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Polymers on Disordered Trees, Spin Glasses, and 
Traveling Waves 
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We show that the problem of a directed polymer on a tree with disorder can be 
reduced to the study of nonlinear equations of reaction-diffusion type. These 
equations admit traveling wave solutions that move at all possible speeds above 
a certain minimal speed. The speed of the wavefront is the free energy of the 
polymer problem and the minimal speed corresponds to a phase transition to a 
glassy phase similar to the spin-glass phase. Several properties of the polymer 
problem can be extracted from the correspondence with the traveling wave: 
probability distribution of the free energy, overlaps, etc. 

KEY WORDS:  Disordered system; spin glass; freezing transition; reaction- 
diffusion equation. 

1. I N T R O D U C T I O N  

One of the standard problems in the theory of disordered systems is that of 
directed polymers in a random medium. The model is most easily explained 
in a continuum notation. We consider a path (= directed polymer) x(t)  in 
( d -  1)-dimensional space. The path has the weight 

exp -/~ ds 1. 2 

Here V(x, t) is the disorder. We assume that V is short-range-correlated in 
x and t, 

( V(x, t) V(x', t ' ) )  = cr2b(x-  x') (5( t -  t') (l.2) 
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One is interested in the typical fluctuations of x(t). For fixed disorder V, let 
us denote by ~z(.) the normalized average over all paths with weight (1.1). 
( . )  denotes the average over the random potential V. Since (~_(x(t))) = 0  
by symmetry, the quantity of interest is then 

(~(x(t)2)) (1.3) 

for large t with x (0 )=  0. For zero disorder, a = 0, one has diffusive growth, 

(~!(x(t)2)) ~- t (1.4) 

The disorder will induce stronger fluctuations, because the walk tries to 
take advantage of deep potential wells even at the price of paying in 
entropy. Disorder roughens the walk. As a quantitative measure, one 
introduces the wandering or roughness exponent ~,~1.2) through 

( E ( x ( t ) : )  ) ~_ t ~ (1.5) 

for large t. The goal is to understand how ~ depends on the parameters of 
the model, such as, e.g., the noise strength a. 

For d = 2 one finds ~ = 2/3 for any strength of disorder. This value of 
is the result of renormalization group calculations, (3'4) of a mode-mode 
coupling theory, (s) of a scaling relation, ~6) and of an exactly soluble 
particular case. (7) For d > 3  one expects a division into an entropy- 
dominated and a disorder-dominated regime. At sufficiently small noise 
strength, ~=�89 For a particular version of (1.1) this is proved by Imbrie 
and Spencer. ~8) Beyond a certain critical noise strength one finds a strong 
coupling exponent ~ > �89 It is known, however, only on the basis of Monte 
Carlo simulations. For d = 3  Meakin eta/. (9) obtain (=0.62.  Wolf and 
K6rtesz (~~ find ~ =0.66 for d =  3, and ~ =0.59 for d =  4, and conjecture 

=d/(2d-1) .  Finally, Kardar and Zhang (m study the zero-temperature 
limit, /~ ~ o% of (1.1). Their results are ~ = 0.62 for d = 3, and ~ = 0.64 for 
d =  4, and they conjecture ~ = 2/3 independent of dimension. 

The interest in the directed polymer in a random medium comes from 
two sources. First of all it appears as an approximation to equilibrium 
systems with bond disorder. In two dimensions (1.1) is the statistical 
weight of an interface in the SOS approximation. Then x(t) refers to the 
height of the interface above some reference line and V(x, t) can be traced 
back directly to the bond disorder. Walks with weight (1.1) appear also in 
the high-temperature expansion of diluted ferromagnets. (12) The second 
source of interest is the connection to ballistic deposition as described by 
the Kardar-Parisi-Zhang equation, (13) equivalently by the noisy Burgers 
equation. In fact, Meakin et al. simulate a surface growing through ballistic 
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deposition and Wolf and K6rtesz study numerically the surface of a large 
Eden cluster. 

In view of the poorly understood energy-dominated regime, it is of 
interest to study the directed polymer on a Cayley tree, which in some 
sense corresponds to a mean field limit d--, oe. On the Cayley tree we 
lose all spatial structure. Therefore (1.5) has to be replaced by energy 
fluctuations, which, however, have an exponent related to the roughness 
exponent by a scaling relation. ~11'14) 

The Cayley tree problem has a fascination in itself. To our own com- 
plete surprise, there is a close conection to the traveling wave solutions of 
the so-called Kolmogorov-Petrovsky-Piscounov ( K P P ) e q u a t i o n  (15) (also 
called Fisher equation), a certain nonlinear partial differential equation of 
diffusion-reaction type. Exploiting this connection, one can study the 
Cayley tree problem in great detail. In fact, it shares many properties with 
the random energy model of spin glasses. 

