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Polymerase chain reaction primers miss
half of rRNA microbial diversity
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The rRNA approach is the principal tool to study microbial diversity, but it has important biases.
These include polymerase chain reaction (PCR) primers bias, and relative inefficiency of DNA
extraction techniques. Such sources of potential undersampling of microbial diversity are well
known, but the scale of the undersampling has not been quantified. Using a marine tidal flat bacterial
community as a model, we show that even with unlimited sampling and sequencing effort, a single
combination of PCR primers/DNA extraction technique enables theoretical recovery of only half of
the richness recoverable with three such combinations. This shows that different combinations of
PCR primers/DNA extraction techniques recover in principle different species, as well as higher taxa.
The majority of earlier estimates of microbial richness seem to be underestimates. The combined
use of multiple PCR primer sets, multiple DNA extraction techniques, and deep community
sequencing will minimize the biases and recover substantially more species than prior studies, but
we caution that even this—yet to be used—approach may still leave an unknown number of species
and higher taxa undetected.
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Introduction

The rRNA approach (Olsen et al., 1986) remains one
of the most important tools to assess microbial
diversity. This necessitates a thorough study of its
potential biases. Several are widely recognized.
Most importantly, polymerase chain reaction (PCR)
primers seem to discriminate for and against certain
sequences (Suzuki and Giovannoni, 1996; Polz and
Cavanaugh 1998). Additionally, existing DNA ex-
traction protocols are not 100% efficient (Stach
et al., 2001). It is well known that this skews the
frequency distribution of rRNA gene species among
the PCR products, in clone libraries, and in eventual
sequence inventories (Tiedje, 1994; Suzuki and
Giovannoni, 1996; Polz and Cavanaugh 1998;
Acinas et al., 2004; Caron et al., 2004; Kurata
et al., 2004; Frey et al., 2006; Sipos et al., 2007).
What is not known is whether an increase in
sequencing efforts, such as that afforded by the 454
Life Sciences sequencing technology (Sogin et al.,
2006; Huber et al., 2007) would theoretically ensure
a recovery of all rare rRNA species. In other words,

is it possible that certain rRNA sequences are not
recoverable in principle using any (or all) PCR
primer sets available? If so, the totality of microbial
diversity would be inaccessible even with an
unlimited sequencing effort, with the degree of
undersampling likely unknown. Presently, this
possibility remains hypothetical, partly because
researchers have typically favored, in any given
study, the use of a single PCR primer set aiming to
sequence the resulting clone library as fully as
possible, and as a result have rarely varied PCR
primers in a single study. In addition, it is not clear
whether statistical tools for the analysis of recovered
vs unseen diversity were appropriate for the task
(Hong et al., 2006; Jeon et al., 2006). Here, we
address the possibility that each specific combina-
tion of PCR primers/DNA extraction technique
recovers a specific fraction of target diversity, and
cannot provide access to the rest of the diversity
even with an increase in sequencing effort.

Materials and methods

Sampling
The samples were collected from an intertidal sand
flat in Massachusetts Bay, near the Marine Science
Center of Northeastern University, Nahant, MA,
USA. An undisturbed core of sediment 13 cm in
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diameter and 15 cm deep was collected, thoroughly
mixed, and 5-g subsamples stored at �80 1C until
DNA extraction. One of the samples, used to
establish clone library I (see below) was fully
processed as part of an earlier study (Hong et al.,
2006).

DNA extraction and purification
Nucleic acids were extracted from three subsamples
using two methods of genomic DNA extraction
(Table 1). The DNA for clone libraries I and III were
extracted by modification of Zhou et al., 1996.
Briefly, each 5-g sample was mixed with 13.5ml of
DNA extraction buffer (100mM Tris–HCl (pH 8.0),
100mM sodium EDTA (pH 8.0), 100mM sodium
phosphate (pH 8.0), 1.5M NaCl, 1% w/v CTAB) and
100 ml of proteinase K (10mgml�1) in Falcon tubes
for 30min at 37 1C. After incubation, 1.5ml of 20%
w/v sodium dodecyl sulfate was added, and heated
in a 65 1C water bath for 2 h. The DNA was purified
twice by extraction with an equal volume of chloro-
form–isoamyl alcohol (24:1) and was precipitated
with 0.7 volume of isopropanol. The DNA for clone
library II was extracted from a 0.5-g subsample using
a Fast DNA SPIN kit (Bio 101, La Jolla, CA, USA)
according to the manufacturer’s instructions. The
DNAwas purified with the resin-based Wizard DNA
cleanup system (Promega, Madison, WI, USA).

