower edge of the buffer re-
the Reynolds number is simply related to the wall-normal9ion, the streamwise velocity fluctuations are slightly smaller
length scale of the structure measured in wall unitg', by for the viscoelastic flow, but over most of the domain these
the relation Re€Ay*)2/4. In experiments, the thickness of velocity fluctuations increase. This result mirrors observa-
the buffer region(the wall-normal extent of this region in tions in fully turbulent drag reduced flows and is analyzed to

wall units) is known to increase as drag reduction increases? 9reater extent in Sec. Il B. _ _
The results for the viscoelastic ECS closely mirror this in-  Nstéad of examining how the velocity fluctuations
crease imM\y*. For this reason, we will refer to the We above change over the whole flow domain as in Figs. 5 and 6, we
which the critical value ofAy* for the viscoelastic ECS is
greater than for the Newtonian ECS as the onset Weissenberg
number Weg,t AS seen in Fig. 4, Wgser= 7, Which agrees
well with onset values from two recent DNS studies of poly- T
mer drag reduction’*? which find onset at We 6. This e
close agreement in Wgis perhaps somewhat fortuitous g =
since the DNS studies are for fully turbulent channel flows, F
not the Couette ECS flows studied here.
The dramatic increase in Rg once We=7 may also be L5
related to the observation that transition to turbulence in a
polymer solution is delayed to higher Re than in the New- Tt
tonian casé:* Evidence suggests that the existence of ECS y

is a prerequisite for transitiofcf. the Introduction. If this is | A |
; ; : BIG. 6. Fluctuations in the streamwise velocity: —, Newtonian—Re=200;
the case, then an increase in the Reynolds number at Whl({ﬁ__’ viscoslastic—Re =200, We=16.0, Ex=100. '97. Only half of

the ECS exist implies a corresponding in(_:rease in the transjpe channel is shown; the other half is simply a reflection across the center-
tion Reynolds number, as is found experimentally. line due to the symmetry of Couette flow.
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=100, and3=0.97.

now look at how the maximunor minimum over the do-

main of a flow variable changes as We increases, at constalitiS result provides a further indication of drag reduction in
Re. Figure 7 gives such a plot for the streamwise velocit)}he viscoelastic ECS. The analysis of the Reynolds stress

and vorticity fluctuations at Re=124. At low We, there is budgets in Sec. Il B will shed more light on this reduction of

very little change to the maximum values of these variableX€YN0lds shear stress. _ . .
compared to the Newtonian. However, as the Weissenber: It the polymers are suppressing the vortices, as indicated

H ! ! !
number rises above Wg,, the streamwise velocity fluctua- K decregsers] Ry, vz, an?l . then Wi can expﬁct to Seﬁ
tions increase rapidly while the streamwise vorticity de-CNanges in the pressure fluctuatidps) because they reac

creases similarly. The increaggecreaspof streamwise ve- NIl greatest magnitudée., they are most negativen the

locity (vorticity) gets steeper as the Weissenberg numbeYOrtex cores. Figure 10 shows th? minimum of the pressure
approaches where the ECS cease to exist for Re $40d fluctuations versus We. From this plot, we again see that

Fig. 4). Similar results are seen for the wall-normal and span@°0V€ Wense: there is a significant change in the flow that

wise velocity fluctuation(Fig. 8). For We smaller than the causes the minimum of the pressure fluctuations to increase.
onset value;};/_’ﬁm and maxv/212 deviate only slightly from Since p’ is most negative in the cores, this increasepin
the Newtonign values Abéve this onset value. both wall-must be due to the weakening of the vortices. This result can

normal and spanwise fluctuations decrease drastically. Sind More easily seen in a plot of isosurfaces of the pressure

the magnitudes of both, andv; are greatest at the edges of fluctuations(Fig. 11 with p’ equal to 60% of the minimum

the streamwise vortices, we infer that their decrease is due tB/ for the Newtonian ECS at Re=124. By comparing this

the weakening of the vortices, which is consistent with thefigure to Fig. 1, it is obvious that the isosurfaces of negative

