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Abstract: Thin-film composite mixed-matrix membranes (TFC-MMMs) have potential applications in
practical gas separation processes because of their high permeance (gas flux) and gas selectivity. In this
study, we fabricated a high-performance TFC-MMM based on a rubbery comb copolymer, i.e., poly(2-
[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate)-co-poly(oxyethylene methacrylate)
(PBE), and metal–organic framework MOF-808 nanoparticles. The rubbery copolymer penetrates
through the pores of MOF-808, thereby tuning the pore size. In addition, the rubbery copolymer forms
a defect-free interfacial morphology with polymer-infiltrated MOF-808 nanoparticles. Consequently,
TFC-MMMs (thickness = 350 nm) can be successfully prepared even with a high loading of MOF-808.
As polymer-infiltrated MOF is incorporated into the polymer matrix, the PBE/MOF-808 membrane
exhibits a significantly higher CO2 permeance (1069 GPU) and CO2/N2 selectivity (52.7) than that of
the pristine PBE membrane (CO2 permeance = 431 GPU and CO2/N2 selectivity = 36.2). Therefore,
the approach considered in this study is suitable for fabricating high-performance thin-film composite
membranes via polymer infiltration into MOF pores.

Keywords: gas separation; metal-organic framework; comb copolymer; mixed-matrix membrane;
carbon dioxide

1. Introduction

Anthropogenic CO2 emissions significantly accelerate global warming; therefore, CO2
removal technologies have been extensively investigated [1,2]. In recent years, membrane
separation has demonstrated considerable potential as an energy-efficient and environ-
mentally friendly method, particularly for CO2 capture from flue gas [3,4]. Polymeric
membranes are favorable because of their low cost and high scalability but are generally
limited by the trade-off between permeability and selectivity [5]. Mixed-matrix mem-
branes (MMMs), comprising functional porous fillers in the polymer matrix, have emerged
as potential candidates for high-performance membranes to enhance the gas separation
performance of polymeric membranes [6–8].

Metal–organic frameworks (MOFs) are considered next-generation porous materials
suitable for gas separation and capture because of their high surface area, tunable porosity,
tailorable pore size, and functionality through the combination of various organic linkers
and metal clusters [9,10]. Additionally, the ability to control the particle size of MOFs have
a great advantage for the MMMs fabrication [10,11]. The interface morphology between
the MOF particle and the polymeric chains is critical to the design and fabrication of high-
performance MMMs [12]. Insufficient interfacial adhesion of the polymer on the MOF
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particle creates interfacial voids and considerably decreases the membrane selectivity [6,13].
Additionally, the pore blockage resulting from the polymer penetration should be avoided
because gases cannot permeate through the pore-blocked MOFs in the membranes [14,15].
However, the pore size of the MOFs can be tuned with adequate pore blockage. As reported
by Ban et al. [16], a zeolitic imidazolate framework (ZIF-8) with enhanced selectivity was
obtained by incorporating an ionic liquid into ZIF-8 nanoparticles. Consequently, the
effective cage size of ZIF-8 decreased, enabling the size-sieving of CO2 against N2 or CH4.
Moreover, partial polymer penetration into the MOF typically facilitates the formation of
an intimate interface between the fillers and the polymer matrix, thereby preventing defects
between them [17,18].

In terms of the industrial applications of the membranes, the primary challenge
involves improving the gas permeance (flux) of the membrane rather than the permeability
(material property regardless of the thickness) because a substantial gas flux needs to be
processed through the membrane [19,20]. Therefore, thin-film composite (TFC) membranes
comprising submicron-thick selective dense layers on highly porous supports have been
recently examined for scaling up gas separation membranes [21]. However, for preparing
thin-film composite mixed-matrix membranes (TFC-MMMs), the interfacial morphology
control between the MOFs and the polymer matrix must be effectively designed because
the MOF particle size is relatively large in a submicron-thick selective layer [22].