Cloning and sequencing
16S ribosomal DNA templates were amplified using
two primer sets. The first primer set, 27F (50-AGA
GTT TGA TCC TGG CTC AG-30) and 1492R (50-GGT
TAC CTT GTT ACG ACT T-30 (Lane, 1991) was used
in the clone libraries I and II. The other primer set
8F (50-AGA GTT TGA TCC TGG-30) and 1542R (50-
AAA GGA GGT GAT CCA-30) (Buchholz-Cleven
et al., 1997) was applied for clone library III. Each
PCR mixture (50ml) contained 10ng of DNA as a
template, 10pmol of each primer, 10mmol of dNTP
mixture, 2.5U of Taq DNA polymerase (Promega),
and the PCR buffer supplied with the enzyme. PCR

were performed using the following conditions: an
initial denaturing step at 95 1C for 5min, followed
by 30 cycles consisting of 95 1C for 1min, 50 1C for
1min, and 72 1C for 1min, and a final elongation
step at 72 1C for 10min. PCR products were purified
with Qiaquick PCR Purification Kit (Qiagen, Valencia,
CA, USA) and cloned using TOPO TA cloning kit
(Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocol. To check the correct length
insert, colonies were screened by PCRs with M13F
(5-GTA AAA CGA GGC CAG-3) and M13R (5-CAG
GAA ACA GCTATG AC-3) primers. The clones were
sequenced at Seqwight DNA Technology Service
(Houston, TX, USA). The usable sequence length
varied between 500 and 800nt; the number of clones
sequenced is summarized in Table 1. We note that
each of the three libraries I, II, and III were pooled
clones from 2–4 smaller sublibraries, each made
using the library-specific primer set and single DNA
extract but different PCR products. For example,
library II represents pulling together clones from
libraries IIa, IIb, and IIc (184, 239, and 282 clones,
respectively).

Phylogenetic analyses
The rRNA sequences were manually edited using
Bioedit (version 5.0.7) and aligned by the CLUSTAL
X (Thompson et al., 1994). Potential chimeric
sequences were detected using the Chimera Check
Program available at the Ribosomal Database Project
(RDP) II (Maidak et al., 2001). Suspect sequences
were eliminated from the database (7.0%, 4.7%, and
7.3% of the clones from libraries I, II, and III,
respectively). The remaining sequences were
grouped into OTUs based on 70%, 80%, 90%,
95%, 96%, 97%, 98%, and 99% rRNA gene
sequence similarity levels. This grouping was
achieved by first making all possible pair-wise
sequence alignments by using CLUSTALW at default
settings and calculating % sequence identities,
followed by clustering the sequences into OTUs by
using the unweighted pair group method with
arithmetic mean (UPGMA) as implemented in the

Table 1 Number of OTUs registered in this study

DNA extraction
approach

Primer set Clones
sequenced

OTUs defined as % 16S rRNA gene sequence identity

99 98 97 96 95 90 80 70

Clone library I
Zhou et al. (1996) 27F 1492R

(Lane, 1991)
556 387 315 285 249 233 144 47 7

Clone library II
Bio 101 kit 27F 1492R

(Lane, 1991)
705 373 320 272 222 202 115 19 1

Clone library III
Zhou et al. (1996) 8F, 1542R

(Buchholz-Cleven et al., 1997)
473 338 301 268 245 222 140 27 2
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OC clustering program (http:// www.compbio.dundee.
ac.uk/Software/OC/oc.html). The OTU grouping was
checked manually to verify that all OTUs were
assembled at the cut-off level desired. The number
of OTUs and their frequencies at each cut-off value
became the subject of statistical analyses.