: : :
rapid decrease of the streamwise vorticity. The changes if (?orresg)ond to ths cores of the strehamv_wse V(f)rt|ces. t?s the
bothu; andu, affect the Reynolds shear stresguZv,. The Weissenberg number increases, the isosurfaces become

Reynolds shear stress is the wall-normal flux of streamwis§Maller, indicating that the strength of the vortices is dimin-
momentum and, thus, is the drag due to the velocity quctua'-Sh'ng_' As will be shown in Sec. ”I,B' this decreage n the
tions. Figure 9 shows that the reduction in Reynolds sheahagnitude of the pressure fluctuations has a crucial impact
stress is slightly more pronounced at lower We than is seef the budgets for the Reynolds stresses. Isosurfaces of con-
; ; stant streamwise vorticity, seen in Fig. 12, corroborate the
for the _velocrcy fluctuat|on§. Above W'%et _U”(U;’ dgcrease_s results from the ressur()a/ fluctuationsg As We increases, the
dramatically as we saw with the velocity fluctuations. Since P . : "
the Reynolds shear stress is the key component of the draffx surfaces grow smaller, consistent with vortex suppression.
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FIG. 8. Maxima in the streamwise- and spanwise-averaged fluctuations iflG. 10. Minimum in the pressure fluctuatiofis-) and maximum in the

wall-normal velocity (—) and spanwise velocity——- vs We for Re  trace of the conformation tensay, (——- vs We for Re=124, Ex=100, and
=124, Ex=100, angg=0.97. £=0.97.
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FIG. 13. Streamwise- and spanwise-averaged polymer stress in the vis-
coelastic ECS. Re=200, We=16.0, Ex=100, #w0.97.

FIG. 11. Isosurfaces of pressure fluctuatiquis; 0.60py i, (dark gray, and . .
streamwise polymer forcéV - 7,),=—0.0027 (white) and 0.0027(black.  out of the streaks and toward the channel centerline in the

These values of the polymer force are 60% of the minimum and maximunupwellings at the edges of the streamwise vortices. Since the
values of the force at We=6. Re=1PRe,=22.27, Ex=100, ang3=0.97.  polymer stress seen in Fig. 13 decreases toward the center-
Top_left: Newtonian; top right: We=6; bottom left: We=8; bottom right: line. these molecules must be relaxing as they move into and
We=10. )

around the vortices(This process of polymer molecules

stretching in the streaks and relaxing at the edges of the

Understanding that the salient effect of viscoelasticity onvortices is also confirmed by Brownian dynamics simula-

the ECS is the suppression of the streamwise vortices, wions of model polymers along a Lagrangian trajectory in the
can investigate how this is brought about by studying theECS™) The result of this process of stretching and relax-
spatial distributions of the polymer stress and, more im-  ation of the polymer is a region of high polymer stress in the
portantly, the force exerted by the polymer on the flow streamwise streak and a region of lower polymer stress
=[(1-B)/ReWdV -7, Figure 13 shows the streamwise- and where fluid elements have left the streaks and begun to move
spanwise-averaged trace of the polymer stress tensor. Tlgound one of the vortices. Taking the divergence of the
polymer stress is higher near the edge of the domain with thpolymer stress gives a force due to the polymer that is di-
maximum occurring a*~2. (By symmetry identical be- rectly opposed to the movement of fluid into the vortex.
havior is occurring near the upper boundgaifhis spatial ~ Since the fluid elements moving into the vortex are being
position for the maximum in polymer stress coincides withslowed by the polymer force, the vortex is weakened. This
the streak in the streamwise velocity, indicating that the polyvortex suppression leads to the results described in the pre-
mer molecules are highly stretched as they move through theeding paragraphs.
streamwise streak. Even though the polymers are highly As a further indication of the origin of the vortex sup-
stretched compared to their equilibrium length, their end-topression, Fig. 14 shows a comparison of the wall-normal and
end distance generally remains well below their contourspanwise velocities to the corresponding components of the
length. As shown in Fig. 10, the maximum in the stretchpolymer force. The upwelling and downwelling associated
polymer(tre) is less than 10% of its greatest possible extenwith the counter-clockwise rotating vortekw,<0) are
sion (b). Eventually, these highly stretched molecules flowclearly seen in the right half of the, plot. The regions where
the wall-normal and spanwise velocities are highegtite
contourg are matched by the negative regions of the polymer
force (black contoursand, likewise, negative regions of
and v, correspond to positiveé, and f,. Figure 11 shows
isosurfaces of the-component of the polymer force at Re
=124. Comparing these isosurfaces to those for the stream-

