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ABSTRACT 
 
To solve problems in polymer fluid dynamics, one needs the equation of 

continuity, motion, and energy. The last two equations contain the stress tensor 
and the heat-flux vector for the material. There are two ways to formulate the 
stress tensor: (1) one can write a continuum expression for the stress tensor in 
terms of kinematic tensors, or (2) one can select a molecular model that 
represents the polymer molecule, and then develop an expression for the stress 
tensor from kinetic theory. The advantage of the kinetic theory approach is that 
one gets information about the relation between the molecular structure of the 
polymers and the rheological properties. 

In this review, we restrict the discussion primarily to the simplest stress 
tensor expressions or “constitutive equations” containing from two to four 
adjustable parameters, although we do indicate how these formulations may be 
extended to give more complicated expressions.  We also explore how these 
simplest expressions are recovered as special cases of a more general framework, 
the Oldroyd 8-constant model. The virtue of studying the simplest models is that 
we can discover some general notions as to which types of empiricisms or which 
types of molecular models seem to be worth investigating further. We also 
explore equivalences between continuum and molecular approaches.   

We restrict the discussion to several types of simple flows, such as shearing 
flows and extensional flows. These are the flows that are of greatest importance 
in industrial operations. Furthermore, if these simple flows cannot be well 
described by continuum or molecular models, then it is not necessary to lavish 
time and energy to apply them to more complex flow problems.  
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I. SIMPLE FLOW FIELDS 

 

The stress responses to flow are governed by the equation of 

motion, here written in compact form, in terms of the (extra) stress 

tensor τ : 

  

∂

∂t
ρv = − ∇⋅ ρvv+ pδ+ τ( )() *++ ρg  (1) 

In this summary, we consider the stress responses to two classes of 

flows (§8.2 of [1]), shear flows and extensional flows.  We define these 

flows below, in Eqs. (2) and (3), as solutions to Eq. (1), subject to (i) 

appropriate velocity boundary conditions, and (ii) neglect of fluid 

inertia and gravity. 

 

a. Shear Flows 

 

Shear flows are defined by 

   

v
x

y,t( ) = !γ 0 t( ) y

v
y
= v

z
= 0

"

#
$
$

with

!γ 0 t( ) = !γ 0 ,a constant (a)

!γ 0 t( ) = !γ 0 cosωt,with !γ 0 very small (b)

!γ 0 t( ) = !γ 0 cosωt,with !γ 0 large (c)

"

#

$
$
$
$

 (2) 

where 
 
v

x
, 

 
v

y
, and 

 
v

z
 are the velocity components, and 

  
!γ 0  is the shear 

rate. Since the velocity in the flow direction, 
 
v

x
, is taken to be 
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proportional to 
 
y , the flow is homogeneous. The three cases 

considered here are (a) steady shear flow, (b) small-amplitude 

oscillatory shear (SAOS) flow, and (c) large-amplitude oscillatory 

shear (LAOS) flow. Other time dependent flows (such as stress 

relaxation) could also be discussed (Figure 4.3-1 of [11]). 

   

b. Extensional Flows 

 

Extensional flows are defined by 

   

v
z

z,t( ) = !ε 0 t( )z

v
x
= v

y
= − 1

2
v

z

#

$
%
%

 with 
   
!ε 0

t( ) = !ε 0 , a constant (3) 

Here we restrict ourselves to steady extensional flow. A variety of 

time dependent extensional flows can be studied, including 

oscillatory flows and stress relaxation. If 
   
!ε 0

t( )  is taken to be negative, 

the flow is called biaxial extension.   

 

II. SIMPLE CONTINUUM MODELS 

 

The simplest continuum models for polymeric liquids are those 

that contain just two parameters. By continuum models, we mean 

models that ignore the molecules or molecular chains from which the 
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polymeric liquids are composed.  Instead, continuum models are 

sophisticated guesses based on some knowledge of the measured 

behavior of the polymeric liquids. We consider two Maxwell models, 

some of their modifications, and a more general framework that 

contains all of these modifications as special cases.  

 

a. Convected Maxwell  

 

This contravariant convected model is a nonlinear version of the 

linear model 
   
τ+λ ∂τ ∂t( ) = −η0

!γ  originally proposed by Maxwell ([2]; 

see §8.4 of [1]) 

  
τ+λτ

1( )
= −η

0
!γ  (4) 

in which τ  is the (extra) stress tensor, and its convected derivative is:

   
τ

1( ) =Dτ / Dt− τ ⋅∇v{ }
†

− τ ⋅∇v{ }  for a symmetric τ ,  D / Dt  is the 

substantial derivative,  †  indicates the transpose of a tensor, and 

   
!γ = ∇v( )

†

+∇v  is the rate of deformation tensor (see Eq. 8.3-2 of [1]). 

The two constants are λ , the time constant, and  η0  , the zero-shear-

rate viscosity.  This model (see §7.2 of [3]) can also be regarded as a 

truncated version of the Oldroyd 8-constant model [4] (see § II.c).   
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Next we give two important modifications of the contravariant 

convected Maxwell model: 

 

i. Jeffreys  

 

By adding one additional time constant, we get 

  
τ + λ

1
τ

1( ) = −η
0
!γ + λ

2
!γ

1( )( )  (5) 

where 
 
λ

1
 and 

 
λ

2
 are time constants, and where 

 
η
∞
η

0
= λ

2
λ

1
, η

∞
 being 

the infinite-shear-rate viscosity.  This model is sometimes called the 

“Oldroyd-B model”.  Jeffreys originally cast Eq. (5) with ordinary 

derivatives (see Problem 14·422 of [5] or Problem 14·422 of [6]).   

 

ii. Generalized Convected Maxwell  

 

By superposing an infinitude of Maxwell models, there results 

  

τ = τ
k

k=1

∞

∑  where 
   
τ

k
+ λ

k
τ

k 1( ) = −η
k
!γ  (6) 

in which 
 
λ

k
 and 

 
η

k
 are, respectively, infinite sets of constants with 

dimensions of time and viscosity. When the Spriggs relations [7,8] are 

used: 
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λ

k
= λ k

α and 
  
η

k
=η

0
λ

k
Σ

k
λ

k
,  (7) 

the number of constants is reduced from infinity to three: the zero-

shear-rate viscosity 
 
η

0
, one time constant λ , and a dimensionless 

constant α .  

 

b. Corotational Maxwell  

 

This model is another type of nonlinear extension of the original 

Maxwell model ([9,10,17,18]; Chapter 7 of [11]; §8.5 of [1])  

    
τ+λ D τ D t( ) = −η0

!γ  (8) 

in which 
   
D τ D t = Dτ / Dt( )+ 1

2
ω⋅ τ + τ ⋅ω{ }  is the corotational (or 

Jaumann) derivative [12, 13], and 
  
ω =∇v− ∇v( )

†

 is the vorticity tensor. 

This model is sometimes called the Zaremba-Fromm-Dewitt (ZFD) 

model [9,14,15]. The corotational Maxwell model may be viewed as a 

truncated form of the Oldroyd 8-constant model [16] (see § II.c). 

Important modifications of this model are: 
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i. Jeffreys  

 

This is a three-constant model [17, 18], analogous to the 

codeformational Jeffreys model (Eq. (5) above) 

    
τ+λ

1
D τ D t( ) = −η0

!γ + λ
2

D !γ D t( )  (9) 

containing two time constants,  λ1
 and 

 
λ

2
, and where 

 
η
∞
η

0
= λ

2
λ

1
, 

where 
  

η
∞
= lim
!γ→∞

η !γ( ) .   

 

ii. Arbitrary Normal Stress Ratio (ANSR)  

 

This three-constant model is [10]: 

    
τ+λ

1
D τ D t( ) = −η0

!γ + λ
0
τ ⋅ !γ + !γ ⋅ τ{ }  (10) 

contains two time constants λ  and
 
λ

0
 where minus the normal stress 

coefficient ratio is given by 
  
−Ψ

2
Ψ

1
= − τ

yy
−τ

zz( ) τ
xx
−τ

yy( ) = 1

2
1− λ

0
λ( )%& '(  

(see § V.b below).   

 

iii. Generalized Corotational Maxwell 

 

This is the analog of the superposition of codeformational 

Maxwell models: 
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τ = τ
k

k=1

∞

∑ where 
   

τ
k
+λ

k

D τ
k

D t
= −η

k
!γ  (11) 

The Spriggs relations (see § II.a.ii above) may be used to reduce the 

number of constants from infinity to three.   

 

c. Oldroyd 8-constant 

 

To create a continuum model with more flexibility than the simple 

two and three constant models, Oldroyd suggested [4,16] 

    

τ+λ
1

D τ

D t
+ 1

2
µ

0
tr τ( ) !γ − 1

2
µ

1
τ⋅ !γ+ !γ ⋅ τ{ }+ 1

2
ν

1
τ:!γ( )δ

= −η
0
!γ+λ

2

D !γ

D t
−µ

2
!γ ⋅ !γ{ }+ 1

2
ν

2
!γ:!γ( )δ

)

*
+

,

-
.

 (12) 

On the left side he included all possible products of the τ  and 
 
!γ  

tensors, and on the right side, all possible terms quadratic in 
 
!γ . Eq. 