MOF-808 is a porous framework composed of hexa-zirconium, which exhibits higher
adsorption properties for CO2 than for other gases, such as N2, in addition to sufficient
chemical/thermal stability. Plonka et al. [23] investigated the interaction between the
MOF-808 structure and CO2. The results indicate that CO2 that enters the MOF struc-
ture is preferentially located inside tetrahedral cages owing to the residual electrons of
organic linkers. MOF-808 has two different types of pore sizes with tetrahedral cages
(size = 4.8 Å) and adamantine-shaped cages (diameter = 18.4 Å) [24,25]. Although the large
pore size (which is higher than the kinetic diameter of N2 or CH4) of MOF-808 ensures an
increased permeability in MMMs, the increase in selectivity is generally limited. Kulak
et al. [26] investigated the CO2 separation performances of MMMs based on MOF-808 and
co-polyimide under different conditions. The permeance increased with the incorporation
of MOF-808; however, the separation factor was not considerably different from that of the
pristine polymer. Vankelecom group [27,28] reported improved separation factors for MOF-
808-based MMMs by the functionalization of MOF-808. The smaller pores (size = 4.8 Å) of
MOF-808 can serve as selective pore channels by size-sieving if the pore diameter is tuned
and lies between the kinetic diameters of CO2 (3.3 Å) and N2 (3.64 Å).

In this study, we fabricated high-performance TFC-MMMs based on the polymer-
infiltrated MOF-808. The flexible and rubbery copolymer, poly(2-[3-(2H-benzotriazol-2-yl)-
4-hydroxyphenyl] ethyl methacrylate)-co-poly(oxyethylene methacrylate) (PBE), was used
for the polymer matrix. The rubbery PBE copolymer penetrated into the pores of MOF-808
through a simple blending, which was characterized using various techniques. The PBE
infiltrating into the pore of MOF-808 not only improved the close interfacial contact with
the polymer matrix but also reduced the effective pore size of PBE/MOF-808 membranes by
controlling the pore size of MOF-808, enhancing the CO2/N2 selectivity. The gas separation
performance of the TFC-MMMs was evaluated at 1 atm and 30 ◦C.

2. Materials and Methods
2.1. Materials

For synthesizing the copolymer, 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl]ethyl
methacrylate (BEM, Mw = 323.35 g mol−1), and poly(oxyethylene methacrylate) (POEM,
poly(ethylene glycol) methyl ether methacrylate, Mn = 500 g mol−1) were obtained from
Sigma–Aldrich (St. Louis, MO, USA). Poly(1-(trimethylsilyl-1-propyne)) (PTMSP) was
purchased from Gelest Inc. (Morrisville, PA, USA). N,N-Dimethylformamide (DMF),
tetrahydrofuran (THF), isopropyl alcohol (IPA), n-hexane, cyclohexane, and methanol
were purchased from J.T. Baker (Avantor, Radnor, PA, USA). Azobisisobutyronitrile (AIBN,
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Mw = 164.21 g mol−1). For synthesizing MOF-808, the ZrOCl2·8H2O, trimesic acid, DMF,
and formic acid were purchased from Acros Organics (Geel, Belgium). All solvents and
chemicals were ACS reagent grade and used as received.

2.2. Synthesis of MOF-808

MOF-808 powder was synthesized and purified according to the published proce-
dure [25,29]. ZrOCl2·8H2O (4.85 g) and trimesic acid (H3BTC; 1.05 g) were completely
dissolved in DMF/formic acid (225 mL/225 mL), transferred into a 1000 mL screw-capped
jar, and sonicated for 30 min. The clear mixed solution was heated at 130 ◦C for 2 d and
subsequently cooled to room temperature. The resulting white powder was collected
via filtration and washed thrice with 150 mL of DMF. The sample was then immersed in
100 mL of DMF for 3 d, replacing fresh DMF daily. The DMF-immersed resulting powder
was filtered under vacuum and soaked in 100 mL of acetone for 3 d with replacing fresh
acetone daily. The final purified product was collected via centrifugation and subsequently
evacuated at room temperature for 24 h.