FIG. 14. Contours of velocity and polymer forcexat 38 for the viscoelas-
FIG. 12. Isosurfaces of streamwise vorticity, =0.41 (light gray) and wy, tic ECS with Re=124, We=10, Ex=100, ag0.97. Top left:vy, range
=-0.41 (dark gray, and streamwise velocity,=-8.5 (white), and vy -0.96(black) — 0.96(white) top right:v}, range —2.14black) — 2.14(white)
=8.5 (black. Re=124(Re,=22.27, Ex=100, and3=0.97. Top left: New- bottom left: f,, range —0.0005%black) — 0.00055(white) bottom right:f,,
tonian; top right: We=6; bottom left: We=8; bottom right: We=10. range —0.001@black — 0.0010(white).
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wise velocity given in Fig. 12, we see that they do occur athe Reynolds shear stressvyvg, and wall-normal velocity
the same spatial positions and that they are anticorrelateftlctuations and increases in streamwise velocity fluctua-
(i.e., f, is negative where, is positive and vice vergaNev-  tions. L
ertheless, although thecomponent of the polymer force is The Reynolds stresses are actualpv{v| but it is con-
larger in magnitude than the other two componefitgndf,  venient and conventional to refer tgv; as the Reynolds
are more important in the suppression of the vortices and istresses, which we will do henceforth. In this section, we
drag reduction. In simulations whefg is artificially set to ~ scale the Reynolds stresses with and time with v/u?,
zero, we still see levels of drag reduction comparable tovhereu, is the friction velocity andv is the zero-shear-rate
those seen when all three components are included. This kinematic viscosity of the solution. The equation for the Rey-
becausd, and f, directly counteract the fluid motion in the nolds stresses for a polymer solution can be written as
streamwise vortices. This anticorrelation of polymer has also —
been found in the buffer layer via DNS of drag-reducing Qi +Vkim+ﬂ. =P, +D; +R; + TP +¢; +E;,
solutions>° at ax o e

The mechanism by which the polymer suppresses the (9)
streamwise vortices can be summarized as follows: Polymer )
molecules become stretched in the streamwise streak, thdff1€re the overbar represents an average over the streamwise

relax as they move from the streak into one of the stream@nd Spanwise directionecf. Ref. 11, Chap. ¥ Here the

wise vortices. The relaxation of the polymer molecules pro-Y€lOCity, pressure, and force due to the polymer
/RerV-_rp) are written as sums of mean and

duces a force that directly opposes the motion of the fluid in(f:[(l_ﬁ) hl
the vortex and thus suppresses it. Recall from the Introdudluctuating partgv=V+v’, p=P+p’, andf=F+f"). The first
tion that the mechanism that underlies the ECS consists d#v0 terms of Eq.(9) are zero for the ECS since they only
three subprocesses: streak formation by the streamwise vdpiclude x-derivatives of the averaged quantitigg/ dt)v/vj
tices, streak instability, and vortex regeneration. The low— —C,(d/X)v{v; =0 andVy(d/dx)v{v{=0]. The terms

speed streak in the flow is formed when the counter-rotating

streamwise vortices pull slow moving fluid up from the T}j :im (10)
lower boundary. Since the vortices are weakened by the 2

polymer, the extent to which slow moving fluid is pulled up

decreases. If the streak instability is weakened then the

streamwise vortices are further weakened and the self- _, 4 s 40D s 11
sustaining process tends to collapse. = 07Xk(vi P’ G+ vip’ G (11)
B. Effects on Reynolds stress budgets are the transport of Reynolds stress by the fluctuating veloci-

. L . ties and the fluctuating pressure, respectively. Note That
To gain more insight into how vortex suppression affects gp P y Ta

