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Recent simulations by Chuet al. @Phys. Rev. E66, 011915~2002!# on the behavior of bead–spring
and bead–rod models of polymers in linear mixed flows~flows with unequal amounts of extension
and rotation! are compared with the predictions of a finitely extensible Rouse model that was used
earlier @J. Chem. Phys.112, 8707 ~2000!# to describe the behavior of long flexible molecules of
l-phage DNA in simple shear. The model is a generalization of the continuum Rouse model in
which the ‘‘spring constant’’ of the bonds connecting near neighbor segments is allowed to become
nonlinearly flow-dependent through a term involving the initially unknown mean square size of the
chain, ^R2&. A self-consistent equation for this quantity is derived by using the flow-modified
Hamiltonian to calculate it from its statistical mechanical definition. After solving this equation
numerically, the mean fractional extension of the chainx can be obtained as a function of the
Weissenberg number Wi and a mixing parametera. The results compare favorably with data from
the simulations of Chuet al., and suggest the existence of a scaling variable Wieff5Aa Wi in terms
of which separate curves ofx versus Wi fall more or less on a single universal curve.
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I. INTRODUCTION

Single molecule studies have shown over the last
years that the response of long chain molecules to the eff
of even simple types of flow can be quite dramatic.1–5 This is
especially true of simple shear, where the polymer can
only stretch out in the shape of a long thin rod, but can a
exist—transiently—in states of more unusual geometry,
cluding dumbbells, half-dumbbells, and fish hooks.1 Such
states are in general the product of the dynamic interp
between the flow’s rotational and elongational compone
which, for simple shear, are exactly equal to each other
this respect, simple shear can be regarded as a ‘‘critic
flow,6 one where the amount of vorticity just prevents t
chain from making a transition to a completely extend
configuration. Like equilibrium critical phenomena, simp
shear is distinguished by the existence of large and lo
lived fluctuations, in this case fluctuations in the size of
chain. These fluctuations are responsible for the cha
myriad conformational states, which can actually be captu
on film,1,2 or identified in computer simulations.7–11

To probe the immediate neighborhood of this ‘‘critic
point,’’ Chu and co-workers have recently simulated the d
namics of bead–rod and bead–spring polymers that are
ject to so-called linear mixed flows.12 These are flows where
the amounts of vorticity and strain rate are no longer exa
the same,13 the excess or deficit of one of these compone
with respect to the other being characterized by a param
a. In the limit a→0, the flow reduces to simple shear, wh
the limits a→1 anda→21 correspond to pure elongation
and pure rotational flow, respectively. By studying the beh
ior of the chain whena is small but not exactly 0, Chu an
co-workers have been able to study the onset of the insta
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ties that cause the large fluctuations that occur in sim
shear. Their results, expressed in terms of the fractional
tensionx vs the Weissenberg number Wi at different fixeda,
provide a detailed map of the relative importance of the el
gational component in producing extended chain configu
tions. Significantly, whenx is replotted against aneffective
flow parameter, defined as Wieff[WiAa, the data are all
found to fall approximately on the same universal curve. T
existence of a scaling relation of this kind is what one wou
expect from a phenomenon that seems to share attrib
with a critical point.14

In two earlier analytic theories of the polymer-flo
problem,15,16 we showed that the Rouse model of chain d
namics is unable to provide a satisfactory description of
perimental data1 ~also from the Stanford group! on dilute
solutions of flexible DNA molecules in simple shear. Th
deficiencies of the model, which can be traced to the Gau
ian statistics that allow unphysical extensions of the ch
beyond its contour length,17 were corrected by introducing
constraint on the maximum permissible chain extension
high rates of shear, with significant improvements to the
gree of agreement between theory and experiment. Two
ferent ways of imposing the constraint were considered:
approach leads to a variant of the finitely extensible non
ear elastic~‘‘FENE’’ ! model,18 while the other leads to a
variant of the Kratky–Porod wormlike model.19 The latest
studies on polymers in mixed flows provide additional da
that can be used to test the utility of such ‘‘constraine
Rouse models in more general situations. The basic objec
of this paper is therefore to compare the predictions of
FENE-type model with these data. We are also interested
similar comparison using the Kratky–Porod-type model, b
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the required calculations are nontrivial, and will therefore
left for future work.