2.3. Synthesis of the PBE Comb Copolymer

The PBE comb copolymer was synthesized via free-radical polymerization, according
to our previously reported procedure [30]. Initially, 2 g of BEM was dissolved in 30 mL
of DMF at room temperature for 1 h. Subsequently, 8 g of POEM and 0.002 g of AIBN
were added to the solution, which was purged with N2 gas for 30 min. The polymerization
reaction was performed at 90 ◦C for 20 h. The resultant polymer solution was precipitated
in an n-hexane/IPA mixture (8:2). Precipitation was performed thrice to purify the polymer,
with the resultant rubbery polymer dried in a vacuum oven to completely remove the
residual solvent.

2.4. Preparation of TFC-MMMs

Various amounts of MOF-808 powders (0.02, 0.04, 0.06, 0.08, and 0.1 g) were dispersed
in 0.2 g of MeOH solution under vigorous stirring and sonication for 1 h, respectively.
Simultaneously, 0.2 g of PBE copolymer was dissolved in 1 g of MeOH under vigorous stir-
ring at room temperature. Subsequently, the MOF-808 solution was added to the polymer
solution and stirred for 24 h until the solution was well-dispersed. To prevent the selective
polymer solution from penetrating the porous support, an RK control coater (Control RK
Print-Coat Instruments Ltd., UK) was used to coat 0.5 wt% of PTMSP/cyclohexane solution
on the microporous polysulfone (Psf) support layer as a gutter layer. After drying for
3 h, the PBE/MOF-808 solution was directly coated on the PTMSP/Psf membranes. The
resulting membranes, with different ratios of MOF-808 particles, were labeled as 10%,
20%, 30%, 40%, and 50%. The prepared membranes were then dried overnight at room
temperature and consecutively vacuum-dried overnight at 80 ◦C.

2.5. Characterization

The Brunauer–Emmett–Teller (BET) surface area from N2 adsorption–desorption
isotherms at 77 K of MOF-808 and PBE@MOF-808 were determined using a 3Flex (Mi-
cromeritics Instruments, Norcross, GA, USA). Before the N2 adsorption–desorption mea-
surement, approximately 100 mg of the samples were degassed under vacuum at 150 ◦C
for 24 h. The chemical interactions between PBE copolymers and MOF-808 membranes
were investigated using Fourier transform infrared spectroscopy (FT-IR). The morphologies
of the membranes and particles were examined using a field-emission scanning electron
microscope (FE-SEM, JSM-6701F, JEOL Ltd., Tokyo, Japan) and transmission electron mi-
croscope (TEM, Libra 120, Zeiss, operated at 120 kV). The thermal stability of the materials
was investigated using thermogravimetric analysis (TGA) through a DTA/TGA analyzer
(TA instruments, New Castle, DE, USA) at a heating rate of 10 ◦C/min under a nitrogen
environment. The chain morphology of the polymers was analyzed using differential
scanning calorimetry (DSC, (DSC8000, Perkin Elmer, Waltham, MA, USA)) at a scan rate
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of 10 ◦C/min under a nitrogen atmosphere. The crystalline structure of the membranes
was characterized using X-ray diffraction (XRD, RINT2000 wide-angle goniometer, Rigaku,
Tokyo, Japan) with a Cu cathode operated at 40 kV and 300 mA.

2.6. Gas Permeation Measurements

The pure gas permeance and separation properties were determined using a constant
pressure/variable volume apparatus (Airrane Co., Ltd., Cheongju, Korea), according to our
previously reported method [22]. The area of the membrane was approximately 10.2 cm2.
All experiments were carried out at 30 ◦C, 1 bar. Each membrane was tested five times, and
the average estimated error in gas permeance was approximately 5%. The gas permeance
of the membrane was expressed in gas permeation units (GPU) (1 GPU = 10−6 cm3 (STP)
cm−2 s−1 cmHg−1).