L . =0 since there are no gradients of the averaged quantities in
the velocity fields, we examine the budgets of the Reynold%he streamwise direction. The production term
stress balance. In their study of a fully turbulent channel flow ’
with polymer injection at the wall, Walker and Tiedernian N — N
found reduced levels af;, andvyv, and increased levels of Pij = - Uk gy, ~UiVk gy (12
v, due to the polymer. Since energy transfer among these k
quantities is represented by the pressure-strain correlations generates Reynolds stresses through interaction with the
the Reynolds stress budgets described belowthey con-  mean velocity gradient. For shear flows, which have
cluded that the polymer alters the processes represented QYVX(y),O,O], the termsP,, and P45 are zero. Thus, there is
these correlations. A DNS study of polymer drag reduction,g production of wall-normal or spanwise velocity fluctua-

corroborates this conclusidfiin light of these results, we ions due to the mean shear. The pressure-rate-of-strain term
study the Reynolds stress budgets in the viscoelastic ECS to

understand how the mechanism of drag reduction educed in [ v ,9_01’_

the previous section inhibits the redistribution processes of Rj=p e + ) (13

the pressure-strain correlations. In the ECS, the polymer be- ! !

comes highly stretched in the streamwise streaks of the tuis traceless for an incompressible fluid and does not show up
bulent coherent structures and relaxes as it moves into arid the equation for turbulent kinetic energy, which is found
around one of the streamwise vortices flanking the streakoy taking% the trace of Eq(9). Therefore, this term simply
This relaxation works to “unwind” the vortex and reduce its redistributes energy from the streamwise velocity fluctua-
strength. Since the mechanism that sustains the coheretibns to the wall-normal and spanwise velocity fluctuations.
structured’ depends on the vortices to regenerate the streamAs stated earlier, there is no production of eithgry orvyv,
wise streak, the suppression of the streamwise vortices leadhy the term of Eq(12), so the terms of the pressure-rate-of-
to a collapse of this mechanism and ultimately to drag reducstrain act as a pseudoproduction term for wall-normal and
tion. This section looks at the Reynolds stress budgets, ispanwise velocity fluctuations. The pressure-rate-of-strain
particular, to understand how the polymer affects theterm[Eq.(13)] and the pressure transport tefBy. (11)] are
pressure-strain correlations, giving rise to the decreases im decomposition of the velocity-pressure-gradient term,
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FIG. 15. The contribution to thev; budget of the production, diffusion, ——

and dissipation terms for NewtoniaRe=200,3=1) and viscoelasti¢Re FIG. 16. The contribution to th_exuX budget of the pressure-rate-of-strain,
- _ - _ . . turbulent transport, and velocity-polymer-force terms for Newtor(ige
=200, We=16.0, Ex=100, ang=0.97) solutions. Only half of the domain =200, 8=1) and Vi lasti¢Re =200, We=0.16, Ex=100, an=0.9

is shown—by symmetry all statistical quantities are symmetric across the ' £=1) and viscoelasticRe= o WESDLI0, EX= ' a 97

. ‘ Solutions.
Couette cell centerling*=+Re.

- wise velocity fluctuations in this regioriThe other factors
I =R +TP = _U_,ﬂ_p’ +U_,r9_p’ (14) increasing these fluctuations are discussed bgldese
1 1o Yoxg x| trends in the effects of the polymer on the production, diffu-
o L _sion, and dissipation terms in the ECS are qualitatively the
The diffusion and dissipation of Reynolds stresses are giveBame as found via DNS of drag-reducing flutfisSpecific
by numbers are different because of the differences in geometry

B &F — and parameters, but as an example of the relationship be-
D = e V] (15  tween our ECS results and those from DNS, Dimitropoulos
KK et al’®find in channel flow DNS that the maximum value of
and P,1 is 0.3 for Re=125, We=50, and Bx66; for the vis-
T coelastic Couette flow ECS at the conditions of Fig. 15 we
&= 2_,3@@,_ (16)  find a maximum value of 0.45. o
Re dx I Figure 16 shows the remaining contributions to the;,

respectively. The direct contribution of the polymer stresseQudget. The pressure-rate-of-strain term in this budget de-

to the Reynolds stress budgets is the velocity-polymer-for08reases in magnitude due to the ado_lltlon of polymer. As
term stated above, the pressure-rate-of-strain term acts to transfer

energy from the streamwise velocity fluctuations to the wall-
E;j= vi'fj' + Uj,fi,- (17) normal and spanwise fluctuating velocities. Since this term is
educed in magnitude, the transfer of energy is reduced and