The following section reviews the salient features of t
finitely extensible Rouse model. The dynamics of the mo
under the action of linear mixed flow is assumed to be g
erned by a Langevin equation, whose solution is obtaine
Sec. III using Laplace transforms. The solution of the flo
equation is used to derive an equation for the steady s
mean square end-to-end distance of the chain, which
solved numerically for different values of the strength of t
flow ~expressed in terms of the Weissenberg number Wi! and
the degree of mixinga. The results are presented as plots
the mean fractional extensionx versus Wi for various fixed
values ofa, and are discussed in Sec. IV.

II. THE FINITELY EXTENSIBLE ROUSE MODEL

The equilibrium conformation of a polymer, in the a
sence of excluded volume interactions, can be described
chain of n beads joined by springs of strengthb that are
separated from each other by an average bond distancel.20 In
the limit n→`, l→0, nl→N, this bead–spring model of th
polymer describes a continuous curve whose HamiltoniaH
~in units where the thermal energykBT is 1! is given by

H5
3b

2 E
0

N

dtS ]r ~t!

]t D 2

, ~1!

where the variabler ~t! is the vectorial distance, with respe
to some Cartesian coordinate system, of a point on the c
that is a distancet from one end of the chain.

For a free polymer~no external force field!, the spring
constantb is 1/l , and Eq.~1! is then equivalent to the well
known Wiener representation of the random walk.21 If there
are forces on the chain~as a result of flow, for instance!, its
Hamiltonian is no longer given by Eq.~1!, but Eq. ~1! can
nevertheless serve as an approximation to the exactH pro-
vided b is allowed to depend on the external forces. In ge
eral, the dependence ofb on these forces cannot be dete
mined a priori, but it is possible to suggest plausib
functional forms for it from physical considerations. Follow
ing the model introduced in Ref. 15, we defineb so that it
reduces to 1/l whenever the chain is unperturbed and tends
infinity whenever the chain attains full extension under
action of large forces. An expression forb that satisfies these
constraints is given by

b5
12^R2&0 /^R2&m

l @12^R2&/^R2&m#
, ~2!

where^R2&0 is the unperturbed mean square end-to-end
tance of the chain,̂R2& is the mean square end-to-end d
tance under the prevailing kinematic conditions, and^R2&m

is the mean square end-to-end distance at maximum ex
sion. By using Eq.~1! to calculatê R2& in terms ofb, it is
possible to determine this quantity self-consistently from
solution of a nonlinear equation. This is the strategy that w
be followed to calculate the mean fractional extension of
chain as a function of the Weissenberg number.
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III. DYNAMICS

The dynamics of the above continuum finitely extensib
nonlinear elastic chain can be described by the follow
Langevin equation:20,22

]r ~t,t !

]t
5gA"r ~t,t !1

3b

z

]2r ~t,t !

]t2
1u~t,t !, ~3!

where

A5S 0 1 0

a 0 0

0 0 0
D ~4!

is the velocity gradient tensor,g is some measure of th
strength of the flow,z is the monomer friction coefficient
and u(t,t) is a Gaussian white noise variable defined by
vanishing mean and a second moment given by

^ua~t1 ,t1!ub~t2 ,t2!&52z21dabd~t12t2!d~ t12t2!.
~5!

The parametera in the expression for the velocity gradien
tensorA is a measure of the extent of deviation from simp
shear flow, for whicha50. In general,a lies between11
and 21, these extemes representing pure elongational
pure rotational flow, respectively. At intermediate values,
flow is of ‘‘mixed’’ type, and contains an excess or deficit
one or other of these two components.