(12)  contains the corotational Maxwell and Jeffreys models, as well 

as the ANSR model, the codeformational Maxwell model, the 3-

constant Oldroyd model used by Williams [19], and the second-order 

fluid [see after Eq. (13)]. Usually both terms in Eq. (12) containing the 

double-dot product are omitted, inasmuch as they contribute only an 

undetermined isotropic term.  This is then called the “Oldroyd-6 

model.” 
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d. Retarded Motion Expansion 

 

Popular among applied mathematicians has been the retarded 

motion expansion, an expansion of the stress tensor in terms of the 

rate-of-strain tensor and its Jaumann derivatives 

    

τ = −α
1
!γ+α

2

D

D t

!γ −α
11
!γ ⋅ !γ{ }

                −α
3

D
2

D t
2
!γ +α

12
!γ ⋅

D

D t

!γ
&

'
(

)

*
++

D

D t

!γ
&

'
(

)

*
+⋅ !γ

,
-
.

/.

0
1
.

2.
−α

1:11
!γ:!γ( ) !γ −"

 (13) 

in which the α ’s are constants. If only one term is included on the 

right side, this gives the Newtonian fluid; if three terms are included, 

the result is called the second-order fluid; and with six terms, the third-

order fluid, and so on. As a constitutive equation it is limited to slow 

flows that are slowly varying in time. Any of the continuum 

equations may be expanded in the form of a retarded motion 

equation and the relations between them found. For example, for the 

Oldroyd-6 model, the interrelations of the parameters are (see p. 406 

of [11]): 

 

α
1
=η

0
      α

2
=η

0
λ

1
−λ

2( )       α3
=η

0
λ

1
λ

1
−λ

2( )       α11
=η

0
µ

1
−µ

2( )
α

12
=η

0
λ

1
µ

1
−µ

2( )+ 1

2
µ

1
λ

1
−λ

2( )%& '(      α1:11
= 1

2
η

0
µ

1
−µ

0( ) µ1
−µ

2( )
 (14) 
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III. SIMPLE MOLECULAR MODELS 

 

Here we restrict ourselves, for the most part, to molecular models 

of polymeric liquids containing only two parameters plus a 

Newtonian solvent viscosity, 
 
η

s
, and modifications thereof.  We 

examine these models for their ability to predict, at least qualitatively, 

observed viscoelastic behaviors [20].   

For rigid molecular models such as rigid dumbbells, we describe 

the probability of an orientation 
 
θ ,φ( )  by an orientational distribution,

 
ψ θ ,φ( ) .  For elastic models such as elastic dumbbells, we describe the 

configuration with a configurational distribution,
 
Ψ R,θ ,φ( ) , where  R  is 

the dumbbell length.  Whereas 
 
ψ θ ,φ( )  just contains orientation 

information, 
 
Ψ R,θ ,φ( )  also contains information about the extension 

of the molecule.  The advantage of molecular models over continuum 

models is that they connect 
 
ψ θ ,φ( )  or 

 
Ψ R,θ ,φ( )  to the stresses in the 

fluid and thus, to rheology.  For time-dependent flows, such as 

oscillatory shear flow, molecular models can connect the evolving 

molecular orientations or configurations, 
 
ψ θ ,φ ,t( )  or 

 
Ψ R,θ ,φ ,t( ) , to the 

fluid rheology. 

To connect 
 
Ψ R,θ ,φ ,t( )  to evolving stresses we average over 
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configuration space: 

  
F R,θ ,φ ,t( ) = F R,θ ,φ ,t( )R2

dRsinθ dθ dφ
0

∞
∫

0

π
∫

0

2π
∫  (15) 

and to connect 
 
ψ θ ,φ ,t( )  to evolving stresses, we average over 

orientation space: 

  
f θ ,φ ,t( ) = f θ ,φ ,t( )sinθ dθ dφ

0

π
∫

0

2π
∫  (16) 

which is just  Eq. (15) evaluated for constant  R .  Whereas 
 
ψ θ ,φ ,t( )  is 

dimensionless, 
 
Ψ R,θ ,φ ,t( )  has dimensions of volume.  Since ψ  and Ψ  

have different dimensions and since they depend on different 

variables, the same symbol ψ  is often used for both 
 
ψ θ ,φ ,t( )  and 

 
Ψ R,θ ,φ ,t( ) , without loss of clarity [8,29].  

 

a. Elastic Dumbbell 

 

In this subsection we discuss elastic dumbbells, beginning with 

linear (Hookean) spring connectors, followed by several nonlinear 

types of springs. 

 

i. Hookean  

 

The macromolecule is modeled as a pair of identical beads of 
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radius 
  
r

0
 connected by a massless, dimensionless spring with a spring 

constant  H  (see Figure 1). That is, the force between the beads is given 

by   F
c( )
= HR ,   F

c( )  being the force vector in the connecting spring (where 

the  
c( )  indicates the connector), and  R  the vector between the bead 

centers (so that the dumbbell length  R  is simply the magnitude of  R ). 

These Hookean dumbbells are suspended in a Newtonian solvent 

(see §13.4 of [8]) . Then, it can be assumed that the stress tensor is 

given by 
 
τ = τ

s
+ τ

p
, the solvent contribution being 

  
τ

s
= −η

s
!γ  and the 

polymer contribution that is described by 

   
τp + λHτp 1( )

= −nkTλΗ !γ  (17) 

which has the form of Eq. (4), the convected Maxwell model. The 

time constant 
 
λ

H
 is given by 

  ζ / 4 H , in which 
  
ζ = 6πη

s
r
0

, this being 

the Stokes law drag coefficient for a sphere of radius 
  
r
0
 moving 

through the solvent. We identify 
 
nkTλ

Η
 with the dumbbell 

contribution to the zero-shear-rate viscosity, 
  
η

0
−η

s
. This kind of 

dumbbell allows for infinite stretching of the molecule, which is 

unrealistic. When suspended in a fluid at rest, these dumbbells have 

an average length 
  
H R

2
kT . The zero-shear-rate viscosity is given 

by 
  
η

0
=η

s
+ nkTλ

H
, a constant. 
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Now let us examine modifications of the elastic dumbbell:  

 

ii. Finitely Extensible Nonlinear Elastic (FENE-P) 

 

To permit the molecule to stretch only up to a certain length  L , we 

can replace the expression above for   F
c( )  by (Example 13.5-2 of [8]), 

   
F

c( )
= HR 1− R

2
L

2( )( ) ≅ HR 1− R
2

L
2( )  (18) 

We thus call this molecular model finitely extensible, and the 

replacement of 
  
R

2
L

2( )  by
  

R
2

L
2 , the Peterlin approximation [21].  Eq. 

(18) leads to the following approximate expression for the polymer 

contribution to the stress tensor (Eq. (8.6-4) of [1]; Eq. (13.5-56) of [8] 

with  ε = 0 ; [22]):  

   
Zτp + λHτp 1( ) − λH τp − nkTδ⎡

⎣
⎤
⎦ D lnZ / Dt( ) = −nkTλΗ

!γ  (19) 

Here 
   
Z =1+ 3/b( ) 1− trτ p 3nkT( )"

#
$
%  in which   b = HL

2
/kT .  

 

iii. Fraenkel  

 

This dumbbell has a straight connector that oscillates at very small 

amplitude about a length  L  (even for a liquid at rest), so that the 
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force is given by ([23,24,25]; §10.3 of [8]; Table 11.5-1 of [8]) 

   

F
c( )
= H 1−

L

R

"

#
$

%

&
'R  (20) 

where  L  is the dumbbell length when   F
c( )  is zero.  When   L → 0 , the 

model reduces to the Hookean dumbbell; and when  H →∞ , we get a 

rigid dumbbell of length  L  (see Figure 1). The latter limit leads to the 

following approximate expression for the polymer contribution to the 

stress tensor for a Fraenkel dumbbell 

   
Zτp + λHτp 1( ) − λH τp − nkTδ( ) D ln Z Dt( ) = −nkTλH

!γ  (21) 

where 
  
λ

H
= ζ 4H , 

  
b = HL

2
kT , 

   
Z tr τp( ) = 1−T( ) 1−T + 1

3
b( ) , and 

   
T = tr τp( ) 3nkT   (see Problem 13B.11 of [8]).   

 

b. Rigid Dumbbell 

 

In this subsection we concern ourselves with rigid models, starting 

with two-bead dumbbells, and then turning to multi-bead rods. 

 

i. Two-Bead Rod  

 

The rigid dumbbell consists of two spherical beads of radius 
  
r

0
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connected by a rigid, massless, dimensionless rod such that the bead 

centers are separated by a distance  L  (see Figure 1). This rigid 

dumbbell is suspended in a Newtonian liquid of viscosity, 
 
η

s
. We use 

the stress tensor expression given by Giesekus (26; Table 14.3-1 of [8])  

    
τp = −ηs

!γ + 3nkTλ uu
1( )

 (22) 

in which  u  is the unit vector pointing along the rod, and 

  
λ =ζL

2
12kT  is the time constant for the polymer, with ζ   being the 

drag coefficient for a single bead (see Table 14.3-1 of [8]).  Here, we 

identify  nkTλ  with the dumbbell contribution to the zero-shear-rate 

viscosity, 
  
η

0
−η

s
. To evaluate the quantity inside the , which is an 

average over all orientations, it is therefore necessary, to find the 

orientational distribution function for the rigid dumbbells ([27, 28]; 

Chapter 11 of [29]; Chapter 13 of [8]). 