Statistical analysis
In this study we focused on discriminating between
the three experimental protocols determined by the
three combinations of DNA extraction techniques
and PCR primers, vs the pooled data. Broadly
speaking, then, we had four ‘treatments’ (three
experimental protocols plus the pooled data), and
we wished to compare the total recoverable richness
for each of the treatments. However, we also had
eight sequence similarity levels for OTU definition
(70%, 80%, 90%, 95%, 96%, 97%, 98%, and 99%
16S rRNA gene sequence identity), so to obtain
maximum precision we compared the four treat-
ments at all eight similarity levels simultaneously,
using a statistical linear regression model.

To apply the regression model we first had to
estimate total richness for each dataset separately.
We had 4� 8¼ 32 datasets, each consisting of the
numbers of OTUs occurring exactly once, twice,
three times, and so on, for a given treatment at a
given % similarity level (this is known as ‘frequency
count’ data). We estimated the total OTU richness
(observedþunobserved) based on each dataset, so
that our analyses are based on estimates of total
richness and are in principle independent of the
particular sample sizes (numbers of available se-
quences) used here. (For small sample sizes some
bias may be present in the estimates of total
richness; see below for a sensitivity analysis of this
issue.) There are two main families of methods for
richness estimation: parametric and nonparametric.
We regard the former as more reliable for high-
diversity data as encountered here (for a detailed
comparison see (Hong et al., 2006)), but we used
both methods in parallel throughout. For a given
sample, the parametric method essentially fits a
parametric curve to the observed frequency-count
data, and projects this curve to obtain the number of
unobserved OTUs (and associated statistics such as
standard errors, goodness-of-fit assessments, etc.).
For example, Figure 1 shows the results for the
pooled data at 97% similarity: the projected number
of unobserved OTUs is 3402 and the estimated total
richness is 4372 (s.e. 433). The selected model in
this case is based on a mixture of two exponential
abundance distributions, and the model fit is
excellent. (The corresponding nonparametric rich-
ness estimate, based on Chao’s ACE1 (Chao, 2005) is
4664 (s.e. 964)).

We obtained total richness estimates for each of
the 32 datasets. Given an estimate of the total
richness at every % sequence similarity level for
each of the four treatments, we then fit a statistical

linear regression (straight line) model for the total
number of taxa vs % sequence similarity, within
each treatment, and compared the resulting straight
lines across treatments. In the final summary
analysis we compared the total recoverable richness
for each of the experimental protocols with the
pooled data. As our final results are based on the
linear regression model, we discuss that model and
its implications in ‘Results’ below.

Results

Microbial inventory
Subsampling a single, thoroughly mixed marine
sediment sample, we constructed three 16S rRNA
gene clone libraries I, II, and III using three
combinations of PCR primers and DNA extraction
techniques (Table 1). Library I was reported earlier
and used as a model to develop statistical ap-
proaches to estimate microbial richness (Hong et al.,
2006). Here, sequences from this library were pooled
with original sequences from libraries II and III to
create a unified list of the sample’s OTUs (Table 1).
Note that each library consists of 2–4 smaller
libraries created from independent PCR reactions
conducted using same PCR primers and same DNA
extract. These smaller libraries are thus replicates of
each method used. For example (as noted in
Materials and methods), library II represents pulling
together clones from libraries IIa, IIb, and IIc (184,
239, and 282 clones, respectively).

The combined inventory represented a diverse
bacterial collection of species from 22 bacterial
phyla, typical of rich marine sediment communities
(Table 2). The inventory was dominated by repre-
sentatives of Gammaproteobacteria, Bacteroidetes,
and Deltaproteobacteria. Planctomycetes, Verruco-
microbia, Acidobacteria, Actinobacteria, Chloro-
flexi, and Alpha- and Epsilonproteobacteria were

Figure 1 Fit of mixture-of-two-exponentials OTU abundance
model (curve) to observed frequency-count data (points), with
projection to zero frequency (unobserved OTUs), for pooled data
at 97% gene sequence similarity level.
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moderately abundant, comprising collectively 35%
of all clones. Representatives of Sprirochaetes,
Fusobacteria, Firmicutes, Chlorobi, Fibrobacteres,
Gemmatimonadetes, Aquificae, and seven candidate
phyla were rare, with no phylum being represented
by more than 6% of all clones.

