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Recent simulations by Chet al.[Phys. Rev. B66, 011915(2002] on the behavior of bead—spring

and bead-rod models of polymers in linear mixed flgfl@vs with unequal amounts of extension
and rotation are compared with the predictions of a finitely extensible Rouse model that was used
earlier[J. Chem. Phys112 8707 (2000] to describe the behavior of long flexible molecules of
\-phage DNA in simple shear. The model is a generalization of the continuum Rouse model in
which the “spring constant” of the bonds connecting near neighbor segments is allowed to become
nonlinearly flow-dependent through a term involving the initially unknown mean square size of the
chain, (R?). A self-consistent equation for this quantity is derived by using the flow-modified
Hamiltonian to calculate it from its statistical mechanical definition. After solving this equation
numerically, the mean fractional extension of the chainan be obtained as a function of the
Weissenberg number Wi and a mixing parametel he results compare favorably with data from
the simulations of Chet al, and suggest the existence of a scaling variab®& g/« Wi in terms

of which separate curves afversus Wi fall more or less on a single universal curve.

I. INTRODUCTION ties that cause the large fluctuations that occur in simple
shear. Their results, expressed in terms of the fractional ex-
Single molecule studies have shown over the last fewensjonx vs the Weissenberg number Wi at different fixed
years that the response of long chain molecules to the effeclsyide a detailed map of the relative importance of the elon-
of even simple types of flow can be quite dramatieThisis  gational component in producing extended chain configura-
especially true of simple shear, where the polymer can nog’ons. Significantly, wherx is replotted against asffective
onlly stretch .out in the shape of a long thin rod, but can al,S(?Iow parameter, defined as $=WiJa, the data are all
eX|st_—tranS|entIy—|n states of more unu;ual geometry, iNy, g to fall approximately on the same universal curve. The
cluding dumbbells, half-dumbbells, and fish hodkSuch existence of a scaling relation of this kind is what one would

states are in gen’eral th_e product of the .dynamlc interpla xpect from a phenomenon that seems to share attributes
between the flow’s rotational and elongational components, . o 14
which, for simple shear, are exactly equal to each other Ir\{mh a critical point.

' h ’ Y €4 : In two earlier analytic theories of the polymer-flow

this respect, simple shear can be regarded as a “critical” 15.16 .
flow,® one where the amount of vorticity just prevents theproblem, we showed that the Rouse model of chain dy-

chain from making a transition to a completely extended@mics is unable to provide a satisfactory description of ex-

configuration. Like equilibrium critical phenomena, simple perimental data (also from the Stanford grouon dilute

shear is distinguished by the existence of large and |ong§olutions of flexible DNA molecules in simple shear. The

lived fluctuations, in this case fluctuations in the size of thed€ficiencies of the model, which can be traced to the Gauss-

chain. These fluctuations are responsible for the chain’@n statistics that allow unphysical extensions of the chain
myriad conformational states, which can actually be capture§€yond its contour 'engﬂiwefe corrected by introducing a
on film,*2 or identified in computer simulatiorfs®! constraint on the maximum permissible chain extension at
To probe the immediate neighborhood of this “critical Nigh rates of shear, with significant improvements to the de-
point,” Chu and co-workers have recently simulated the dy-gree of agreement between theory and experiment. Two dif-
namics of bead—rod and bead—spring polymers that are sufgrent ways of imposing the constraint were considered: one
ject to so-called linear mixed flowS.These are flows where approach leads to a variant of the finitely extensible nonlin-
the amounts of vorticity and strain rate are no longer exactygar elastic(“FENE” ) model;® while the other leads to a
the samé? the excess or deficit of one of these componentyariant of the Kratky—Porod wormlike mod&l.The latest
with respect to the other being characterized by a parametétudies on polymers in mixed flows provide additional data
a. In the limit «—0, the flow reduces to simple shear, while that can be used to test the utility of such “constrained”
the limits a—1 anda——1 correspond to pure elongational Rouse models in more general situations. The basic objective
and pure rotational flow, respectively. By studying the behav-of this paper is therefore to compare the predictions of the
ior of the chain whenx is small but not exactly 0, Chu and FENE-type model with these data. We are also interested in a
co-workers have been able to study the onset of the instabilsimilar comparison using the Kratky—Porod-type model, but



the required calculations are nontrivial, and will therefore belll. DYNAMICS
left for future work.