 

ii. Multi-bead Rod  

 

We next consider the model designed for rigid, rodlike molecules 

(§14.3 of [8]). This molecular model consists of a rod of length  L  with 

 N  spheres of radius 
  
r

0
 distributed uniformly along the rod. Then all 

the results for the 2-bead model (dumbbell) can be taken over at once 
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by replacing λ  by 
  
λ

N
=ζL

2
N N +1( ) 72 N −1( )kT

 .  Thus here, we 

identify 
 
nkTλ

N
 with the multi-bead rod contribution to the zero-

shear-rate viscosity, 
  
η

0
−η

s
. Therefore the behaviors of the two 

systems are qualitatively alike.   

For both the rigid dumbbell and the multi-bead dumbbell, 

hydrodynamic interaction may matter.  By hydrodynamic interaction 

we mean the disturbances of the flow field near one bead because of 

the motion of neighboring beads.  These disturbances matter when 

the beads are close to one another, but these disturbances just modify 

the relaxation time, leaving the behaviors of the models closely 

resembling their interactionless counterparts (§14.6 of [8]).  

 

iii. Mixture of Rigid Dumbbells 

 

A polydisperse system may be approximated by a mixture of 

dumbbells, with the mole fraction of dumbbells of length 
 
L

j  being 

 
x j  

, all suspended in a solvent of viscosity 
 
η

s
. For this system, there 

will be a set of time constants 
  
λ j = ζLj

2
12kT , where ζ  is the drag 

coefficient for a single bead (see §11.3 of [8]).  The Spriggs relations 
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(see § II.a.ii above) may be used to reduce the number of constants 

from infinity to three.   

 

c. Chain 

 

Thus far, all of our molecular models have been straight.  In this 

subsection, we turn our attention to flexible chains.  Whereas each 

straight molecular model gives a single relaxation time (see § III.a 

and § III.b above), each chain model gives a discrete spectrum of 

relaxation times, the number of times increasing with number of 

chain links.  For chains, we identify 
 
nkT λ jj

∑  with the chain 

contribution to the zero-shear-rate viscosity, 
  
η

0
−η

s
.   

 

i. Rouse and Zimm Freely Jointed  

 

If N beads are joined by Hookean springs, end to end, in a freely 

jointed chain, we get the Rouse chain [30], used extensively by 

polymer chemists for several decades (see Figure 2). Then it can be 

shown that the stress tensor is given by 
 
τ = τ

s
+ τ

p
, the solvent 

contribution being 
  
τ

s
= −η

s
!γ  and the polymer contribution being 
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τp = τ jj

∑  where 

   
τ j + λ jτ j 1( ) = −nkTλ j

!γ  (23) 

where the discrete relaxation spectrum is given by: 

  

λ j =
λR

sin
2 jπ 2N( )

;η j = nkTλ j  (24) 

where the longest relaxation time is given by 
  
λ

R
=ζ 8H( ) (§15.3 of [8].  

For the longest chains, in the limit of large  N , we recover the first of 

the Spriggs relations in Eq. (7) with  α = 2 , but not the second. This 

chain model may be further modified by including the 

hydrodynamic interactions between beads, be they adjacent or not; it 

is then called the Zimm model ([31]; §15.4 of [8]). Strictly, the Rouse 

and Zimm chains are generalizations of the original linear model of 

Maxwell, that is, by replacing 
  
τ

j 1( )  
in Eq. (6) by 

 
∂τ j ∂t .  

 

ii. Kramers Freely Jointed  

 

One can connect  N  beads by rigid rods in a freely jointed chain 

(see Figure 2) to depict a flexible macromolecule ([32,33], see §11.3, 

§16.1 and §16.4 §16.6 of [8]). The Curtiss-Bird theory, designed for 
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polymer melts, makes use of the Kramers chain model (see Chapter 

19 of [8]; [34,35,36,37,38,39,40,41,58]).  

 

iii. Mixtures of Chains  

 

A polydisperse system may be approximated by a mixture of 

chains, all suspended in a solvent of viscosity 
 
η

s
. There will then be 

an infinite set of longest relaxations times, one for each chain, 
 
λRj . 

The Spriggs relations (see § II.a.ii above) may then be used to reduce 

the number of constants from infinity to three.   

 

IV. CONTINUUM-MOLECULAR CONNECTIONS 

 

As we shall see in subsequent sections, predicted behaviors for 

molecular and continuum models, in both small-amplitude 

oscillatory shear flow, and in steady shear flow, are both reasonable 

and remarkably alike.  For instance, Figure 4 illustrates the similarities 

in the !η ω( )  and !!η ω( )  predictions. But the similarities in the predicted 

behaviors of 
 
!η
13
ω( ) , 

 
!!η
13
ω( ) , 

 
!η
33
ω( )  and 

 
!!η
33
ω( )  in large-amplitude 

oscillatory shear flow is equally remarkable (see Figure 5 and Figure 6).   
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The molecular approach does not yield explicit expressions for the 

constitutive equations, unless approximations such as Eqs. (19) or 

(21) are introduced.  It may thus be useful to use an equivalent 

continuum model. By “equivalent” we mean that the parameters in 

the continuum model are so chosen that the molecular model is 

reasonably well approximated. The corotational model framework 

has been closely connected with macromolecular theory ([42,43,44]; 

see Tables 6.2-1 and 6.2-2 of [3]; Problems 11B.9 and 11B.10 of [29]; 

§IV and §V. of [28]; §9.5 of [11]).  Table I lists examples of this 

procedure where the parameters of a 6-constant Oldroyd model are 

given for the rigid dumbbell and FENE dumbbell molecular models.  

We write the stress tensor as 
 
τ = τ

s
+ τ

p
 and the corresponding 

viscosities be 
 
η =η

s
+η

p
, and let the polymer contribution be 

described by the Oldroyd model; then in Table I we give the 

expressions for the six Oldroyd parameters in terms of the molecular 

parameters. When the rigid dumbbell parameters in Table I are 

inserted into the Oldroyd expression for viscosity or normal stresses 

or extensional viscosity, one will get an approximate expression for 

the corresponding molecular results (see p. 570-571 of [11]).   
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V. STEADY SHEAR FLOW  

 

In this section, we consider the measured behavior of polymeric 

liquids in a time-steady simple shear flow, and the corresponding 

predictions for the simplest continuum and molecular models.  

 

a. Experimental Results 

 

For steady shear flow, the non-Newtonian viscosity 
  
η !γ( ) = −τ yx

!γ  

of polymers generally starts out at 
 
η

0  and then turns down and 

decreases more or less as    !γ
n−1

, with  n  varying from 0.2 to 0.7 for 

various polymeric fluids, leveling off at an infinite-shear-rate 

viscosity η∞  .  The first normal stress coefficient 
   
Ψ

1
= − τ

xx
−τ

yy( ) !γ 2  

similarly begins at a constant value and then decreases more or less 

as 
  
!γ −4 3

. The second normal stress coefficient 
   
Ψ

2
= − τ

yy
−τ

zz( ) !γ 2

, is 

generally about minus 2/7ths of the first normal coefficient (§3.2 of 

[3]). 
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b. Continuum Models 

 

The contravariant convected Maxwell model gives a viscosity and a 

first normal stress coefficient that are both constant; it also gives zero 

for the second normal coefficient. Therefore, it is fair to say that this 

model is of limited value (§7.2 of [3]). 

 The corotational Maxwell model gives, for the viscosity and 

normal stress coefficients (see §3.2 of [29]), 

   

η

η
0

=
1

1+ λ !γ( )
2

,
Ψ

1

η
0
λ
= −2

Ψ
2

η
0
λ
=

2

1+ λ !γ( )
2

 (25) 

The viscosity starts at 
 
η

0
 and then decreases as 

  
!γ −2 , which is far too 

steep, the largest allowable value of the exponent presumably being 

 −1 . The first normal stress coefficient decreases as 
  
!γ −2  also. 

If one superposes many corotational Maxwell models (see Ch 7 of 

[29]), with 
 
η

k
 and 

 
λ

k
 as parameters, one can then select values for 

these parameters according to a procedure by Winter [45] and 

thereby get quite realistic curves for the viscosity and first normal 

stress coefficient; the second normal stress coefficient is still minus 

one half of the first normal stress coefficient and has the opposite 

sign. Alternatively one can use the Spriggs relations [7], 
 
λ

k
= λ k

α  and 
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η

k
=η

0
λ

k
λ

k
k

∑  and get fairly realistic expressions with just three 

adjustable parameters, 
 
η

0
, λ  and α  (see § II.a.ii above). The time 

constant determines the value of the shear rate at which the viscosity 

curve turns sharply downwards, and the parameterα  controls the 

slope of the  logη  versus 
  log !γ  curve for large 

 
!γ ; for example, 

  
η∝ λ !γ( )

1 α( )−1

and 
  
Ψ

1
∝ λ !γ( )

1 α( )−2

 (see Fig. 7.4-1 of [11]). 