The calculation of̂ R2& is conveniently carried out in
terms of the normal coordinatesXp(t) defined by20,23

Xp~ t !5
Lp

l E
0

N

dtr ~t,t !cos~ppt/N!, ~6!

whereLp5(22dp,0)
1/2Al /N, with dp,0 being the Kronecker

delta. A normal coordinate transformation of Eq.~3! is easily
shown to produce the following equation forXp(t):

dXp~ t !

dt
5gA"Xp~ t !2

lp

z
Xp~ t !1up~ t !, ~7!

where

lp5
3bp2p2

N2
~8!

and

up~ t !5
Lp

l E
0

N

dtu~t,t !cos~ppt/N!. ~9!

By introducing the Laplace transform, defined by

F̃~s!5E
0

`

dtF~ t !e2st, ~10!

Eq. ~7! can be converted to an algebraic equation, which
easily solved to produce

X̃p~s!5Pp
21~s!•up~s!, ~11!

whereup(s)5Xp(0)1ũp(s), and
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Pp~s!5S ap~s! 2g 0

2ga ap~s! 0

0 0 ap~s!
D , ~12!

with ap(s)5s1lp /z, andXp(0) the initial value of the nor-
mal coordinateXp(t). The inverse of the matrixPp(s) is
readily calculated as

Pp
21~s!5

1

ap
3~s!2g2aap~s!

3S ap
2~s! gap~s! 0

gaap~s! ap
2~s! 0

0 0 ap
2~s!2g2a

D . ~13!

The mean square end-to-end distance at timet, ^R2(t)&, can
be obtained from the normal coordinatesXp(t) using the
relation

^R2~ t !&5
8l

N (
p,q odd

^Xp~ t !•Xq~ t !& ~14!

5
8l

N (
p,q odd

^Xp~ t1!•Xq~ t2!& t2→t15t . ~15!

The average in the second line of the above equation ca
re-expressed as an average involving Laplace variables,

^Xp~ t1!•Xq~ t2!&5Ls1

21Ls2

21^X̃p~s1!•X̃q~s2!&, ~16!

whereLs1

21 and Ls2

21 denote the inverse Laplace transform

with respect to the variabless1 and s2 , respectively, which
are the Laplace variables conjugate to the timest1 andt2 . By
combining Eq.~11! with Eq. ~13!, one finds that the averag
^X̃p(s1)•X̃q(s2)& can be written in the general form,

^X̃p~s1!•X̃q~s2!&5 (
a5x,y,z

Tp
~a!~s1!Tq

~a!~s2!

3$^Xp
~a!~0!Xq

~a!~0!&

1^ũp
~a!~s1!ũq

~a!~s2!&%, ~17!

where Tp
(a)(s1) and Tq

(a)(s2) are known functions of the
Laplace variabless1 ands2 and the normal mode indicesp
andq. The inverse Laplace transforms of these functions
easily calculated; they involve decaying exponentials in
times t1 or t2 . The inverse transforms of the function
Tp

(a)(s1) ũp
(a)(s1) and Tq

(a)(s2) ũp
(a)(s2) can be calculated

from the convolution theorem, and the equation

^ũp
~a!~ t1!ũq

~a!~ t2!&5
N

z

LpLq

l 2
d~ t12t2!dp,q ; ~18!

they involve combinations of exponentials int1 or t2 and
various time-independent factors. These results are all
stituted into Eq.~15! for the end-to-end distance, the timest1

and t2 being set tot according to the prescription indicate
there. Finally, since we are interested in results in the ste
state~ss!, the limit t→` is taken, whereupon all contribu
be

re
e

b-

dy

tions involving the initial statêXp
(a)(0)Xq

(a)(0)& are elimi-
nated~by virtue of the exponentially decaying coefficien
that multiply them!, and one is left with

^R2&ss5
8

N (
p odd

F 3

lp
1

g2z2~11a!2

2lp~lp
22g2z2a!

G . ~19!

It is easily verified that whena50 ~i.e., when the flow cor-
responds to simple shear! Eq. ~19! above reduces to the re
sult we had obtained in Ref. 15.~That result was obtained
using a Green’s function approach; the present approach
ing the Langevin equation and a normal mode decomposi
is somewhat simpler to implement.!