The following section reviews the salient features of the
finitely extensible Rouse model. The dynamics of the mode

The dynamics of the above continuum finitely extensible
ponlinear elastic chain can be described by the following

under the action of linear mixed flow is assumed to be gov-angevin equatior>**

erned by a Langevin equation, whose solution is obtained in ar(rt) 3b #r(rt)

Sec. lll using Laplace transforms. The solution of the flow ’ =gA-r(rt)+— ! o), 3
equation is used to derive an equation for the steady state o7 ¢ 7

mean square end-to-end distance of the chain, which i\ﬁ/here

solved numerically for different values of the strength of the

flow (expressed in terms of the Weissenberg numbegranl 0 1 0

the degree of mixingr. The results are presented as plots of A=l a 0 O 4

the mean fractional extensionversus Wi for various fixed

values ofa, and are discussed in Sec. IV. 0 00

is the velocity gradient tensog is some measure of the
strength of the flowZ is the monomer friction coefficient,
II. THE FINITELY EXTENSIBLE ROUSE MODEL and 6(7,t) is a Gaussian white noise variable defined by a

vanishing mean and a second moment given by
The equilibrium conformation of a polymer, in the ab-

sence of excluded volume interactions, can be described as a {fa(71,t1) 05( T2,12)) =20 1 8ap8( 11— 75) (11— ).
chain of n beads joined by springs of strengththat are (5
separated from each other by an average bond distéfite  The parameter: in the expression for the velocity gradient
the limitn—o, | -0, nl—N, this bead—spring model of the tensorA is a measure of the extent of deviation from simple
polymer describes a continuous curve whose Hamiltohian shear flow, for whicha=0. In general,« lies between+1
(in units where the thermal energyT is 1) is given by and —1, these extemes representing pure elongational and
P pure rotational flow, respectively. At intermediate values, the
3b (N [ar(7) . . . o
H= — dr( ) , (1)  flow is of “mixed” type, and contains an excess or deficit of
2 Jo o7 one or other of these two components.
The calculation of(R?) is conveniently carried out in
Jgrms of the normal coordinateg,(t) defined by®?*

where the variable(7) is the vectorial distance, with respect

to some Cartesian coordinate system, of a point on the cur

that is a distance from one end of the chain. L. (N
For a free polymefno external force field the spring Xp(t)= Tpf drr(7,t)cogpm7/N), (6)

constantb is 11, and Eq.(1) is then equivalent to the well- 0

known Wiener representation of the random WAk there wherel ,= (2~ 5p'0)1/2 I/N, with 8, being the Kronecker

are forces on the chaias a result of flow, for instangeits  delta. A normal coordinate transformation of E8) is easily

Hamiltonian is no longer given by Eql), but Eq.(1) can  shown to produce the following equation f&(t):
nevertheless serve as an approximation to the eXagto-

vided b is allowed to depend on the external forces. In gen- dXp(t)
eral, the dependence ofon these forces cannot be deter- dt
mined a priori, but it is possible to suggest plausible

functional forms for it from physical considerations. Follow- where
ing the model introduced in Ref. 15, we defiheso that it 3bp2m?
reduces to 1/whenever the chain is unperturbed and tendsto N\ ,= 5
infinity whenever the chain attains full extension under the N
action of large forces. An expression fothat satisfies these 44
constraints is given by

A
=gA-X,(t) - fpxp<t>+ 0,(1), @)

®

L

1= (R%)o/(R%)m . O(t) ="

I[1=(R?)(R?) ] | . |
By introducing the Laplace transform, defined by

where(R?), is the unperturbed mean square end-to-end dis-
tance of the chain(R?) is the mean square end-to-end dis- F(s)= fwth(t)e—st (10)
tance under the prevailing kinematic conditions, &Rd),, 0 '
is the mean square end-to-end distance at maximum exte
sion. By using Eq(1) to calculate(R?) in terms ofb, it is
possible to determine this quantity self-consistently from th
solution of a nonlinear equation. This is the strategy that will % (s)=P-Y(s)-uy(s) (12)
be followed to calculate the mean fractional extension of the ~~ © P e
chain as a function of the Weissenberg number. whereu(s) = X,(0)+ @,(s), and

JNdrﬂ(T,t)COS(pWT/N). (9)

0

E_q. (7) can be converted to an algebraic equation, which is
eeasily solved to produce



a,(s) —g 0 tions involving the initial stateX{(0)X{”(0)) are elimi-
nated (by virtue of the exponentially decaying coefficients