Our paper is organized as follows: In Sections 2 and 3 we introduce 
the problem of a directed polymer on a Cayley tree with disorder (con- 
tinuous walk in Section 3 and discrete walk in Section 2). We show that a 
suitable generating function for the partition function Z satisfies a non- 
linear equation, which for the continuous walk turns out to be the K P P  
equation. In Section 4 we recall the relevant results on the solutions of the 
K P P  equation and in Sections 5 and 6 we use them to describe the 
probability distribution of Z and to calculate the overlap in the polymer 
problem. In particular, we show that there is a spin-glass transition for a 
polymer on a disordered tree and that in the spin-glass phase the dominant 
configurations have overlap either 0 or 1. In Section 7 we show how the 
problem could be generalized to present more general overlaps and in 
Section 8 we return to the discrete case. 

2. C A Y L E Y  TREE W I T H  D I S O R D E R  

Consider a Cayley tree (cf. Fig. 1), or, more precisely, a branch of a 
Cayley tree. Each site (except site 0) has K +  1 neighbors. We want to 
study on this tree all the self-avoiding walks of t steps starting at 0. (In 
Fig. 1, the path 0 ~ A is such a walk of four steps.) On each bond (i, j )  of 
the lattice, there is a random potential V U distributed according to a given 
probability distribution P(Vo. ). Potentials at different bonds are indepen- 
dent. By definition, the energy E(co) of a walk co is the sum of the poten- 
tials of the bonds visited by the walk, 

E(co)  = Voe , + Viii2 + "'" Vi, A (2.1) 

822/51/5-6-6 
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0 

Fig. 1. Self-avoiding walk on a Cayley tree. 

To describe the statistical properties of a self-avoiding walk of t steps 
starting at 0 o n  such a lattice, we have to calculate the partition function 

Z(t) = y'. exp[ - f iE(e))]  (2.2) 
o )  

where the sum runs over the K ' -  l walks of t steps starting 0. Here fl is the 
inverse temperature. Because of the tree structure, the following recursion 
relation holds: 

Z(t + 1) = e-~V[z{~)(t) + ... + Z~m(t)] (2.3) 

This recursion relation expresses the fact that each walk of t + 1 steps 
starting at 0 can be decomposed into its first step on a bond of strength V 
and a walk of t steps in one of the K possible branches. 

Since the potentials Vq are random, we have to study the probability 
distribution Pt(Z) of Z(t). In Eq. (2.3), the ZU)(t) are the partition 
functions of walks on different branches of the tree and thus they are 
independent random variables. Therefore, P,(Z) satisfies the recursion 
relation 

Pt+ 1(Z) : f dZl P t ( Z l )  "' "J P'dzk Pt(Zk) J P(V)(~(Z-e-flv(Zl +'' ' '4-  Zk) ) 

(2.4) 
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with initial condition 

po(Z) = 6 ( z -  1) (2.5) 

The recursion (2.4) with initial condition (2.5) can be used to obtain 
the moments of the partition function. For example, one gets 

( Z(t) ) = K'p' 1 (2.6a) 

. kt2(K- 1) (X2,#~ ' -  K,#i ) (2.6b) ( z ( t )  ~ ) = K'~'~ + X ~  - , , ~  

3 K ( K -  1) # , ( ~  - ~2) (K2,~,~ ~ _ X ' ~ )  
(Z( t )  3 ) = K' ,uJ + (K/.t i ,tt2 _ ,u3)(K,u 2 _ ,u2) 

( K -  1) #3[#~K(K- 2) + p z ( 2 K -  1)3 (K3tu~, 
+ (K2# 3 _ p3)(K~ ~ _/22 ) - Kt#~) (2.6c) 

etc., where 

#, = f dV p( V)e-n~v (2.7) 

We notice that, as in spin glasses, each moment (Z(t) n) has its own 
transition temperature, where the terms dominant for large t switch. 