If we now introduce into Eq.~19! the definitionst
5zN2l 2/3p2 for the longest relaxation timet,20 Wi5gt for
the Weissenberg number,1 b5^R2&0 /^R2&m for the ratio of
the unperturbed to maximum mean square end-to-end
tances, andz5^R2&/^R2&m for the square of the mean frac
tional extension, Eq.~19! is transformed to

z

b
5

12z

12b
1

4

3p2 S 12z

12b D 3

Wi2~11a!2S, ~20!

whereS is the sum

S5 (
p odd

1

p62a Wi2 p2~12z!2/~12b!2
. ~21!

This sum can be calculated analytically, either using Ma
ematical or using results tabulated in Ref. 24. The result

S52
p2

8a Wi2
S 12b

12z D 2

1
p

8~a Wi2!5/4 S 12b

12z D 5/2

3F tanS p

2
~a Wi2!1/4S 12b

12z D 1/2D
1tanhS p

2
~a Wi2!1/4S 12b

12z D 1/2D G . ~22!

Equation~20! along with Eq.~22! are the principal results o
this paper. They provide an implicit expression for the fra
tional extension of the chainx, which we define asx5Az, in
terms of the Weissenberg number Wi and the mixing para
etera. The calculation ofx can only be carried out numeri
cally, but the calculation is relatively straightforward. Th
results are described in the next section.

IV. RESULTS AND DISCUSSION

Figure 1 compares our theoretical results for the me
fractional extension against results from the Brownian d
namics simulations of Chuet al. on a 150-bead Kramer’s
chain,12 the raw data for which were communicated to
privately. The figure showsx vs Wi for six different fixed
values of the parametera. The solid lines are the theoretica
curves as calculated from Eq.~20! using the definitionx
5Az, and the symbols are data points from the simulatio
The topmost curve corresponds to purely extensional fl
@i.e., flow in which the amount of the extensional compone
is 100%, or 100%E in the notation used in the figure and
Ref. 12, the relation between %E and a being given by
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%E550(11a)]. The open squares are the data points fr
the simulation with this value ofa. The bottom most curve
corresponds to purely rotational flow (0%E), and the corre-
sponding data from the simulation are represented by a
isks. The curves in between correspond to flows with 49.5
50%, 50.2%, and 51% of the extensional component,
simulation data for these flows being represented, res
tively, by open circles, crosses, open triangles, and p
signs. The simulation data in Fig. 1 are essentially a rep
duction of Fig. 3~a! in Ref. 12.

In constructing the theoretical curves using Eq.~20!, a
definite value has to be assigned to the parameterb, which
we have done as follows. Given thatb is the ratio of the
mean square end-to-end distances of the unperturbed c
and the chain at maximum extension, it may be rewrit
equivalently as,b5^R2&0 /N2/^R2&m /N2[zmin

2 /zmax
2 . The pa-

rameterszmin andzmax are estimated from the simulation da
of x versus Wi in the limits Wi50 ~for zmin) and Wi→` ~for
zmax). The values so determined for the pair (zmin ,zmax) for
the flow types corresponding to 100%E, 51%E, 50.2%E,
50%E, 49.5%E, and 0%E are, respectively,~0.08,1.0!,
~0.081,1.0!, ~0.078,1.0!, ~0.0961,0.5!, ~0.0791,0.3!, and
~0.078,0.1!. In the case of pure rotational flow,zmax can ac-
tually be assigned any value greater thanzmin and less than
1.0 without affecting the results.

Although the theoretical curves in Fig. 1 are not in qua
titative agreement with the data from the simulation, they
reproduce the overall trends. In particular, they correctly p
dict the almost instantaneous stretching to full extension
such molecules in purely extensional flow, and the lack
any stretching whatever in purely rotational flow. In the ca
of simple shear (50%E), they also correctly reproduce th
experimental observation, obtained on single molec
samples of flexible DNA, of close to 50% full extension