Several bacterial phyla, such as Alpha-, Gamma-,
and Deltaproteobacteria, Planctomycetes, Verruco-
microbia, and Chloroflexi were represented equally
well in the three clone libraries, whereas Bacter-
oidetes, Acidobacteria, Actinobacteria, and Epsilon-
proteobacteria exhibited a sharply asymmetrical
distribution (Table 2). Differences between the
libraries were more pronounced at lower levels of
taxonomic identity. Species, defined as clusters of
16S rRNA gene sequences sharing over 97% of
sequence identity, were predominantly unique to
the respective library. As a result, the overlap
between any 2 species lists did not exceed 17%
(Figure 2), and only 11 species were shared between
all three libraries.

Statistical analysis
Our goal was to compare the total taxonomic
richness recoverable given unlimited sampling
effort, under each of four ‘treatments’: the three
experimental protocols plus the pooled data. This
means that for each treatment we must estimate the
total number of recoverable taxa, seenþunseen.
However, estimates of the total number of taxa, or
richness, are often accompanied by high standard
errors, rendering comparisons across treatments
statistically challenging. To overcome this difficulty
we compared estimates of total recoverable richness
across the four treatments, not just at one level of
OTU definition, but at all eight measured levels

simultaneously (70%, 80%, 90%, 95%, 96%, 97%,
98%, and 99%). This is based on a result from Bunge
et al. (2009), which states that the number of taxa
increases exponentially as a function of % sequence
identity, or equivalently that the logarithm of the
number of taxa increases linearly as a function of %
sequence identity; that is,

logðtotal richnessÞ � constant
þ ðslope coeffientÞ � ð% similarity cutoff Þ

ð1Þ

For each of the four treatments we have eight data
points (x¼% similarity cut-off, y¼ estimated total
OTU richness), and we fit a linear regression model
(straight line function) with one line for each of the
treatments, with parallel (equal) slopes but different
intercepts (elevations). (Formal statistical hypo-
thesis tests found no difference between the slopes.)
The results are shown in Figure 3. Overall the fit
is excellent, with R2¼ 98.1%, 94.2%, 98.8%, and
95.9% for the pooled, I, II, and III datasets,
respectively.

We note that the points within a given treatment
are actually repeated measures, because they
result from re-clustering the same collection of
sequences at different % similarity levels. This
implies that the points are correlated, and the
correlation between successive points can be seen
in the curved behavior of the points at the upper end
of the % similarity scale, for some of the samples.
The appropriate statistical model for this is regres-
sion with first-order autoregressive (1) errors,
and we tested this model as well, but the data
points here are too sparse and irregularly placed to
obtain a precise fit, and the autoregressive (1) results
were nearly identical to the standard regression
model, so we do not report them here. We refer
the reader to Bunge et al. (2009) for details on the
full model.

Figure 2 Overlap between OTU lists obtained from clone
libraries I, II, and III; OTUs are defined as clusters of sequences
sharing over 99% identity.

Figure 3 Estimated total OTU richness (points), and fitted
parallel linear regressions (lines) for datasets I, II, III, and pooled,
as a function of % sequence similarity. Arrow indicates estimated
OTU richness based on pooled data at 97% gene sequence
similarity level.