Note that for the current exact coherent states, vorticit))' . i i . S
the streamwise velocity fluctuations increase as seen in Fig.

boundary conditions are used. This choice of boundary con: The d in th te-of-strain t is due t
ditions eliminates the viscous sublayer. Therefore, when th%‘ € decrease In Ihe pressure-rate-ol-strain term 1S due 1o

wall is referenced in this section, it should be understood that etredugtl?g O:;tchse gressture flu;:tfuantnhs. The prgs:hure fluc-
this refers to the boundary of the buffer layer. uations in the eviate most from the mean in the cores

The contributions of the production, dissipation, and dif—Of the vortices. The decre_ase of vortex strength due _to the
fusion terms to thev. budget are compared for a Newton- polymer causes the magnitude of the pressure fluctuations to
ian (Re=200 solutiénxand a viscoelastic solutigRe =200 decrease and, likewise, the redistribution due to the pressure-

and We=16 in Fig. 15. For the viscoelastic flow, the pro- rate-of-strain term. The direct contribution of the polymer to

— ) C X :
duction term decreases compared to the Newtonian near ttﬁ%ﬁjﬁgﬁ ti):(ljz?retelsst ilzgrstiznvxllgllﬁigr{ dilfétil::out%ea:rgséthfl ?r(])gr
wall. Due to the use of vorticity boundary conditions in this 9 ’ 9 poly

— o . stretch (and stresgis highest in the streamwise streaks,
study, thedV,/dy contribution to the production is the same \nioh matches the proposed mechanism. The direct contri-
for both the ylscoelagtlc gnd Newtonian flow near the Wa"'bution of the polymer approaches zero farther from the wall
Therefore, this reduction iRy, near the wall must be due to ;e re the changes in the streamwise fluctuations are largest.
decreases im, andv. Farther from the wall, differences g jngicates that the effects of the polymer are more com-
betweenr?Vx/r?y in the viscoelastic and Newtonian flow is p|icated than what is S|mp|y Captured in the Ve|0city-
apparent as the production for the viscoelastic flow becomegolymer-force term. L
greater than for the Newtonian. Since the polymer reduces Figures 17 and 18 show the contributions to t}]’(@)’/

the strength of the vortices and thus the pressure fluctuationpudgets. The production term, which acts as a sink in this
the redistribution of the mean shear is reduced avidoy  case, decreases in magnitude for the viscoelastic fluid. How-
increases near the centerline for the viscoelastic 1lBig.  ever, the pressure-rate-of-strain term for this budget, which
5). The increase in the production term in thi, budget acts to increase Reynolds shear stress by redistributing en-
away from the wall is one factor in the increase of stream-ergy from the streamwise fluctuations, also decreases. This is




3480 Phys. Fluids, Vol. 16, No. 9, September 2004 Stone et al.

0.08 T T T T T T T 01 T T T T T T T
S
=351 ion -
?n 006 sanimson N H §0 0.075 _
] & & Diffusion- VE 2
.04} - Dissipation- N | | 0.05-
:o 004 @ © Dissipation - VE :°>.
> 002 > 002s)
4 5 -8
Q o Q o ~B-B-8-a -
= g T-a.g.g g-o-B-0-8-7]
2 002 g 00sp 4
'3 = m-u Velocity-pressure-gradient - N
‘B -0.04 g 0051 |pg Velocity-pressure-gradient - VE T
g Q
S 006 O 00751 4
3 .01 L L L L ) ) )
-0.08 0 2 4 6 8 10 12 14

FIG. 17. The contribution to the,u, budget of the production, diffusion, FIG. 19. The contribution to the,v, budget of the velocity-pressure-
and dissipation terms for NewtonigRe=200,8=1) and viscoelasticRe ~ gradient term for NewtoniaiiRe=200,5=1) and viscoelastiqRe =200,
=200, We=0.16, Ex=100, anéi=0.97) solutions. We=0.16, Ex=100, ang=0.97) solutions.