The corotational Jeffreys model (Chapter 7 of [29]) decreases with 

shear rate and then levels off at 
 
λ

2
λ

1( )η0
 at infinite shear rate. The 

first normal stress coefficient decreases as 
  
!γ −2 , and the second normal 

stress coefficient is negative and has half the magnitude of the first 

normal stress coefficient. 

We now conclude with the ANSR model (Arbitrary Normal Stress 

Ratio) [10]. This model can be regarded as a special case of the 

Goddard-Miller integral expansion  [46] of the 8-constant Oldroyd 

model [16]. In steady shear flow, it gives the same results as the 

corotational Maxwell model for the viscosity and the first normal 

coefficient. However, it features an arbitrary ratio for 
 
Ψ

2
Ψ

1
 that 

depends on an additional time constant  λ0  (see § II.b.ii above). 
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c. Molecular Models 

 

The Hookean dumbbell (§13.4 of [8]) gives a constant viscosity, a 

constant first normal stress coefficient, and a second normal 

coefficient that is zero. This is the same prediction that is given by the 

Lodge “elastic liquid,” which was obtained from a network model 

[47]. 

The FENE-P dumbbell (Example 13.5-2 of [8]) gives a non-

Newtonian viscosity that has a high-shear-rate limit proportional to 

  
!γ −2 3  and a high-shear-rate first normal stress coefficient proportional 

to 
  
!γ −4 3 . The second normal stress coefficient is zero. 

If we assume that the orientational distribution function can be 

expanded in powers of the shear rate, then the rigid dumbbell gives for 

small shear rates ([27, 28]; §8.6 of [1]; Eqs. (14.4-18)-(14.4-20) of [8]): 

   
η !γ( )−ηs( ) nkTλ =1− 18

35
λ !γ( )

2

+ 1326

1925
λ !γ( )

4

+"  (26) 

   
Ψ

1
!γ( ) nkTλ 2 = 6

5
1− 38

35
λ !γ( )

2

+ 38 ,728

25 ,025
λ !γ( )

4

+"%
&

'
(  (27) 

 
Ψ

2
= 0  (28) 

However, Kim and Fan [48] have demonstrated that the above series 

converge only for 
 
λ !γ  less than about 0.8. Further, Stewart and 

Sørensen [49] have shown, by orthogonal collocation, that for the 
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limiting high shear rates 

   
η !γ( )−ηs( ) nkTλ ≈ 0.678 λ !γ( )

−1 3

 (29) 

   
Ψ

1
!γ( ) nkTλ 2 ≈ 1.20 λ !γ( )

−4 3

 (30) 

 
Ψ

2
= 0  (31) 

and Öttinger [50] has shown  that the numerical coefficient in the 
 
Ψ

1
 

equation is 
  
π 2

2 3
Γ 7

6( ) =1.20357…  from his purely analytical 

approach. This approach takes advantage of the close alignment, at 

very high shear rates, of the rigid dumbbells with the flow. Then one 

can solve an ordinary differential equation exactly for a contracted 

distribution function that depends only on φ . However, only the 

numerical coefficient for 
 
Ψ

1  can be obtained in this way.  Whereas 

Eqs. (27) and (30) are in reasonable agreement with experimental data 

[27], Eqs. (28) and (31) are obviously not.   

The multi-bead dumbbell gives the same results as the rigid 

dumbbell, when λ  is replaced by
 
λ

N
, provided that hydrodynamic 

interaction is neglected (see § III.b.ii above). 

For the Fraenkel dumbbell in steady shear flow, we get exactly  

  
η

0
−η

s( ) nkTλ
H
= 0,2$% &'ζL

2
12kTλ

H
= 0,2$% &'λ λΗ  (32) 

  
Ψ

1,0
nkTλ

H

2
= 0,4#$ %&ζ

2
L

4
120k

2
T

2λ
H

2
= 6

5
0,4#$ %&λ

2 λ
H

2  (33) 
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for the low-shear rate limiting values of the viscometric functions 

[24], where 
  
0,2!" #$  and 

  
0,4!" #$ are functions of 

  
HL

2
2kT , and these 

functions can be obtained graphically from Figs. 1(a) and 1(b) of [24] 

(see Problem 13B.10 of [8]).   

At high shear rates (see Problem 13B.11 of [8]), we get: 

   
η !γ( )−ηs( ) nkTλ

H
= 3

2

3 λ
H
!γ( )

−2 3

 (34) 

   
Ψ

1
!γ( ) nkTλ

H

2
= 18

3 λ
H
!γ( )

−4 3

 (35) 

 

In summary, all three dumbbell models that predict shear thinning 

(rigid, Fraenkel, FENE-P) give 
  
Ψ

1
!γ( )∝ λ !γ( )

−4 3

 or 
   
λ

H
!γ( )
−4 3

 
at high 

shear rate. Whereas Fraenkel and FENE-P dumbbells give 

   
η !γ( )−ηs( )∝ λ

H
!γ( )

−2 3  at high shear rate, the rigid dumbbell model gives 

   
η !γ( )−ηs( )∝ λ !γ( )

−1 3 .  Figures 3.3-1 to 3 of [3] all show the logarithm of 

the viscosity of polymer melts or non-dilute solutions decreasing 

linearly with the logarithm of the shear rate, but none of the curves 

has a slope of exactly 
 
−1 3  or 

 
−2 3 ; however, in Figure 13.5-5 of [8] 

the viscosity curves for non-dilute solutions have slopes very close to 

 
−2 3 . For the first normal stress coefficient, the log-log plots versus 

shear rate in Fig. 3.3-5 of [3] for several non-dilute solutions exhibit 



 30 

an extended power-law region with slopes of about   −1.6  (as opposed 

to   −1.33  of the model predictions).  It should be kept in mind that by 

taking a mixture of dumbbells and using the Spriggs relations, we 

can get any desired slopes on the log-log plots of viscosity versus 

shear rate.  

 

VI. SMALL-AMPLITUDE OSCILLATORY SHEAR FLOW 

 

In this section, we consider the measured behavior of polymeric 

liquids in a small-amplitude oscillatory shear flow, and the 

corresponding predictions for the simplest continuum and molecular 

models.  

 

a. Experimental Results  

 

When the velocity gradient varies with time as 
   
!γ 0

cosωt , if its 

amplitude is small, the shear stress and the normal stresses are then 

of the form (§3.4 of [3]) 

   
τ

yx
t( ) = − #η ω( ) !γ 0

cosωt− ##η ω( ) !γ 0
sinωt  (36) 

   
τ xx t( )−τ yy t( ) = − !γ 0( )

2

Ψ
1

d ω( )+Ψ1
& ω( )cos2ωt+Ψ

1
&& ω( )sin 2ωt'

()
*
+,

 (37) 
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τ yy t( )−τ zz t( ) = − !γ 0( )

2

Ψ
2

d ω( )+Ψ 2
& ω( )cos2ωt+Ψ

2
&& ω( )sin 2ωt'

(
)
*  (38) 

Whereas the shear stress oscillates about zero, but time-shifted from the 

input (the velocity gradient as a function of time), the two normal 

stress differences oscillate about some constant which depends on the 

displacement functions 
  
Ψ

1

d  and 
  
Ψ

2

d . Thus, the two η  functions and six 

Ψ  functions are the experimentally measurable quantities.  

There are two important empirical rules connecting small-

amplitude oscillatory functions with steady shear flow functions (§3.6 

of [3]; [51, 52]): 

Cox-Merz rule:  
  

η !γ( ) = η * ω( )
ω= !γ

= $η ω( ) 1+ $$η $η( )
2%

&
'
(

0.5

ω= !γ

 (39) 

Laun rule:  
  

Ψ
1
!γ( ) = 2 ##η ω( ) ω( ) 1+ ##η #η( )

2&
'

(
)

0.7

ω= !γ

 (40) 

These relations can be useful if steady state flow data are not 

available, but small-amplitude oscillatory data are at hand. 

   

b. Continuum Models 

 

The two-constant contravariant convected Maxwell model gives, for 

!η  and !!η  (Table 3 of [27]), 

 
!η ω( ) η0

=1 1+ λω( )
2%

&
'
(=1− λω( )

2

1+ λω( )
2%

&
'
(  (41) 
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!!η ω( ) η0

= λω 1+ λω( )
2%

&
'
(  (42) 

These functions show the general trends, namely that !η  and !!η λω  

both decrease with increasing frequency. For describing experimental 

data, one can superpose Maxwell models and get 

  
!η ω( ) = η

j 1+ λ
j
ω( )

2%
&

'
(j

∑ = η
j

1− λ
j
ω( )

2

1+ λ
j
ω( )

2%
&

'
(( )j

∑  (43) 

  
!!η ω( ) = η

j
λ

j
ω 1+ λω( )

2%
&

'
(j

∑  (44) 

One can then use Winter’s method [45] for selecting 20 or 30 
 
η

j and 
 
λ

j  

to get excellent fits of the experimental data. Alternatively one can 

use the Spriggs relations [7] and get 3-parameter descriptions of the 

experimental data (see § II.a.ii above). 