The distribution P,(Z) is determined only through the complicated 
integral equation (2.4), which depends on the distribution p(V) and on the 
inverse temperature ft. It turns out that by considering an appropriate 
generating function of Z(t), one can obtain an integral equation indepen- 
dent of temperature and with a more transparent structure. Let us then 
define G,(x) by 

Gt(x) = ( e x p F - e - ~ x Z ( t ) ] )  (2.8) 

Using (2.4), one can show that 

Gt+ l(X) = f dV p(V)[G,(x + V)] x (2.9) 

with the initial condition 

Go(x) = exp( - e-~X) (2.10) 

The solution G,(x) depends on temperature only through the initial 
condition. 
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It is clear from the definition (2.8) that at any time t 

G~(x) ~ S1 as x ~ o e  (2.11) 
a s  X ~ - - o 0  

So G~(x) has the shape of a wavefront. In fact, we will see in Section 8 that 
in the long-time limit G~(x) is a traveling wave of the form 

Gt(x) = w(x - ct) (2.12) 

where the velocity c is related to the initial condition, i.e., to the inverse 
temperature/~, by 

C= ~ l o g [  p(V)e -~v] if ~ < ~ c  (2.13a) 

(-~log[KfdVp(V)e ~cvJ if ~ > ~ c  (2.13b) 

Here/?c is defined as the inverse temperature where the velocity c of (2.13a) 
is minimal, 

d 
c(/3c) = 0 (2.14) 

The traveling wave comes as a sort of surprise. Its appearance and its 
detailed properties can be grasped more directly in a continuum 
approximation, to which we turn next. Then (2.9) becomes the K P P  
equation, a very well-studied equation. 

3. C O N T I N U O U S  T I M E  A N D  B R A N C H I N G  D IFFUSIONS 

One can generalize the problem defined in Section 2 to the case of a 
tree branching at continuous, random rather than discrete, deterministic 
times. By definition of the model, the potential V on a branch of length dt 
is a Gaussian variable 

1 ( v 2 )  
p(V) = (4nD dt)1/2 exp 4D ~/t (3.1) 

and during the time interval dt each branch has a probability 2d t  of 
branching into two branches. We could introduce branching into more 
than two. But since, qualitatively, our results do not depend on the 
branching mechanism, we stick to the simplest rule. 
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The recursion relation for the partition function Z(t) of all walks of 
time span t starting at 0 is 

fe-/~vz(t) 
Z(t + dt) = (~e_~V[Z(l)(t) + Z(2)(t)] 

with probability 1 - 2 dt (3.2a) 

with probability 2 dt (3.2b) 

Equation (3.2a) expresses the fact that the tree has a single branch from 
time 0 to time dt, whereas (3.2b) represents a branching between times 0 
and dt. 

From (3.2) one can calculate the moments of Z(t), with the result 

( Z(t) ) =exp [(2  +~ fl2) t] (3.3a) 

22 
(Z( t )  2) = exp[(2 + 2f12)t] + ~  {exp[(fl 2 + 22)t]  

- exp [(2fl 2 + 2 ) t ]  } (3.3b) 

etc. As before, the (Z(t)  n) have transition temperatures that depend on n 
(except for n = 1, which has no transition). 

If one defines Gt(x) as in Section 2 by 

G,(x) = (exp[  -e -~xZ( t ) ]  ) 

then one finds that for dt small 

(, 
G,+d,(x) = ( 1 - 2  dt) J d V  

+ ;t dt Gt(x)  2 

, ( v 2 )  
(47rD dl) 1/2 exp 4D-dr G,(x + V) 

In the limit dt--* 0, (3.5) reduces to 

0 #2 
~t G = D -~x 2 G + 2 ( G 2 - G ) 

(3.4) 

(3.5) 

(3.6) 

This is the K P P  equation. By changing suitably the space and time scales, 
one can always set 

D = 1/2, 2 = 1 (3.7) 

As in the discrete case, the equation that governs the time evolution of G is 
independent of the inverse temperature fi, which enters only in the initial 
condition, 

Go(x) = e x p ( - e  ~x) (3.8) 
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Fig. 2. 

1 
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x1(t) x5(t) 

t 
Branching diffusion in energy space. Time (= volume) is running downward. 