phasizing again that the effects of viscoelasticity on the
Reynolds stresses are not simply related to the direct contri-

again due to the polymer weakening the vortices and reducdution of the polymer force

ing the pressure fluctuations. The reduction in the pressure- All of the results presented here qualitatively match
rate-of-strain term(source is greater than the increase in hose of the DNS study by Dimitropoules al 18 The effects
production term, e_spemally near the center of the channeLf viscoelasticity on the productiof@@nd pseudo-production
fT_Ed thel ngtt effect is a decorl_eastetm the Rieynolr?shshe?rr] Str®%Sims can be attributed to the suppression of the vortices by
e velocity-pressure gradient terig. 19, which is the the polymer. The effects of streamwise vortex suppression

o : .
Sélé:n; o_:‘_r':heR,]y a.?d TX31 termsf, dec;easefs for tn? thr?_cott)ale(ljstlctare twofold: First, the redistribution of mean shear due to the
- ' e velociy-polymer-iorce term 1S smaitin this budget, ., ;.o jg reduced, increasing the net production of stream-

bgcalége the pol¥|,~r?er arel stredtched rr)]r_lmarll_y |n.|the Streanll'vise velocity fluctuations by the mean shear. Second, the
‘r’]"ézer tr|1r:C\/t\;glrlgg Y I?ssgnrga%llzrs]t \?vtr:(ztr%’lri]g IF;r:gmeasr)I yT%c;cSuers pressure fluctuations, which show the largest deviation from
results closely maich those of Dimitro?)oulesal 18 _the mean pressure in the vortex cores, are .reduced,. decreas-
Fiqures 20—22 show the contributions to tIT budaet ing Fhe transfer of energy from the streamwsg velgcny fluc-
9 —— O ujey budget.  ations to the wall-normal and spanwise directions. The
Recall that for thevyv, budget, the production term is zero structural mechanism for drag reduction proposed in the pre-

for shear turbulencg and also for the ECS. However, th%ious section is consistent with the Reynolds stress results.
pressure-rate-of-strain term acts to transfer energy from the

streamwise fluctuating velocity to the wall-normal velocity.

Figure 21 shows that the pressure-rate-of-strain term dely' CONCLUSIONS

creases in magnitude in the viscoelastic case, reducing the We have studied the effects of viscoelasticity on non-

transfer of energy between the velocity components. As mertrivial, traveling-wave solutions in plane Couette flow that

tioned previously, this change in the pressure-rate-of-straigserve as a minimal model for the turbulent buffer region.

term is caused when the polymer reduces the pressure fluThese traveling-wave solutions, called “exact coherent

tuations by weakening the streamwise vortices. The velocitystates”(ECS), capture the dominant structure of the buffer

polymer-force term in this budget is small and negative, emregion: pairs of streamwise-aligned vortices that lead to
steaks in the streamwise velocity. The optimum length scales
for the ECS in plane Poiseuille flow quantitatively match the
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FIG. 18. The contribution to the,v, budget of the pressure-rate-of-strain, o

turbulent transport, pressure transport, and velocity-polymer-force terms foFIG. 20. The contribution to the§v>’, budget of the diffusion and dissipation
Newtonian(Re=200,8=1) and viscoelasti€Re=200, We=0.16, Ex=100, terms for Newtonian(Re=200,8=1) and viscoelastic(Re=200, We
and 8=0.97) solutions. =0.16, Ex=100, ang@=0.97) solutions.
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FIG. 21. The contribution to the/v., budget of the pressure-rate-of-strain, FIG. 23. Summary of the effects of the polymer on the Reynolds stresses.
turbulent transport, pressure transport, and velocity-polymer-force terms for

Newtonian(Re=200,8=1) and viscoelasti¢(Re=200, We=0.16, Ex=100,

and 8=0.97) solutions.