3. Results
3.1. Characterization of MOF-808 Nanoparticles and PBE/MOF-808 MMMs

The PBE comb copolymer consists of rigid hydrophobic BEM chains and rubbery
hydrophilic POEM chains (Figure 1a). We found that the PBE copolymer is suitable as a
thin-film composite membrane for the CO2 separation [30]. The rubbery POEM groups are
known to have excellent CO2 selectivity owing to the dipole–quadrupole interaction and a
high CO2 permeance, owing to the amorphous state of the polymer chains, whereas the
rigid PBEM chains can inhibit N2 permeance and membrane plasticization. The rubbery
state of the PBE copolymer can be easily penetrated into the pores of MOF-808 and improve
the interfacial morphology between the PBE copolymer and MOF-808 [18]. Particularly,
the PBE copolymer is alcohol-soluble, which facilitates the fabrication of TFC membranes
because the solution does not dissolve the porous polymer support substrates such as
Psf [31].
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Figure 1. (a) Chemical structure of the PBE comb copolymer. (b) SEM and (c) TEM images of the
synthesized MOF-808 nanoparticles.

We synthesized the MOF-808 nanoparticles, and octahedral particles of sizes
500–600 nm were observed from the SEM and TEM images (Figure 1a,b). Figure S1a,b
presented the N2 isotherm at 77 K and the pore size distribution for the degassed MOF-808,
respectively. Based on the N2 isotherm, the BET surface area of MOF-808 was calculated as
2070 m2 g−1; the high surface area of MOF-808 indicates that it is sufficient to improve the
permeability of MMMs by incorporating polymer into MOF-808. Using a density functional
theory method, the pore size distributions were evaluated as 7.3 and 18.6 Å; the smaller pore
was slightly different from the theoretical data (4.8 Å). The obtained results are consistent
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with those in the literature, indicating the successful synthesis of the MOF particles [32,33].
Moreover, the high CO2 adsorption properties and CO2 affinity of MOF-808 nanoparticles
were confirmed (Figure S1c).

The FT-IR spectra of MOF-808, PBE comb copolymer, and PBE/MOF-808 MMMs with
various MOF-808 contents were obtained (Figure 2a) to investigate the chemical interaction
between MOF-808 filler and the PBE copolymer matrix. Pristine PBE copolymer has strong
absorption bands at 1726 and 1100 cm−1, assigned to the stretching vibrations of carbonyl
(C=O) and ether (C–O–C) functional groups, respectively [34]. PBE/MOF-808 MMMs
maintained the original absorption band positions of PBE copolymer after incorporation
with MOF-808, revealing that only a weak chemical interaction occurs between the polymer
matrix and fillers. Strong chemical interactions between polymer matrix and fillers can
densify and rigidify polymer chains and adversely affect the gas permeation [15].
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The crystalline structures of the PBE copolymer, MOF-808, and PBE/MOF-808 MMMs
were characterized using XRD patterns (Figure 2b). All the samples clearly showed isostruc-
tural to the pristine MOF-808. The PBE copolymer exhibits a broad peak at approximately
20.0◦ without a sharp crystalline peak, implying that the polymer structure is amorphous.
In contrast to other poly(ethylene oxide) (PEO)-based polymers, the amorphous nature of
the PBE copolymer is observed owing to the short chains of ethylene oxide units in the
copolymer. The sharp crystalline peaks of MOF-808 were maintained after incorporation
with the PBE polymer matrix, and their intensities gradually increased with the increasing
MOF-808 content. As corroborated by the FT-IR spectra, the PBE copolymer matrix and
MOF-808 filler do not sufficiently interact to affect the crystalline structure of MOF-808.