The corotational Maxwell model gives exactly the same results as 

the contravariant convected Maxwell model (Example 7.3-2 of [11]). 

The three-constant corotational Jeffreys model (Example 7.3-2 of [11]) 

gives for !η  and !!η : 

 
!η ω( ) η0

= 1+λ
1
λ

2( ) 1+ λ
1
ω( )

2%
&

'
(=1− λ

1
ω( )

2

−λ
1
λ

2

%
&

'
( 1+ λ

1
ω( )

2%
&

'
(  (45) 

 
!!η ω( ) η0

= λ
1
−λ

2( )ω 1+ λ
1
ω( )

2&
'

(
)  (46) 

This result can be used to superimpose many Jeffreys models. We can 

do this by replacing 
 
λ

1
by 

  
λ

1k
= λ k

α  and 
 
λ

2
 by 

  
λ

2k
= λ k

α  in Eqs. 

(7) , and using the same value of k and α  appearing in both 
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expressions. Thus we still end up with a three-parameter description 

of the experimental data.” (see § II.a.ii above).   

The linear viscoelastic functions for the ANSR model are the same 

as for the corotational Maxwell model. 

 

c. Molecular Models 

 

The Hookean dumbbell gives, for the linear viscoelastic functions 

(§13.4 of [8]) 

  
!η ω( )−ηs( ) nkTλ

H
=1 1+ λ

H
ω( )

2&
'

(
)=1− λ

H
ω( )

2

1+ λ
H
ω( )

2&
'

(
)  (47) 

  
!!η ω( ) nkTλ

H
= λ

H
ω 1+ λ

H
ω( )

2%
&

'
(  (48) 

This gives the right general trends for the functions, but is not 

adequate for describing the experimental data exactly. Superposing 

the Hookean dumbbells, however, gives excellent results. The FENE-

P dumbbell gives the same results as the Hookean dumbbell. 

The rigid dumbbell gives, for small-amplitude oscillatory shear flow 

(§7 of [27]), 

  

!η ω( )−ηs( ) nkTλ = 1+ 2

5
λω( )

2&
'

(
) 1+ λω( )

2&
'

(
)=1− 3

5
λω( )

2

1+ λω( )
2&

'
(
)  (49) 

  
!!η ω( ) nkTλ = 3

5
λω 1+ λω( )

2%
&

'
(  (50) 
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Though these differ from Eqs. (47) and (48), they give the same 

general trends for the functions.  Whereas Eqs. (47) and (48) intersect 

(at 
  
λ

H
ω =1 ), Eqs. (49) and (50) give !η ω( ) > !!η ω( )  everywhere.  This 

intersection of !!η  with !η  is sometimes observed (see Figure 9-22 of 

[53], and sometimes, not (see Figures 9-1 and 9-3 of [53]).   

The multi-bead rod gives the same results as for the rigid dumbbell, 

except that λ  is replaced by 
 
λ

N
, provided that hydrodynamic 

interaction is not taken into account (see § III.b.ii above).   

We know of no analytical solution for the Fraenkel dumbbell in 

small-amplitude oscillatory shear flow, although Fraenkel has given 

approximate results for three special cases (see p. 646, Column 2, 

entries (1) through (3) of [23]).   

For the Rouse chain we get (Eqs. (15.3-29) and (15.3-29) of [8]): 

  

!η ω( )−ηs( ) nkTλR = 1 λR( ) λ j 1+ λ jω( )
2&

'
(
)j

N−1

∑

= 1 λR( ) 1− 1+ λ jω( )
2

−λ j

&
'

(
) 1+ λ jω( )

2&
'

(
)j

N−1

∑
 (51) 

  
!!η ω( ) nkTλR = 1 λR( ) λ j

2ω 1+ λ jω( )
2%

&
'
(j

N−1

∑  (52) 

Comparing these with Eqs. (43) and (44) for the contravariant 

convected Maxwell model, we see that if we neglect the solvent 

viscosity, we can then identify 
 
η

j  with the constants 
 
nkTλ j .   
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VII. STEADY EXTENSIONAL FLOW 

 

In this section, we consider the measured behavior of polymeric 

liquids in a steady extensional flow, and the corresponding 

predictions for the simplest continuum and molecular models.  

 

a. Experimental Results 

 

For steady extensional flow, the quantity that is measured is the 

extensional viscosity 
  
η !ε( ) = − τ

zz
−τ

xx
( ) !ε , which depends upon the 

extension rate 
  
!ε = dv

z
dz . For Newtonian fluids, the extensional 

viscosity is three times the viscosity µ .  For some polymeric fluids, 

the extensional viscosity is 
 
3η

0
 for small values of  !ε , and, as  !ε  

increases, η  increases somewhat, goes through a maximum, and then 

decreases. For others, no maximum is observed. And for still others, 

it is not possible to achieve a steady-state flow.  

For negative  !ε  (biaxial stretching), η  decreases and seems to go to 

a constant, although the experimental data for this are very limited 

(§8.2 of [1]).  
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b. Continuum Models 

 

The contravariant convected Maxwell model gives, for the extensional 

viscosity (Table 7.3-2 of [3]), 

  
η !ε( ) 3η

0
=1 1+λ !ε( ) 1− 2λ !ε( )  (53) 

which gives infinity for 
  
λ !ε ≥ 1

2
 and   λ !ε ≤ −1 .  Whereas some regard this 

as unacceptable, some process engineers use this to explain 

maximum throughput in extensional manufacturing flows such as 

fiber spinning (where   λ !ε > 0 ) or film blowing (where   λ !ε < 0 ).   

The corotational Maxwell and Jeffreys models both give, for the 

extensional viscosity (Chapter 7 of [3]), 

  
η !ε( ) 3η

0
=1  (54) 

This result does not give rise to any infinities, but it does not leave 

room for any flexibility. 

To our knowledge, no one has previously evaluated the 

extensional viscosity for the ANSR model, for which we get: 

  
η 3η

0
=1+λ

0
!ε  (55) 

a reasonable result for positive 
  
λ

0
!ε , but not for 

  
λ

0
!ε ≤ −1 . 
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c. Molecular Models 

 

The Hookean dumbbell gives, for the extensional viscosity (Table 3 

of [27]), 

   
η !ε( )−3η

s( ) 3nkTλ
H
=1 1+λ

H
!ε( ) 1− 2λ

H
!ε( )  (56) 

which suffers from the same fundamental weaknesses that the 

contravariant convected Maxwell model does. 

For the FENE-P dumbbells, we have the following results for 

extensional flow (Example 13.5-2(d) of [3]) 

For   !ε = 0 :  
   
η !ε( )−3η

s( ) 3nkTλ
H
= b b+5( )  (57) 

For  !ε→∞ :  
   
η !ε( )−3η

s( ) 3nkTλ
H
≅ 2

3
b  (58) 

For  !ε→−∞ :  
   
η !ε( )−3η

s( ) 3nkTλ
H
≅ 1

6
b  (59) 

These results show that the nonlinear spring in this model prevents 

the infinities from occurring.  

For rigid dumbbells it can be shown that (Example 14.4-2 of [8]; Eq. 

(16.5) of [27]) 

   

η !ε( )−3ηs( ) 3nkTλ = 1
2
∓ 3

4
X± 3

4
X exp ±X( ) exp ±y( )

0

X

∫ dy

=1+ 3
5
λ !ε + 9

35
λ !ε( )

2
− 27

175
λ !ε( )

3
+#

 (60) 

in which 
   
X = 9

2
λ !ε  and the upper signs are to be used when  !ε  is 

positive and the lower signs, when  !ε  is negative. This monotone 
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increasing function of  !ε , 
   
η !ε( )−3η

s( ) 3nkTλ , ranges from 
 
1

2
 to  2  as  !ε

increases from −∞  to +∞ .  This seems not altogether unreasonable.  

The results for the multi-bead rod match those for the rigid 

dumbbell, if λ  is replaced by 
 
λ

N
. 

For the Kramers freely jointed bead rod chain, Hassager ([33]; §16.5 of 

[8]) has succeeded in developing series expansions for both small and 

large rates of extension. He has compared his results with those for 

multi-bead rods. In the limits of  !ε  going to plus or minus infinity, the 

two curves have common asymptotes. 

 

VIII. LARGE-AMPLITUDE OSCILLATORY SHEAR FLOW  

 

In this section, we consider the measured behavior of polymeric 

liquids in a large-amplitude oscillatory shear flow, and the 

corresponding predictions for the simplest continuum and molecular 

models.  