The suppression of the vortices is understood as follows: The
length scales of the turbulent coherent structures observgablymers become highly stretched moving through the
in experiments and recent experime?ﬂaland DNS  streamwise velocity streak and relax as they move out of the
evidencé " suggests that the ECS underlie the dynamics otreak, into and around a vortex; the polymer relaxation pro-
these structures. In the variant of Couette flow that we studgluces a force that directly opposes the motion of fluid ele-
here, above a certain Weissenberg numbeg\We- 7, there  ments entering the vortex, slowing them, and weakening the
is dramatic increase in the minimum Reynolds number avortex. While this work has only presented results for the
which the ECS can exist. Since the minimum Reynolds numECS in plane Couette flow, our preliminary results for vis-
ber is related to the minimum wall-normal size for the exis-coelastic ECS in plane Poiseuille flow show the same mecha-
tence of the ECS[(RQNH:%(Ay;]m)z)], one effect of vis- nism and qualitatively similar changes to the velocity
coelasticity is to shift the mechanism that maintains the EC3luctuations®
to larger wall-normal length scales, mirroring experimental ~ The proposed mechanism also_explains the changes
observations of buffer region “thickening” in drag reducedmeasured in the Reynolds shear stregs, and fluctuating
flows. Since evidence indicates that the existence of the EC®elocities at low to moderate levels of drag reduction, as
is a prerequisite for transition to turbulence, the increase irshown in Fig. 23. In the budget of Reynolds stresses, the
Re,n is also consistent with the experimental observed delaypressure-rate-of-strain term acts to redistribute energy from
in transition for polymer solutions. the streamwise velocity fluctuations to the wall-normal and

The mechanism that is responsible for the upward shifspanwise velocity fluctuations and the Reynolds shear stress.
of Re,, is one of vortex suppression. For the viscoelasticThis redistribution term depends on the pressure fluctuations,
ECS above Wg. there is a rapid decrease in the rms,which are of highest magnitude in the vortex cores. Since the
wall-normal, and spanwise velocity fluctuations and the rmspolymer weakens the vortices, the magnitude of the pressure
streamwise vorticity. Since the magnitude§ and v, are fluctuations decreases as We increases and, as a conse-
greatest at the edges of the streamwise vortices, the decreaggence, the pressure-rate-of-strain term decreases in magni-
in their values, and that ab,, indicate that the polymer is tude. Transfer of energy from the streamwise fluctuations to
weakening the vortices. A result of the suppression of théhe Reynolds shear stress diminishes. The reduction in the
vortices is a decrease in the magnitude of the pressure fluReynolds shear stress leads to drag reduction.
tuations in the vortex cords.e., they become less negatjive The viscoelastic ECS comprise a minimal description of
near-wall turbulence in a polymer solutions. They are au-
tonomous, and the effects of polymer on these states mirror

0.04 . .
. T T T DNS and experimental observations near the onset of drag
5 |;:33$§3ﬁ:$ﬁ2§355 reduction: structures shift to larger wall-normal length scales,
8 oop ] streamwise velocity fluctuations are enhanced while wall-
> normal and spanwise fluctuations, streamwise vorticity fluc-
>> . .
o omf - tuations and Reynolds shear stress decrease, and drag is re-
=
5 duced.
.5 . H
2 RN At high levels of drag reduction, the character of dra
E 001} -9 = S
g s reduced flow changes significantly. The log-layer mean ve-
© - T locity gradient(inverse von Karman constagns significantly
R S B B R T higher than the Newtonian value over a large fraction of the
y channeft Furthermore, as the level of drag reduction in-

FIG. 22. The contribution to them budget of the velocity-pressure- creases, the Streamwge%zvelocny ﬂucmatli led WIthuT).
gradient term for NewtoniaiRe=200,8=1) and viscoelastiqRe=200, P€ak and then decrease;”a result that suggests that at high

We=0.16, Ex=100, an@=0.97 solutions. drag reduction a change in the basic turbulence production
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mechanism occurs. The relevance of the viscoelastic ECS iiF. Waleffe, “Exact coherent structures in channel flow,” J. Fluid Mech.

. . . 435 93 (2001).
this regime is not clear.
9 2F, Waleffe, “Homotopy of exact coherent structures in plane shear flows,”

Phys. Fluids15, 1517(2003.
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