Pp(s)=| ~0« 2p(S) 0 ' (12 that multiply them, and one is left with
0 0 ap(s)
: i , 8 3 9?1+ a)?
with ap(s)=s+\, /¢, andX,(0) the initial value of the nor- (R >SS=N > o | (19
mal coordinateXp(t). The inverse of the matri®y(s) is podd[Ap  2Np(Ap—g°¢"a)
readily calculated as It is easily verified that whem=0 (i.e., when the flow cor-
responds to simple shedEq. (19) above reduces to the re-
“1e 1 sult we had obtained in Ref. 15That result was obtained
Pp (S)_ 3 . 5 .
ay(s)— gzaap(s) using a Green’s function approach; the present approach, us-
5 ing the Langevin equation and a normal mode decomposition
ap(s)  gay(s) 0 is somewhat simpler to implement.
x| gaay(s) af,(s) 0 . (13 If we now introduce into Eq.(19) the definitions~
0 0 20 2 = ¢N?I?/37? for the longest relaxation time2’ Wi=gr for
a(s)~ g e the Weissenberg numbegB=(R?),/(R?), for the ratio of

The mean square end-to-end distance at Gn&(t)), can the unperturbed to maximum mean square end-to-end dis-
be obtained from the normal coordinat¥g(t) using the tances, and=(R?)/(R?, for the square of the mean frac-

relation tional extension, Eq(19) is transformed to
8l 4 1-z 4 1—7\3 , )
R Wp,;:dd (Xp(t)-Xq(1)) (14 B 1-p" Q(m) Wi2(1+ a)?S, (20)
o whereS s the sum
N p’qudd (Xp(ta)- Xq(t2)>t2—>t1:t . (15) l
) (21)

= E 6_ 2 0204 N2/ 01 _ 2
The average in the second line of the above equation can be prodd p°—a WI"p*(1-2)%/(1= )
re-expressed as an average involving Laplace variables, This sum can be calculated analytically, either using Math-
a1 ~ ematical or using results tabulated in Ref. 24. The result is
<Xp(tl) ' Xq(t2)>:£sl Esz <Xp(sl) : Xq(52)>y (16)
B 77_2 (1_B>2+ T (1_3)5/2
8aWi?\1-2]  glawi?)®*\1-2

whereﬁs‘l1 and L',s‘zl denote the inverse Laplace transforms
with respect to the variables ands,, respectively, which

are the Laplace variables conjugate to the tileandt,. By e ™ Wi2) L4 1-p\*
combining Eq.(11) with Eq. (13), one finds that the average an 5 (e W)™ 7—
(Xp(s1) - X4(s2)) can be written in the general form, 1- |12
- _
- - +tani‘(5(aWi2)1’4<E ” (22)
(Xp(sp)-Xq(s2))= 2 Ty (s)Ty(sp)
amxy.z Equation(20) along with Eq.(22) are the principal results of
><{<X(p“>(0)xff>(0)> this paper. They provide an implicit expre_ssion for thg frac-
_ _ tional extension of the chaix which we define ag=\z, in
+(05(51) 05(52))}, (17)  terms of the Weissenberg number Wi and the mixing param-

eter a. The calculation ok can only be carried out numeri-

where TEJa)(S_l) and T{(s,) are known functions of the caly, put the calculation is relatively straightforward. The
Laplace variables; ands, and the normal mode indicgs  esylts are described in the next section.

andq. The inverse Laplace transforms of these functions are
gasﬂy calculated; they involve decaying exponentials in thqv_ RESULTS AND DISCUSSION
times t; or t,. The inverse transforms of the functions
Tg“)(sl)gg“)(sl) and Tg")(sz)%")(sz) can be calculated Figure 1 compares our theoretical results for the mean
from the convolution theorem, and the equation fractional extension against results from the Brownian dy-
namics simulations of Chet al. on a 150-bead Kramer’s
~ (@) (@) N LplLq B _ chain!? the raw data for which were communicated to us
<0p (t1) g (t2)= Z 2 6(t11=12) By g (18) privately. The figure shows vs Wi for six different fixed
values of the parameter. The solid lines are the theoretical
they involve combinations of exponentials ip or t, and  curves as calculated from E@§20) using the definitionx
various time-independent factors. These results are all sub=/z, and the symbols are data points from the simulations.
stituted into Eq(15) for the end-to-end distance, the tintgs The topmost curve corresponds to purely extensional flow
andt, being set tat according to the prescription indicated [i.e., flow in which the amount of the extensional component
there. Finally, since we are interested in results in the steadig 100%, or 100%: in the notation used in the figure and in
state(s9, the limit t—oo is taken, whereupon all contribu- Ref. 12, the relation between Bband « being given by
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FIG. 1. Mean fractional extensior=(R?)Y2/N vs Weissenberg number Wi
for different fixed values of the mixing parameter The full lines are the
theoretical curves calculated from E@20) and(22). The symbols are data
points from the simulations of Ref. 12. The topmost curve corresponds t
pure extensional flow (100%) and the bottom most curve to pure rota-
tional flow (O%E). The intermediate curves correspond to flows with inter-
mediate amounts of the extensional component, as indicated on the curve.