FIG. 1. Mean fractional extensionx[^R2&1/2/N vs Weissenberg number W
for different fixed values of the mixing parametera. The full lines are the
theoretical curves calculated from Eqs.~20! and~22!. The symbols are data
points from the simulations of Ref. 12. The topmost curve correspond
pure extensional flow (100%E) and the bottom most curve to pure rota
tional flow (0%E). The intermediate curves correspond to flows with int
mediate amounts of the extensional component, as indicated on the c
The curve withE550% describes simple shear. The symbols have the
lowing meanings: open squares, 100%E; plus signs, 51%E; open triangles,
50.2%E; crosses, 50%E; open circles, 49.5%E; asterisks, 0%E.
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Weissenberg numbers of about 80. For all the flow types,
greatest deviations between theory and simulation occu
the smallest Wi values, and are similar, qualitatively, to t
low Wi deviations seen earlier in comparisons of the mo
with experimental measurements of DNA in simp
shear.15,16 The neglect of hydrodynamic interactions may
a contributing factor to the behavior seen in this regime; s
interactions, if they do indeed play a role, would be mo
important here. At higher Wi, when the chains are more
tended, their importance, can be expected progressivel
diminish. But even at low Wi, it is not clear that hydrody
namic interactions contribute significantly to the chain d
namics. A calculation by Wang and Chatterjee25 on polymer
behavior in flow, in which these interactions are treated
proximately in preaveraged fashion, leads to only mod
improvement over the results of the Rouse model in co
parisons with experiments. More recent stochastic simu
tions by Grahamet al.11 on the flow behavior ofl-phage
DNA suggest that both free draining and nonfree drain
models of the chain are almost equally successful in rep
ducing experimental trends for stretching under shear
extension. The inclusion of hydrodynamic interactions in t
present model would provide a further test of their impo
tance to chain dynamics under flow, but the necessary ca
lations are quite complex, and will form the subject of
future publication.

Figure 2 is a test of the suggestion made in Ref. 12 t
the parameter Wieff5Aa Wi constitutes a scaling variable i
terms of which the data ofx versus Wi fall on a single uni-
versal curve. The figure shows simulation data from Ref.
unpublished experimental data by Babcocket al., and the
theoretical curves derived from Eq.~20!, all the results refer-
ring to the casea.0. The full lines are the theoretica
curves, and the symbols are simulation and experime
data points. The experimental and simulation data in t
figure are essentially a reproduction of Fig. 3~b! in Ref. 12. It
is clear from the figure that there is a significant degree
data collapse when Wieff is used to plot the data, both for th
experimental and simulation results as well as for the th

to

ve.
l-

FIG. 2. Mean fractional extensionx vs the scaling variable Wieff5Aa Wi for
a.0. The full lines are the theoretical curves calculated from Eqs.~20! and
~22!. The symbols represent data points from the simulations of Ref. 12
from the unpublished experiments of Babcocket al.
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retical results. An inspection of Eq.~20! shows why Wieff is
a reasonably effective scaling variable;a and Wi appearal-
mosteverywhere in this equation as the combinationAa Wi.
Because they do not appeareverywherein this combination,
however, data collapse is not expected to be perfect, as
deed it is not. Again, it is the low Wi regions of the theore
ical curves that exhibit the most marked departures from u
versality. Why this should be so is not clear.

We have not been able to see evidence in our calc
tions of similar scaling relations for the casea,0; appar-
ently, neither have Chu and his co-workers. At present we
not know why.

From all of the above results, it is clear that the finite
extensible Rouse model introduced earlier is not restricte
the description of polymers in simple shear alone, but can
used to provide a reasonably accurate description of p
mers in mixed flows as well. Our calculations with th
model~both the present one and the earlier one! suggest that
it is the proper treatment of the effects of finite extensibil
that ensures that the model does not fail under condition
strong flow. As we have seen earlier, the neglect of the fi
extensibility constraint can produce unphysical effects un
these conditions. However, a purely Gaussian treatmen
chain statistics may be adequate if the flow is weak and
extent of chain deformation therefore small; in this limit, t
chain distribution function remains Gaussian, as shown
Takserman-Kozer26 in an early discussion of the mixed flow
problem, but even in this limit it is not a simple superpo
tion of effects arising from the individual elongational an
rotational components of the flow.
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