PCR primers miss half of rRNA microbial diversity
S Hong et al

1369

The ISME Journal



The differences between the four treatments are
evident in the displacements of the lines in Figure 3,
and are quantified by the differences in the
intercepts (elevations) of the lines. We estimated
these differences using regression analysis, con-
verted back from the log-scale to the original scale,
and calculated confidence intervals using the
Bonferroni correction for multiple comparisons.
Finally, we used the results of the above analyses
to compare each of the experimental protocols to the
pooled data. The confidence intervals displayed in
Figure 4 represent plausible ranges for the total OTU
richness in principle recoverable by each of the
three protocols, expressed as a percentage of the
total richness recoverable by pooling all three
protocols. Thus, for example, we estimate that
protocol I can recover between 39.5% and 56.5%
of the total richness recoverable by the pooled
approach. Similar results were obtained by using
the nonparametric estimates of total richness,
shown in Figure 4. These results are somewhat
lower, which may be because of the typical down-
ward bias of nonparametric estimates in highly
diverse situations; as noted above we regard the
parametric results as more reliable in this case. Note
that the most optimistic assessment of a given
protocol relative to pooled (by considering the
upper confidence bound), is that protocol III might
be able to recover 75% of the diversity recoverable
by the pooled approach, whereas the other two are
considerably lower.

We note that though the parametric estimators of
total richness are unbiased as the sample size
increases to infinity, they are biased for small
samples, to a degree that depends on the population
structure and other factors. It is therefore reasonable
to ask whether the differences between the three
samples and the pooled data detected by our study

could be the result of small-sample-size bias (or
some other artifacts). To examine this we carried
out two subsidiary studies. First, we subdivided
original sample II, with 705 sequences, into three
subsamples, IIa, IIb, and IIc, with 184, 239, and
282 sequences respectively. As sample II was
homogeneously mixed, each of the subsamples
should in principle yield comparable and roughly
accurate estimates of total richness (though
with larger standard errors than the complete
sample II), except for small-sample-size bias or
other artifacts. However, we found that these
subsample sizes were generally too small to distin-
guish possible biases. For example, at the 97%
similarity level, the complete sample II yielded a
parametric total richness estimate of 2336 (s.e. 604),
whereas subsamples IIa, IIb, and IIc yielded esti-
mates 2207 (s.e. 1800), 3633 (s.e. 21680), and 2234
(s.e. 2550), respectively. At other % similarity levels
some small-sample-size bias may have been present,
but generally speaking the behavior of the estimates
at these sample sizes was too erratic to be sure. We
therefore carried out a second, simulation study,
attempting to replicate homogenous mixing of the
original pooled sample followed by homogeneous
subsampling down to the sizes of the original three
samples I, II, and III. Specifically, for the 97%
similarity level, we postulated that the population
had the total richness estimated from the original
pooled sample, 4372 OTUs, and that the population
followed the abundance structure of the parametric
model fitted to the original pooled sample (a
mixture of two exponential distributions). On the
basis of this model, we simulated samples of the
same sizes as the original samples I, II, and III,
namely 556, 705, and 473 sequences, and estimated
the total richness from each sample. Again, in
principle, except for the small-sample-size bias
(or other artifacts), the simulated samples should
produce comparable and roughly accurate
estimates of total richness (though with expectedly
larger standard errors). We generated 10 simulation
replicates from the above scenario, finding
that across the 10 replicates, the estimates from the
three simulated samples averaged 5595±3291 (s.d.),
5212±1483 (s.d.), and 4446±2416 (s.d.) species.
Thus, the results were as expected: for sample
sizes 556, 705, and 473, as opposed to 184, 239,
and 282, the estimates of total richness were roughly
accurate but with higher standard errors than
for the pooled sample (1734 sequences). We there-
fore conclude that, though the sizes of the
subsamples IIa, IIb, and IIc were small enough so
that total richness estimates could be affected to
some extent by small-sample-size bias or other
artifacts, the sizes of the original samples I, II, and
III were large enough so that small-sample-size bias
does not have a significant function, and the effects
observed in the study can be attributed to the
difference in the experimental treatments not the
sample sizes.