The chain morphologies of the PBE copolymer and PBE/MOF-808 MMMs were inves-
tigated through DSC analysis (Figure 2c). The PBE copolymer exhibits a glass transition
temperature (Tg) at −53.7 ◦C. No sharp endothermic peaks attributed to polymer melting
are observed, thus demonstrating the crystalline-free amorphous nature of the PBE copoly-
mer, consistent with the XRD results. In terms of gas permeation, an amorphous structure
is considered desirable because hard crystallite in a polymer matrix can act as a barrier
to gas molecules and decrease gas permeability. Tg of PBE/MOF-808 MMMs gradually
increases from −52.7 ◦C to −47 ◦C with the increasing MOF-808 content. The increase
in Tg is generally induced by suppressing the polymer chain mobility and flexibility. As
confirmed by the FT-IR spectra, only weak chemical interactions are observed between the
PBE copolymer matrix and MOF-808 fillers. Thus, the change in Tg possibly originates
from the physical penetration of polymer chains into the MOF-808 structure. The polymer
chains could penetrate the pores of the MOF-808 structure and exhibit moderate flexibility
and mobility.
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We investigated the surface area and pore size of washed MOF-808 nanoparticles
(Figure 3) to further verify the pore infiltration of polymer chains. The washed MOF-
808 particles were prepared as follows: first, MOF-808 particles were blended with PBE
solution, similar to the preparation of PBE/MOF-808 MMMs; then, MOF-808 particles
were collected from the solution via centrifugation. The resultant particles were washed
with simultaneous sonication and centrifuged thrice with MeOH three times to remove
the residual polymer on the surface of the MOF-808 particles. Not only the surface area
of the MOF-808 mixed with the PBE copolymer decreased from 2070 to 696 m2 g−1 but
also the pore volume decreased. Particularly, two peaks at 7.3 and 18.6 Å, corresponding
to the small and large pores, respectively, are observed for pristine MOF-808. However,
MOF-808 mixed with the PBE copolymer presents peaks from the pore size distribution
at approximately 3.9 and 15.9 Å, which are lower than those of the pristine MOF. These
results imply the penetration of the polymer chain into the pores of MOF-808. The PBE
copolymer chains are entangled in the pores of MOF-808 filler; therefore, they can adhere
to the MOF structure even after extensive washing with polymer-dissolving solvents.
Considering that the theoretical pore sizes of MOF-808 are 4.8 and 18.4 Å, the effective
pore size of the polymer-infiltrated MOF would be lower than the obtained data [32]. The
pore-tuned MOF-808 can act as a CO2-philic nanocage in the membrane matrix, which
selectively facilitates gas molecules. Furthermore, the PBE@MOF-808 sample exhibits an
improved CO2 adsorption property compared to the pristine MOF-808. This is a result
of the quadrupole-dipole interaction of the CO2 molecule with the ethylene oxide group
of the PBE chain and shows that the PBE chain is well entangled through the pores of
MOF-808. Furthermore, the increase in adsorption is related to the decreased pore size of
the MOF-808. The adsorption strength can be increased because the target molecule can
interact with the other walls of the pore without being affected by only one part of the
pore [35]. Therefore, the membrane performance can be improved by incorporating the
polymer-infiltrated MOF-808 into the polymer matrix [36].
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We investigated the thermal stability of the PBE comb copolymer, MOF-808 parti-
cles, and PBE/MOF-808 MMMs through TGA (Figure S2). The pristine PBE copolymer
demonstrates excellent thermal stability up to 200 ◦C. For MOF-808 particles, 0–200 ◦C is as-
sociated with the volatility of the solvent contained in the adsorbent. Generally, the solvent
trapped in MOF-808 nanoparticles is evaporated when the temperature increases and the
weight is partially decreased. The weight loss in the range of 200–400 ◦C occurs because
the formic acid in MOF-808 is removed. Finally, the weight loss occurring between 400 and
600 ◦C is considered thermal decomposition owing to the loss of the MOF-808 linker. After
incorporating MOF-808 particles, all membranes demonstrate sufficient thermal stability to
be applied as CO2 separation membranes under post-combustion process conditions [37].
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3.2. Preparation and Gas Separation Performance of TFC-MMMs