If the amplitude 
  
!γ 0  of the velocity gradient 

   
!γ 0

cosωt  is large, then 

harmonics higher than those given by Eqs. (36) through (38) are 

measured. These higher harmonics distort the stress responses, and 

when we observe these in the shear stress response, we call the 
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oscillatory experiment large-amplitude.  For polymeric liquids, these 

higher harmonics are commonly observed when: 

  

ω

!γ 0
>1  (61) 

Eq. (61) is thus our working definition of large-amplitude oscillatory 

shear flow [54,55], and with recent advances in rheometry, 

conducting experiments satisfying Eq. (61) is now commonplace for 

exploring the physics of polymeric liquids [56].  The material 

functions in this flow are commonly defined as coefficients of the 

Fourier series [compare with Eqs. (36) to (38)]: 

   

τ
yx

t,γ
0( )

!γ
0

≡ − %ηh ω , !γ
0( )cos hωt + %%ηh ω , !γ

0( )sin hωt
h=1

odd

∞

∑  (62) 

   

τ xx t( )−τ yy t( )

!γ 0( )
2

≡ − %Ψ
1,h ω , !γ 0( )coshωt+ %%Ψ

1,h ω , !γ 0( )sin hωt
h=0
even

∞

∑  (63) 

   

τ yy t( )−τ zz t( )

!γ 0( )
2

≡ − %Ψ
2,h ω , !γ 0( )coshωt+ %%Ψ

2,h ω , !γ 0( )sin hωt
h=0
even

∞

∑  (64) 

where  h  is the order of the harmonic, and where 
  
!Ψ
1,0
= !Ψ

1

d , 

  
!!Ψ
1,0
= !!Ψ

1

d , 
  
!Ψ
2,0
= !Ψ

2

d  and 
  
!!Ψ
2,0
= !!Ψ

2

d . We call the coefficients, 

   
!η
h
ω , !γ

0( )  and
   
!!η
h
ω , !γ

0( ) , the Fourier loss and storage viscosities of the hth 

harmonic.  Mindful of our errata to our Ref. [17], we see that the 
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notation corresponding to Eq. (62), for the first normal stress 

difference coefficient is given in Eq. (179) of [17].  These Fourier 

viscosities are also readily obtained from loops, such as the one in 

Figure 3 [57].   

The Fourier viscosities in Eq. (62) are occasionally expanded in 

odd powers of 
  
!γ

0
 thus defining a matrix of frequency dependent 

nonlinear viscosities [58]: 

   

τ
yx

t( )
!γ

0

= − !γ
0

n−1

h=1

odd

n

∑
n=1

odd

∞

∑ &η
hn
ω( )cos hωt + &&η

hn
ω( )sin hωt[ ]  (65) 

where 
  
!η
hn

, !!η
hn

( )  are named the loss and storage viscosities of hnth order, 

where 
 
!η
11

, !!η
11( ) ≡ !η , !!η( ) . The “n” in the “hnth order” corresponds to one 

plus the power of the expansion in Eq. (65), that is, the power of 
  
!γ

0  in 

in Eq. (65).  Whereas the Fourier viscosities all have the same 

dimensions, of viscosity, the dimensions of the viscosities of hnth 

order are given by: 

   

!η
hn

, !!η
hn( ) =#$ %&

!η , !!η( )

!γ 0
n−1

 (66) 

The notation corresponding to Eq. (65), for the first normal stress 

differences, is (Eq. (183) of [17]):  
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τ xx t( )−τ yy t( )
η

0
!γ 0

= − !γ 0
p

h=0
even

p+1

∑
p=1
odd

∞

∑ 'Ψ
1,h ,p+2

ω( )coshωt+ ''Ψ
1,h ,p+2

ω( )sin hωt*
+

,
-  (67) 

defining a matrix of frequency dependent nonlinear coefficients.  

The latest addition to LAOS notation is [59,60]: 

   

τ yx τ , !γ
0( )

!γ
0

≡
GEn

ω
ω , !γ

0( )Tn sinωt
n=1
odd

∞

∑ + ηEn ω , !γ
0( )Tn cosωt

n=1
odd

∞

∑  (68) 

where 
 
T

n
x( )  are the Tschebycheff polynomials of the first kind, for 

which: 

  
T

n+1
x( ) ≡ 2xT

n
x( ) −T

n−1
x( ) ;T

0
x( ) ≡ 1  (69) 

We call 
   
G

En
ω , !γ

0( )  the Ewoldt moduli and and 
   
η

En
ω , !γ

0( ) , the Ewoldt 

viscosities.  These Ewoldt coefficients are related to the Fourier 

coefficients in (62) by [61]: 

   
G

En
ω , !γ0( ) = ##η

n
ω , !γ0( ) −1( )

n−1( )/2
 (70) 

   
η

En
ω , !γ0( ) = $η

n
ω , !γ0( )/ω  (71) 

When shear stress shear rate loops self-intersect, they form secondary 

loops [64], and these have been shown to arise when [61]: 

   

G
E3

G
E1

>
1

3
1+ 5

G
E5

G
E1

−
⎛

⎝
⎜

⎞

⎠
⎟  (72) 
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As for self-intersection in large-amplitude oscillatory shear flow, 

none of the solutions to simple models explored in this review have 

been tested against Eq. (72).  For self-intersection, a more complicated 

corotational continuum model has been proposed [62] which exploits 

the Gordon-Schowalter derivative [63].   

 

a. Experimental Results  

 

To evaluate constitutive equations, we rely on experimental 

measurements.  In rheology, these are collected as time series, usually

 
τ

yx
t( )  and very rarely as 

 
τ χχ t( )−τ yy

t( )$
%

&
'  [10,83,84].  The Fourier 

viscosities in Eqs. (65) and (67) are readily obtained from measured 

time series 
 
τ

yx
t( )  using the discrete Fourier transform [55].  Many 

then follow Dealy et al. (1973) in plotting loops of shear stress versus 

shear rate, since these best bring out distortions from ellipticity 

caused by the higher harmonics [64,65,66].  The oscillograph in Figure 

3, for example, shows why putting 
 
!γ  on the abscissa is preferred for 

detecting higher harmonic content.  This measurement was made on 

a sliding plate rheometer incorporating a flush-mounted shear stress 

transducer [67,68].   
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Recent experimental work focuses on the ratios of the amplitudes 

of harmonics (particularly the third-to-first and fifth-to-first), often 

called the relative intensities, a now widely established way of 

representing large-amplitude oscillatory shear measurements (see 

Fig. 2 of [69]; see Fig. 4.12 of [70,71]; see Fig. 6 of [72]).  The shear stress 

harmonic amplitude is defined by: 

   
τ

h
= !γ 0 #η

h

2
+ ##η

h

2  (73) 

This concept of relative intensities follows naturally from the analysis 

of molecular spectroscopy [70], and has become a popular way of 

summarizing nonlinear viscoelastic behavior. The symbols 
  
I

3 1
 and 

  
I

5 1
are often used for the amplitude ratios, 

 
τ

3
τ

1
 and 

 
τ

5
τ

1
, and: 

   

lim
!γ 0 ω( )→0

τ
3

τ
1

!γ 0 ω( )
2
≡ Q

0

3/1  (74) 

   

lim
!γ0 ω( )→0

τ
5

τ
1

!γ 0 ω( )
4
≡Q

0

5/1  (75) 

where 
  
!γ 0 ω( )  is called the shear strain amplitude.  

  
Q

0

3/1  is called the 

intrinsic nonlinearity (for a thorough treatment of this quantity see 

[73]). Since 
  
Q

0

3/1  is measured at constant frequency, Eqs. (74) and (75)

become: 
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Q
0

3/1 =ω 2
lim
!γ0→0

τ
3

τ
1

!γ 0( )
2
= λω( )

2

lim
!γ0→0

τ
3

τ
1

λ !γ 0( )
2

 (76) 

   

Q
0

5/1 =ω 2
lim
!γ0→0

τ
3

τ
1

!γ 0( )
4
= λω( )

4

lim
!γ0→0

τ
3

τ
1

λ !γ 0( )
4

 (77) 

These limits are thus inspired by the usual expansions for the steady 

shear viscosity, or for the shear stress response in large-amplitude 

oscillatory shear, which generally give power-laws (see Eq. (9) of [74] 

and Eq. (3) of [75]; see Eq. (5) of [76]; see Eq. (13) of [77] and Eq. (17) 

of [78]]; see Eqs. (147) and (157) of [17]; see Eq. (3) of [69]; [79,80,81]): 

   
τ

h
τ

1
∝ !γ 0( )

h−1

; h >1,odd  (78) 

where  h  is the integer order of the harmonic, and specifically: 

  

τ
3

τ
1
∝ !γ 0( )

2

τ
3

τ
1
∝ !γ 0( )

4
 (79) 

The power-laws given by Eq. (78), and especially the first one, by Eq. 

(79), are often confirmed experimentally [82].  Finally, whereas loop 

self-intersection has been measured [65,66], Eq. (72) has yet to be 

evaluated for any of the simple models considered in this review.   
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b. Continuum Models  

 

The contravariant convected Maxwell model gives, for the shear 

stress and the normal stress differences, for a cosinusoidal velocity 

gradient 
   
!γ 0

cos ωt , once alternance is reached 

   

τ yx t( )
η

0
!γ 0

= −
1

1+ λω( )
2

cos ωt+λω  sin ωt( )  (80) 

   

τ xx t( )−τ yy t( )
η

0
!γ 0

= −λ !γ 0 1

1+ λω( )
2
+

1− 2 λω( )
2( )cos 2ωt+3λω  sin 2ωt

1+ λω( )
2( ) 1+ 4 λω( )

2( )

'

(

)
)
)

*

+

,
,
,

 (81) 

  
τ yy t( )−τ zz t( ) = 0  (82) 

By alternance we mean that initial transients have disappeared. 