Figure 4 Estimated richness recoverable using experimental
protocols I, II, and III, expressed as % of richness recoverable by
pooling data from all three protocols (with associated 95%
confidence bounds), based on parametric and nonparametric
estimates of total richness.
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Discussion

Microbial richness of environmental samples re-
mains an elusive parameter, principally for two
reasons. First, the totality of this richness seems to
be very large (Tiedje, 1994; Curtis et al., 2002; Hong
et al., 2006; Sogin et al., 2006), whereas the samples
of this diversity (i.e. clone libraries) researchers use
to reconstruct this richness are typically small.
Second, these samples (rRNA gene sequence in-
ventories) (Muyzer and Smalla, 1998) are skewed.
The first limitation may well be satisfactorily
addressed by the progress in DNA sequencing
technology, which allows an unprecedented in-
crease in the size of microbial inventories (Sogin
et al., 2006; Huber et al., 2007; Roesch et al., 2007). It
seems that the second limitation will determine how
representative of the target communities these
inventories will be. This is largely dependent on
how incomplete the DNA extraction from the
sample is, and on biases in the target gene
amplification. Earlier studies have addressed both
factors, showed their overall importance, and iden-
tified the principle source of amplification bias,
such as PCR primer discrimination against certain
templates and/or inhibition of the more abundant
templates’ amplification by self-annealing (Suzuki
and Giovannoni, 1996; Polz and cavanaugh, 1998;
Webster et al., 2003; Acinas et al., 2004; Kurata
et al., 2004; Frey et al., 2006; Sipos et al., 2007). This
produces a qualitative picture of the overall im-
portance of the PCR biases. The next logical
question is does primer discrimination against
certain species, coupled with biases of the DNA
extraction method used to obtain the template,
merely decrease the probability of their detection,
or does it practically eliminate the possibility of
such detection? In the first scenario, complete
inventories are still possible given a sufficiently
large sequencing effort; in the second, even an
unlimited sequencing effort will not detect all the
species in the community. This study attempts to
discriminate between these two possibilities. (We
note that metagenomics approaches are free from
these biases (Venter et al., 2004; Roesch et al., 2007).
However, the scale of such studies currently does
not allow a complete recovery of all ribotypes
present in environmental samples. Therefore, the
potential of such approaches to recover the com-
plete—and unbiased—picture of microbial commu-
nity richness cannot be presently exploited. It
follows that, in the foreseeable future, the rRNA
approach, despite its biases, is likely to remain an
important tool to recover and study microbial
diversity in the environment.)

Our experimental approach is simple: using a
single sample, obtain DNA using different extraction
techniques, amplify the 16S rRNA gene using
different primer sets, clone, and sequence the
amplicons from several libraries, construct species
(OTU) lists, and statistically predict the total

microbial richness (observedþunobserved) as it
appears from the individual libraries, as well as
from the pooled data. Our null hypothesis is that the
latter equals the former, indicating that the pooled
data are no more than a result of an increase in
sequencing efforts.

We note that this hypothesis must hold true for
data obtained by replicating the same method
(multiple libraries made using the same experimen-
tal protocols and applied to the same DNA extract).
We checked this in two ways, first by considering
three individual clone libraries (IIa–c) that collec-
tively comprised library II (and are actual empirical
replicates), and second by simulation. Modeling the
species distribution in libraries IIa–c proved chal-
lenging: the resulting total richness estimates had
very high standard errors in many cases, rendering
comparisons imprecise and the hypothesis difficult
to test. This is likely so because the sample sizes of
libraries IIa–c are too small to reliably model the
diversity represented by the complete library II.
Nonetheless, for OTUs sharing 97% sequence
identity, the libraries IIa–c all predicted roughly
the same total richness as the complete library II (see
Statistical Analysis, above). Second, to minimize the
potential small-sample-size bias of libraries IIa–c,
we proceeded by simulation. We randomly gener-
ated three homogeneous samples (‘simulated clone
libraries’) equal in size to the empirically obtained
libraries I, II, and III produced from the hypothe-
sized underlying total population. We then com-
pared the predictions of total richness based on the
simulated samples to the hypothesized total diver-
sity. These predictions were indeed comparable to
one another and roughly accurate, but accompanied
by larger standard errors because of the sample
sizes. From this we conclude that any significant
difference between treatments (libraries I, II, and III)
would be real, and not because of small-sample-size
bias. We then proceeded with evaluation of such
differences.