Thin-film structures are highly desirable for practical applications in membrane pro-
cesses because the gas flux is one of the most critical factors in the process. Hence, the
thickness of the selective layer should be minimized to maximize the permeance (flux) of
the membranes. However, due to the thin selective layer, reducing defects in TFC-MMMs
is much more difficult than in thick and dense membranes. We fabricated TFC-MMMs via
a simple bar-coating method on a porous Psf support. The morphology of PBE/MOF-808
TFC-MMMs was confirmed through cross-sectional SEM images, with the mixture of PBE
copolymer and MOF-808 particles adequately coated on the Psf supporting layer without
penetration into the porous support (Figure 4a). MOF-808 particles were well-dispersed on
the Psf supporting layer and encapsulated by the PBE comb copolymer. The PBE copolymer
acts as a mechanically strong matrix to form a thin selective layer and as a binder between
MOF-808 particles and the Psf supporting layer to prevent structural defects. Moreover,
the boundary between the MOF-808 particles and the PBE polymer layer is uncertain,
implying their considerable compatibility (Figure 4b). The defects from the fabrication of
TFC-MMMs are not observed because of the intimate contact between the polymer matrix
and the polymer-infiltrated MOF-808 nanoparticles. Moreover, although the selective layer
thickness (approximately 350 nm) is less than the MOF-808 nanoparticle size, the polymer
covers the surface of the nanofillers without defects. As shown in Figure 4c, partial pene-
tration of polymer chains into the MOF-808 particles enhances interfacial contact, enabling
the successful fabrication of TFC-MMMs despite the high loading of MOF particles in
the membranes.
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The pure gas permeance of membranes was characterized using a constant pres-
sure/variable volume apparatus at 30 ◦C. The CO2 and N2 permeance and CO2/N2
selectivity of PBE/MOF-808 TFC-MMM with various MOF-808 contents are presented in
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Figure 5 and Table 1. As the PBE copolymer contains CO2-philic polar groups, such as ether
oxygen in POEM chains and tertiary amine groups in triazole in its structure, the pristine
PBE membrane exhibits moderate gas separation performance (CO2 permeance = 431 GPU
and CO2/N2 selectivity = 36.2). With the increasing MOF-808 content in the TFC-MMMs,
both CO2 permeance and CO2/N2 selectivity of the membranes are rapidly enhanced.
The PBE/MOF-808 40% membrane presents the optimal gas separation performance (CO2
permeance = 1069 GPU and CO2/N2 selectivity = 52.7). The PBE/MOF-808 40% membrane
exhibits a 2.5-fold increase in CO2 permeance and a 45% increase in CO2/N2 selectivity
compared with that of the pristine PBE membrane. Both CO2 and N2 permeance increased
with the incorporation of MOF-808. The significant increase in permeance of the TFC-
MMMs indicates that the gases effectively diffuse through the large pores of the MOF-808
(adamantine-shaped cages with the size of 15.6 Å), and the polymer impregnation does
not result in pore blockage or dead MOF pores. Although pristine MOF-808 is known to
have an exceedingly large pore size that inhibits the size-sieving of the CO2 molecules, the
CO2-philic polymer-encapsulated MOF-808 particles serve as selective nanocages for CO2
molecules. The high CO2-affinity of the nanoparticles can accelerate the CO2 transport
relative to that of N2 into the MOF-808 nanoparticle pores. Moreover, pores partially
covered with the polymer matrix can selectively sieve the gas molecules. The cumulative
effect of the polymer-infiltrated MOF-808 considerably enhances the gas selectivity of the
membranes. However, both permeance and selectivity are decreased when MOF-808 is
added in excess of 50%. The excess MOF-808 particles are not uniformly dispersed in the
polymer matrix and are aggregated by themselves, as shown in the surface SEM image of
the membranes (Figure S3). Due to the aggregation, not all incorporated MOF particles
are activated to function as selective diffusion pathways for gas transport. As a result,
both permeability and selectivity decrease, similar to the membranes with low loading
of MOF-808. A MOF-808 membrane without the PBE copolymer was also prepared on a
PTMSP-coated Psf support using the same method. The neat MOF-808 membrane showed
poor gas separation performance with a CO2 permeance of 12,000 GPU and CO2/N2
selectivity of 1.9, indicating the importance of the PBE copolymer matrix to minimize
structural defects.
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Table 1. CO2 separation performance of PBE/MOF-808 membranes and previously reported
TFC-MMMs.