Mindful of the errata in our Ref. [47], we see that Eqs. (80) and (81) 

match Eqs. (6.40) and (6.41) of [47] (see Appendix B of [83]; [84, 85]). 

Whereas the shear stress oscillates at the shear-rate frequency, the 

first normal stress difference oscillates about a negative average 

value, with double the shear-rate frequency. Thus, only zeroth, first 

and second harmonics are involved in the large-amplitude flows.  

Comparing Eq. (80) with (65), we see that 
 
!η ω( ) = !η

1
ω( ) =η0 1+ λω( )

2%
&

'
(  
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and  
  
!!η ω( ) = !!η

1
ω( ) =η0

!γ 0λω 1+ λω( )
2&

'
(
) , and comparing Eq. (81) with (63), 

that 
  
!Ψ
1,0
=Ψ

1

d ω( ) = λ !η ω( ) . 

The corotational Maxwell model behaves quite differently, following 

the patterns of Eqs. (65) and (67). Here it is found that, once 

alternance is reached (Eqs. (58) and (66) of [9]) 

   

τ yx t( )
!γ 0

= − $η
11
ω( )cosωt+ $$η

11
ω( )sinωt'( )*

− !γ 0
2 $η

13
ω( )cosωt+ $$η

13
ω( )sinωt

+ $η
33
ω( )cos3ωt+ $$η

33
ω( )sin 3ωt

'

(
+
+

)

*
,
,

− !γ 0
4

$η
15
ω( )cosωt+ $$η

15
ω( )sinωt

+ $η
35
ω( )cos3ωt+ $$η

35
ω( )sin 3ωt

+ $η
55
ω( )cos5ωt+ $$η

55
ω( )sin 5ωt

'

(

+
+
+

)

*

,
,
,

−"

 (83) 

   

τ xx −τ yy

η
0
!γ 0

= −2
τ yy −τ zz

η
0
!γ 0

= − !γ 0

+ !γ 0
0

%Ψ
1,01

+ %Ψ
1,21

cos2ωt+ %%Ψ
1,21

sin 2ωt( )

+ !γ 0
2 %Ψ

1,03
+ %Ψ

1,23
cos2ωt+ %%Ψ

1,23
sin 2ωt

+ %Ψ
1,43

cos4ωt+ %%Ψ
1,43

sin 4ωt

(

)
**

+

,
--

+"

.

/

0
0
0
0
0
0

1

2

3
3
3
3
3
3

 (84) 

in which the functions   !η
hn

, !!η
hn

( )  and   !Ψ
1,h ,p+2

, !!Ψ
1,h ,p+2( ) , which depend only 

on λω , are given in Eqs. (160) through (171) and Eqs. (186) through 

(193) of [9].  In Eqs. (83) and (84), mindful of our errata to Eq. (66) 

after Ref. [9]), we see that all coefficients of the sine functions, 

  
!!η
mn

, !!Ψ
1,h ,p+2( )  contain a factor of λω . (see Eqs. (58) and (66) of [9].   



 47 

Alternatively, a tidy, compact, unique, exact solution for this same 

corotational Maxwell model in large-amplitude oscillatory shear has 

recently been given [86]: 

   

τ
yx

η
0
!γ 0
= − e−t λ λω( ) sin !γ 0 ω'( )*sinωt( )I1

+cos !γ 0 ω'( )*sinωt( )I2

'
(

)
*  (85) 

   

τ
xx
−τ

yy

η
0
!γ 0

= 2e−t λ λω( ) cos !γ 0 ω'( )*sinωt( )I1
− sin !γ 0 ω'( )*sinωt( )I2

'
(

)
*  (86) 

   

τ
yy
−τ

zz( )
η

0
!γ 0

= − e−t λ λω( ) cos !γ 0 ω'( )*sinωt( )I1
− sin !γ 0 ω'( )*sinωt( )I2

'
(

)
*  (87) 

where the functions 
   
I

1
!γ 0 ω( )  and 

   
I

2
!γ 0 ω( )  are given in “Appendix: 

  
I

1
, 

  
I

2
, and Their Limits” of [86]. Eqs. (85) through (87) have been used to 

confirm the accuracy of Eqs. (83) and (84). To our knowledge, Eqs. 

(85) through (87) are the only exact solution for large-amplitude 

oscillatory shear flow where the material responses contain higher 

harmonics.  Eqs. (83) and (84) have also been improved upon with 

ratios of polynominals, called Padé approximants [87].   

For the corotational Maxwell model, Eq. (83) yields (from Eq. (45) 

and (46) of [82]): 

   

τ
3

τ
1

=
Q

0

3/1

λω( )
2
=

1−11W( )
2

+36W 1−W( )
2

4 1+ 4W( ) 1+9W( ) 1+W 2

λ !γ 0( )
2

−"  (88) 
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τ
5

τ
1

=
Q

0

5/1

λω( )
4

=
1−85W + 274W 2( )

2
+W 15− 225W +120W 2( )

2

16 1+W( ) 1+ 4W( ) 1+9W( ) 1+16W( ) 1+ 25W( ) 1+W 2

λ !γ 0( )
4

−"

 (89) 

where 
  
W = λω( )

2 .  Eqs. (88) and (89) which, to leading order, match the 

first and second power-laws of large-amplitude oscillatory shear flow 

given by Eqs. (79) [82].   

The corotational Jeffreys model gives a somewhat different result 

from the corotational Maxwell model (see Section 8 of [9]).  The 

ANSR model gives exactly the same results as Eqs. (83) and (84), the 

results for the corotational Maxwell model for shear stress and the 

first normal stress difference. However, it does give the opportunity 

to alter the second normal stress differences by a factor [17, 18].  The 

ANSR model is the special case of the Oldroyd 8-constant model 

omitting all parameters except 
 
η

0
, 

 
λ

1
, and 

 
µ

1
.   

 

c. Molecular Models  

 

The Hookean dumbbell gives the same results as for the 

contravariant convected Maxwell model, Eq. (4), except for the 

Newtonian solvent contribution. Large-amplitude oscillatory shear 
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flow has not been published for the FENE-P dumbbell, as far as we 

know.   

Recently, there have been several publications dealing with the 

shear and normal stress responses of suspensions of rigid dumbbells in 

large-amplitude oscillatory shearing motion. One must first get the 

orientational distribution function by solving a partial differential 

equation as a power series in 
   
λ

H /!γ
0  (§ II.9. of [27]; [88,89,90,91]). Bird 

and Armstrong [92] established a method for calculating the shear 

stress and normal stress responses to any simple shear flow (see also 

Problem 11C.1 of [29]) for a dilute solution of rigid dumbbells 

without hydrodynamic interaction.  This method has been used to 

analyze small-amplitude oscillatory shear flow in gaps with 

dimensions similar to that of the dumbbells (see Section 5. of [93]; 

Section 2.3.3 of [94]).   

Then the shear stress and first normal stress responses follow the 

patterns of Eqs. (65) and (67) [95] 

   

τ yx −τ yx,s

nkT λ !γ 0( )
= −

1

nkTλ

%η
11
ω( )cosωt+ %%η

11
ω( )sinωt

− !γ 0
2 %η

13
ω( )cosωt+ %%η

13
ω( )sinωt

+ %η
33
ω( )cos3ωt+ %%η

33
ω( )sin3ωt

(

)
*
*

+

,
-
-

−"

.

/

0
0
0
0
0

1

2

3
3
3
3
3

 (90) 
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τ xx −τ yy

η
0
!γ 0( )

2
= −

1

nkTλ 2

!γ 0
0

&Ψ
1,01

+ &Ψ
1,21

cos2ωt+ &&Ψ
1,21

sin2ωt( )

+ !γ 0
2 &Ψ

1,03
+ &Ψ

1,23
cos2ωt+ &&Ψ

1,23
sin2ωt

+ &Ψ
1,43

cos4ωt+ &&Ψ
1,43

sin4ωt

)

*
++

,

-
..

+"

/

0

1
1
1
1
1
1

2

3

4
4
4
4
4
4
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τ yy −τ zz

η
0
!γ 0( )

2
= −

1

nkTλ 2

!γ 0
0

0+ &Ψ
2 ,21

cos2ωt+ &&Ψ
2 ,21

sin2ωt( )

+ !γ 0
2 &Ψ

2 ,03
+ &Ψ

2 ,23
cos2ωt+ &&Ψ

2 ,23
sin2ωt

+ &Ψ
2 ,43

cos4ωt+ &&Ψ
2 ,43

sin4ωt

)

*
++

,

-
..
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/
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1
1
1
1
1
1
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4
4
4
4
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4

 (92) 

where  nkTλ  is identified with the dumbbell contribution to the zero-

shear-rate viscosity, 
  
η

0
−η

s
. In Eqs. (90) and (91), 

 
!η
hn

, 
 
!!η
hn

, 
  
!Ψ
1,hn

, 
  
!!Ψ
1,hn

, 

  
!Ψ
2 ,hn

 and 
  
!!Ψ
2 ,hn

 depend only on λω ; 
 
!η
hn  and 

 
!!η
hn

 are given in Eqs. 