We assessed the performance of individual primer
sets/DNA extraction techniques by considering the
number of recovered and recoverable OTUs at the
species level, defined here as clusters of rRNA gene
sequences sharing over 97% identity. The total
richness of library I has been estimated in our
earlier work to be 2400 species (Hong et al., 2006).
Libraries II and III, obtained with other combina-
tions of PCR primers and DNA extraction techni-
ques, seem to be equally rich (Figure 3). This
suggests that, no matter what specific method is
used to produce a clone library, sequencing this
library to saturation will result in the same number
of species, between 2300 and 2500. However, when
we estimate the number of species in the pooled
libraries, the predicted richness is almost twice as
big (Figure 3). This can mean only one thing: a
specific method recovers specific species, and the
given sequencing effort using one method is not
equivalent to using two methods with half the
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sequencing effort each. Put differently, each specific
combination of PCR primers/DNA extraction tech-
niques can recover—even with unlimited sequen-
cing—a specific subset of microbial species from the
sample, which differs from other subsets recoverable
with other methods. Each method used here seems
to recover about 50% of the species recoverable from
the combination of all the three methods, and this
indicates that the null hypothesis should be
rejected. We note that though the multiple PCR
primer/multiple DNA extraction technique ap-
proach seems to recover a qualitatively richer set
of species, this set is unlikely to be complete either,
and it remains unknown what fraction this set
constitutes in the true sample diversity.

Unexpectedly, we observe the same tendency at
other, higher taxonomic levels. Bacterial OTUs
based on 90% and 80% 16S rRNA gene sequence
identities seem to be undersampled by using a single
PCR primer/DNA extraction technique by just about
as much as do species (Figure 3). It is widely
understood that sequence-based OTUs cannot be
easily translated into the units of traditional taxon-
omy, and no particular level of 16S rRNA gene
identity stands for a specific classical taxon. None-
theless, 16S gene sequence divergence of about 90%
and 80% are believed to approximately correspond
to differences between microbial family/classes and
phyla, respectively (Hugenholtz et al., 1998; Sait
et al., 2002; Schloss and Handelsman, 2004). If so, a
typical rRNA survey seems to fail to detect at least
half the classes and phyla present in the sample(s)
studied. This is a significant bias, and we searched
for evidence pointing in this direction in the past
rRNA surveys deposited into the GenBank (Table 2;
we considered 10 larger studies reporting over 150
sequences per investigation (including this study)).
This examination showed a surprising fact: with a
single exception of the 27F/1492R primer set (Lane,
1991) used by many researchers, the majority of the
prior studies used study-specific PCR primer sets.
The use of such primers sets has not been replicated
by other researchers in other larger-scale surveys,
and this makes it difficult to detect such sets’
potential class- and phylum-level biases. Nonethe-
less, it is striking to see that several known and
candidate phyla, .for example Chlorobi, Fibrobac-
teres, KSB1, WS6, OD1, OP1, have been detected
repeatedly with one (27F/1492R) primer set, but not
with any other. Similarly, Nitrosparae, OP8, OP10,
WS3, and WYO have all been detected in studies
using just 1–2 specific primer sets, whereas using
other sets did not result in their detection. This
apparent selectivity is consistent with our finding of
a substantial discrimination caused by the DNA
extraction techniques/PCR primers used here (Fig-
ures 1–4). We note that species composition and
frequencies are different between different environ-
ments, and the degree of the discovered discrimina-
tion may vary depending on the environment
(marine sediments, soils, etc.).

Conclusions

We showed that rRNA environmental gene surveys
typically using one specific technique to extract
community genomic DNA, and one specific PCR
primer set to amplify its 16S rRNA genes, miss a
significant amount—around 50%—of microbial di-
versity, from species to phyla. Simultaneous use of
three such combinations, in combination with deep
sequencing (for example using 454 sequencing
technology), could in principle double the recover-
able diversity, but what fraction of the true sample
diversity this would represent remains uncertain.
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