Sample CO2 Permeance
(GPU)

CO2/N2
Selectivity

Condition
(T (◦C)/P (bar)) Reference

PBE 431 36.2

30 ◦C, 1 bar This study

MOF-808 10% 535 43.3
MOF-808 20% 623 44.0
MOF-808 30% 853 51.2
MOF-808 40% 1069.0 52.7
MOF-808 50% 677 46.4

PEI-TMC/mGO 73 60 25 ◦C, 0.25 bar [38]
PTO/UTSA-16 1070 41.0 30 ◦C, 1 bar [39]

Pebax/IL/ZIF-94 819 25 35 ◦C, 3 bar [40]
Polyactive/P@MOF2 1260 22 35 ◦C, 3 bar [41]

PGO/MIL-140C 1768 38 30 ◦C, 1 bar [42]
Pebax/UiO-66-NH2 338 57 25 ◦C, 2 bar [43]

The gas separation performance of the PBE/MOF-808 membranes is compared with
those of other TFC-MMMs reported in the literature (Figure 6 and Table 1) [38–43]. The
gas separation performance of the TFC-MMMs in our study demonstrates high selectivity
owing to the selective nanochannels originating from polymer-entrapped MOFs. Moreover,
the permeance of the PBE/MOF-808 40% membrane satisfies the target performance re-
quired for membranes to be used in practical post-combustion processes (CO2 permeance
>1000 GPU and CO2/N2 selectivity >30) [44]. Using a rubbery and flexible PBE comb
copolymer, polymer-infiltrated MOF-808 nanoparticles can be prepared through simple
blending. Polymer infiltration into the MOF particles induces intimate contact with the
polymer matrix, enabling the successful fabrication of thin-film membranes and the forma-
tion of effective nanochannels to selectively transport CO2. Thus, an efficient approach to
fabricating high-performance thin-film gas separation membranes is presented.
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4. Conclusions

In this study, we fabricated high-performance thin-film membranes by incorporating
MOF-808 into the PBE comb copolymer. The flexible and rubbery PBE copolymer was
used for the matrix of the membrane, which has moderate gas separation performance and
excellent film-forming ability. The flexible PBE chain was partially infiltrated into the pores
of MOF-808 through a simple mixing method, and the infiltrated PBE increased the gas
separation selectivity by improving the interfacial contact with the polymer matrix and
reducing the effective pores of MOF-808. Owing to the intimate contact between the MOF
nanoparticles and the PBE polymer matrix, defect-free TFC-MMMs (thickness = 350 nm)
were successfully fabricated with a high loading of MOF-808 nanoparticles. The penetration
of the polymer matrix could remarkably improve the selectivity and interfacial compatibility
of the MOFs. When the MOF-808 content in the membrane was increased up to 40%, the
permeance and selectivity continuously increased, and PBE/MOF-808 40% membrane
demonstrated the optimal performance with a CO2 permeance of 1069 GPU and CO2/N2
selectivity of 52.7, considerably higher than that of the pristine PBE membrane (CO2
permeance = 431 GPU and CO2/N2 selectivity = 36.2). The resultant performance satisfies
the criteria for practical applications of CO2 capture in post-combustion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13030287/s1, Figure S1: (a) BET surface area, (b) pore
size distribution from N2 isotherm at 77K, and (c) CO2 and N2 adsorption isotherms of MOF-808
at 303K, Figure S2: TGA curves of neat PBE and PBE/MOF-808 MMMs with different MOF-808
contents, Figure S3: Surface SEM images of neat PBE and PBE/MOF-808 TFC-MMMs with different
MOF-808 contents.
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