(90) through (95) of [88], 
  
!Ψ
1,hn

 and 
  
!!Ψ
1,hn

 in Eqs. (15) through (19) and 

  
!Ψ
2 ,hn

 and 
  
!!Ψ
2 ,hn

 in Eqs. (23) through (27) of [90]. Though these 

functions differ from those given for the corotational Maxwell model 

[Eqs. (83) and (84)], the qualitative behaviors of 
 
!η
hn

, 
 
!!η
hn

, 
  
!Ψ
1,hn

 and 

  
!!Ψ
1,hn

 do not differ (see Figures 6 through 8 of [88]). Further, all 

coefficients of the sine functions, 
  
!!η
mn

, !!Ψ
1,hn

, !!Ψ
2,hn( )  contain the factor 

λω  . Whereas Eqs. (90) and (91) are of the form of Eqs. (83) and (84), 

Eq. (92) differs strikingly from Eq. (84) by its zero 
  
!Ψ
2 ,01

. In other 
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words, for the molecular theory, the second normal stress difference 

oscillates about zero.   

For the multi-bead rod, the results for the rigid dumbbell can be 

taken over directly if λ  is replaced by 
 
λ

N
, if hydrodynamic 

interaction is neglected (see § III.b.ii above).   

 

IX. NON-ISOTHERMAL FLOWS  

 

For incompressible, non-isothermal flow problems, in addition to 

the equation of motion, Eq. (1), we need the energy equation  

   
ρĈp

DT

Dt
= − ∇⋅q( )− τ:∇v( )  (93) 

in which  q  is the heat-flux vector, and 
  
− τ:∇v( )  gives the irreversible 

transformation of mechanical energy into thermal energy, commonly 

called viscous heating. Then, using the general expressions for the 

Fourier series for the shear stress response, Eq. (62), general 

expressions for the temperature rise in oscillatory shear flow have 

been explored analytically [96].  From these we learn that the 

temperature rise will oscillate significantly about its average value, at 

even multiples of the test frequency, ω , and that the coefficients of 
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the higher harmonics in Eq. (62) influence the amplitudes of these 

even harmonics of the temperature rise.   

For any continuum model, whose behavior conforms to Eqs. (41) 

and (42), expressions for the temperature rise in small-amplitude 

oscillatory shear flow exist (see Eq. (51) of [97]). The temperature rise 

in large-amplitude oscillatory shear flow, specific to a corotational 

Maxwell fluid, has also been explored analytically [98].  By contrast, 

the temperature rise for molecular models in oscillatory shear flow 

has yet to be explored.  This would require the expression for the 

shear stress response in oscillatory shear flow to be combined with 

Eq. (8) of [98].  For instance, for the suspension of rigid dumbbells, 

we would combine Eq. (49) with Eq. (8) of [98] to get the temperature 

rise in small-amplitude oscillatory shear flow, and Eq. (90) with Eq. 

(8) of [98] for large-amplitude.  In oscillatory shear flow, be it large or 

small-amplitude, only the Fourier coefficients of the shear stress for 

the first harmonic, 
  
!η
1n
ω( ) , contribute to the cycle-averaged 

temperature rise [98].   

Although much has been done in developing the molecular theory 

for the stress tensor, there has been very little done for doing the 

same for the heat-flux vector. Curtiss and Bird [99] made an initial 

attempt at doing this, but with limited success. As a result most heat 
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transfer calculations have been made by using Fourier’s law of heat 

conduction, which does not take into account the alignment of the 

polymer molecules in flow and the attendant anisotropic effects. 

 

X. CONCLUSION  

 

With regard to the continuum models we feel that the corotational 

models are to be preferred over the convected models. The former are 

somewhat simpler mathematically than the latter, there being no 

need to get involved with the notation of general tensor analysis, 

with its covariant and contravariant components and derivatives. 

Even the elementary Maxwell-type expressions show a preference for 

the corotational form, which gives results for a wide variety of 

rheological functions that are more nearly in line with the 

experimental data than the corresponding convected form. 

Similarly, with regard to the molecular models, the Hookean 

dumbbell is less satisfactory as an elementary model than the rigid 

dumbbell. However, by introducing finitely extensible nonlinear 

springs (as in the FENE and FENE-P models), generally good results 

can be obtained. It is remarkable that the rigid dumbbell gives 

qualitatively correct results for many rheological functions, for both 



 54 

solutions and polymer melts, indicating that it is the orientation of 

the constituent molecules that is more important than the detailed 

motion of the individual parts of the polymer chains.  

In this review, we have discussed only differential constitutive 

equations. A similar review of integral constitutive equations could 

also be given. Here, by far the largest number of publications have 

appeared for the convected integral models, possibly because of the 

influence of Lodge [47], whose book showed the connection between 

network theory for a polymer melt and a single integral constitutive 

equation, called the “rubberlike liquid.” On the other hand the 

corotational integral formalism, pioneered by Goddard and Miller 

[100], although not based on a molecular theory, produces a 

“memory integral expansion” that has better convergence properties 

than its codeformational counterpart [43]. The corotational integral 

models have never gained the popularity that the convected models 

have enjoyed, possibly because of the perceived difficulty in 

evaluating the kinematic tensor appearing in the integrals. 

We have also focused on the single-molecule theories, ignoring the 

“tube models” that have been explored in the past three decades 

[101,102]. By tube models, we mean, molecular models that constrain 

chains to move along their axes by imagining them inside tubes.  
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Although the tube models may successfully describe equilibrium 

properties and diffusion, without drastic empirical modifications of 

the original “tube” idea, they enjoy less success in describing 

rheological phenomena. For instance, the tube model fails to predict 

either rod-climbing [103] or recoil [104]. 

In this review, we focus on the elementary dumbbell models, 

ignoring much of the work that has been done on chain models, 

branched chain models, ring models, and others (see Table 16.4-1 of 

[8]). Moving beyond the dumbbell models involves much more 

difficult mathematics and we feel that time is still well spent on 

elementary models.   We have seen that these have a great deal to 

teach us regarding methodology and that they help us get at the key 

physical ideas. 
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Table I: Equivalence of Molecular and Continuum Parameters 
 

Constants
 

Rigid  
Dumbbell 

(a) 

FENE Dumbbell 
(b) 

 
η

p
 

 nkTλ  
  

bnkTλ
H

b+ 5
 

 
λ

1  λ  
  

b 2b+11( )λH

2b+ 7( ) b+ 9( )
 

 
λ

2
 

 
2

5
λ  

  

−14bλ
H

2b+7( ) b+7( ) b+9( )
 

 
µ

1   
− 1

7
λ

   

b 2b+ 3( )λH

2b+ 7( ) b+ 9( )
 

 
µ

2   
− 26

35
λ

   

−2b 4b+ 21( )λH

2b+7( ) b+7( ) b+9( )
 

 
µ

0   
− 2

7
λ

   

−6bλ
H

2b+7( ) b+5( ) b+9( )
 

 
 
(a)  See pp. 555 & 571 of [29], and p. 407 of [11]. 
(b)  See pp. 499-500 of [29] and p. 407 of [11]. This is the FENE 
dumbbell without the Peterlin approximation.   
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Figure 1: Elastic (top), Fraenkel (middle), and Rigid (bottom) dumbbells. 
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Figure 2: Rouse or Zimm freely-jointed, (top), and Kramers freely-jointed 
(bottom) chains, 

  
N = 4( ) . 
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Figure 3: Large-amplitude oscillatory shear loops of 
 
−τ

yx
t( )  versus 

   
!γ (t)dt

0

t

∫ = !γ 0 ω$
%

&
'sinωt  (left) and versus 

   
!γ 0

cosωt  (right) for polyisobutylene melt 

(Vistanex LM-MS [67,68,105]) at room temperature (
 
ω = 2π 5rad/s ,

   
!γ 0
= 20.6s

−1 , 

  
τ

yx ,max
= 0.0793MPa ).   
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Figure 4: The rigid dumbbell model (blue) versus the corotational Maxwell 
model (red) for small-amplitude oscillatory shear:  !η λω( )  [Eq. (49) versus (41), 

solid curves] and 
  
!!η λω , γ 0( )  [Eq. (50) versus (48), dashed curves].    
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Figure 5: The rigid dumbbell model (blue) versus the corotational Maxwell 

model (red) for large-amplitude oscillatory shear:  Coefficients of 
  
γ 0( )

2

 in 

expressions for 
  
!η λω ,λ !γ 0( )  [Eq. (88) versus (90) of [88] for 

 
!η
13
ω( ) , solid curves] 

and for 
  
!!η λω ,λ !γ 0( )  [Eq. (89) versus (91) of [88] for 

 
!!η
13
ω( ) , dashed curves].    
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Figure 6: The rigid dumbbell model (blue) versus the corotational Maxwell 

model (red) for large-amplitude oscillatory shear:  Coefficients of 
  
γ 0( )

2

 in 

expressions for the   cos3ωt term  [Eq. (92) versus (94) of [88] for 
 
!η
33
ω( ) , solid 

curves] and for the   sin 3ωt  term [Eq. (93) versus (95) of [88] for 
 
!!η
33
ω( ) , dashed 

curves].    
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