The curve withE=50% describes simple shear. The symbols have the fol-\WWeissenberg numbers of about 80. For all the flow types, the

lowing meanings: open squares, 108%plus signs, 51%:; open triangles, greatest deviations between theory and simulation occur at
50.2%E; crosses, 50%; open circles, 49.5%; asterisks, 0%. the smallest Wi values, and are similar, qualitatively, to the
low Wi deviations seen earlier in comparisons of the model
with experimental measurements of DNA in simple
%E=50(1+a)]. The open squares are the data points fromsheart>® The neglect of hydrodynamic interactions may be
the simulation with this value of. The bottom most curve a contributing factor to the behavior seen in this regime; such
corresponds to purely rotational flow (@)%, and the corre- interactions, if they do indeed play a role, would be most
sponding data from the simulation are represented by asteimportant here. At higher Wi, when the chains are more ex-
isks. The curves in between correspond to flows with 49.5%tended, their importance, can be expected progressively to
50%, 50.2%, and 51% of the extensional component, theiminish. But even at low Wi, it is not clear that hydrody-
simulation data for these flows being represented, respecramic interactions contribute significantly to the chain dy-
tively, by open circles, crosses, open triangles, and plusamics. A calculation by Wang and Chatteffeen polymer
signs. The simulation data in Fig. 1 are essentially a reprobehavior in flow, in which these interactions are treated ap-
duction of Fig. 3a) in Ref. 12. proximately in preaveraged fashion, leads to only modest
In constructing the theoretical curves using E20), a  improvement over the results of the Rouse model in com-
definite value has to be assigned to the param@tevhich  parisons with experiments. More recent stochastic simula-
we have done as follows. Given thatis the ratio of the tions by Grahamet al!* on the flow behavior of\-phage
mean square end-to-end distances of the unperturbed chddNA suggest that both free draining and nonfree draining
and the chain at maximum extension, it may be rewrittermodels of the chain are almost equally successful in repro-
equivalently asp=(R?)o/N?/(R?),/N?>=72. /7 .. The pa- ducing experimental trends for stretching under shear and
rameters,,, andz,,.,are estimated from the simulation data extension. The inclusion of hydrodynamic interactions in the
of x versus Wi in the limits W&=0 (for z,,,) and Wi—x (for ~ present model would provide a further test of their impor-
Zma- The values so determined for the pair,{, .z fOr  tance to chain dynamics under flow, but the necessary calcu-

FIG. 2. Mean fractional extensiofvs the scaling variable Wi= e Wi for

a>0. The full lines are the theoretical curves calculated from E2f3.and

22). The symbols represent data points from the simulations of Ref. 12 and
rom the unpublished experiments of Babcakal.

the flow types corresponding to 10@p 51%FE, 50.2%E, lations are quite complex, and will form the subject of a
50%E, 49.5%E, and 0% are, respectively,(0.08,1.0,  future publication.
(0.081,1.9, (0.078,1.0, (0.0961,0.5 (0.0791,0.3 and Figure 2 is a test of the suggestion made in Ref. 12 that

(0.078,0.1. In the case of pure rotational flow,,, can ac- the parameter V§f=/a Wi constitutes a scaling variable in
tually be assigned any value greater ttmy), and less than terms of which the data of versus Wi fall on a single uni-
1.0 without affecting the results. versal curve. The figure shows simulation data from Ref. 12,
Although the theoretical curves in Fig. 1 are not in quan-unpublished experimental data by Babcaoekal, and the
titative agreement with the data from the simulation, they daheoretical curves derived from E@O0), all the results refer-
reproduce the overall trends. In particular, they correctly prering to the casea>0. The full lines are the theoretical
dict the almost instantaneous stretching to full extension oturves, and the symbols are simulation and experimental
such molecules in purely extensional flow, and the lack ofdata points. The experimental and simulation data in this
any stretching whatever in purely rotational flow. In the casefigure are essentially a reproduction of Figb@in Ref. 12. It
of simple shear (50%), they also correctly reproduce the is clear from the figure that there is a significant degree of
experimental observation, obtained on single moleculalata collapse when Wi is used to plot the data, both for the
samples of flexible DNA, of close to 50% full extension at experimental and simulation results as well as for the theo-
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