For  our further analysis it is important to understand how the energies 
(and not only the partition function) of the walks change in time. At time t 
there are n = n(t) walks, n(t) is a random variable with mean (n ( t ) )=  e ~'. 
The walks have energies x~(t),..., xn(t). According to the rules given above, 
xl(t),..., x,(t) diffuse independently of each other with diffusion coefficient 
D, and branch into two independently of each other with rate 2 (cf. Fig, 2). 
At time t = 0 ,  there is only one energy level and Xl(0)=0.  Clearly, the 
partition function is 

Z(t)= ~ e -ax/') (3.9) 
j = l  

The model introduced here is known as branching diffusions. If 
x~(t) ..... x~(t) are interpreted as the positions of some objects, the physical 
and biological origins of the model are apparent. In that context it would, 
however, be rather awkward to introduce a partition function. 

Let us see how branching diffusions are related to the K P P  
equation. (16) We define u(x, t) by 

u(x. t) = u(xj(t) + x)  (3.10) 

where u(x) is an arbitrary function. Then 

~?tu(x, t)= ~Sx2 U(X, t ) -u (x ,  t) + u(x, t) z (3.11) 
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with u(x, O) = u(x). We see that the differential equation satisfied by u(x, t) 
does not depend on the initial condition u(x). (We adopt from now on 
units such that D=�89 2--1.)  Equation (3.6) is the particular case where 
u(x )  = Go(x) .  

The proof of (3.11) is identical to the one for G,. We only have to 
consider the probability of (non) splitting of the first level between times 0 
and dt. 

4. S O M E  P R O P E R T I E S  OF T H E  KPP E Q U A T I O N  

The KPP equation (3.11) is one of the simplest nonlinear, parabolic 
equations that admits traveling wave solutions, i.e., solutions of the form 

u(x, t) = w ( x -  ct) (4.1) 

In fact, the mechanism is easy to understand. Let us first consider solutions 
that are homogeneous in space. Then u = 0 is a stable fixed point and u = 1 
is unstable. Therefore if lim~ ~ co u(x) = 1 and lim . . . .  u(x) < l, the left- 
hand part of the solution drops quickly to zero. However, from the 
unstable fixed point to the right it can escape only through diffusion, 
thereby producing a wave traveling to the right. In our application 
0~<u~< 1 always. Therefore also 0~< w~< 1. The wavefront satisfies the 
ordinary differential equation 

Ewe -t- c(fl)w'~- we(1 - we) = 0 (4.2) 

with boundary conditions w e ( - ~ ) = 0 ,  w e ( ~ ) = l ,  and 0-..<we--.< 1. For 
reasons that will become clear immediately, we have indexed the solutions 
w=  w e by fl with a corresponding speed c(fl) to be determined below. 
Equation (4.2) is the equation of motion for a particle in the potential 
- �89  with constant friction c. Solutions are admissible only for 

c ~> xf2. If c < x/2, the motion at w = 1 is an underdamped oscillation and 
w ~< 1 is violated, c - -x f2  is the minimal speed, w e is unique up to trans- 
lations. As normalization we adopt we(0 ) = �89 A more detailed analysis of 
the motion near the fixed point (w, w') = (1, 0) shows that 

[ e x p ( - f l x )  for c > x / 2  (4.3) 
1 - w e ( x ) ~ - ~ x e x p ( - x / - 2 x )  for c = x / 2  

as x -+ oo. The speed of the wavefront is related to the exponential decay of 
w,~(x) by 

1 l 
c( fl )=-~ fl +-fi, fl <<.flc= x /  2 (4.4) 
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From the mechanism producing the traveling wave, it is clear that the 
relevant asumptotics is x ~ +Go. 

In a beautiful piece of work, Bramson ~17) studies in great detail the 
approach of a given initial condition u(x) to a traveling wave as t ~ oo. We 
will draw heavily on his analysis. Before embarking on our own enterprise, 
it may be useful to explain the basic idea behind Bramson's work. He 
thinks of (3.11) as an (imaginary time) Schr6dinger equation, 

t a t)= + [ u ( x , t ) - l ]  u(x,t)  ~ uI x, ~x 2 

By the Feynman Kac formula its solution is then written as 

u(x, t)= ~-x (exp {I~ ds [u(bs, s ) -  l ] t u(bt) ) 

(3.11') 

(4.5) 

Here b, is Brownian motion and Ex is the expectation over all paths 
starting at x. Of course, because of the nonlinearity, the time-dependent 
potential u(x, t ) -  1 depends itself on the solution. The crucial point and 
the beauty of the approach is that (4.5) allows for a sort of bootstrap 
strategy. A modest information on u(x, t), and therefore on the potential, 
may be turned into a sharp information on the solution u(x, t) through the 
use of (4.5). 

Let us summarize the main results (17) of interest for our application. 
The initial conditions are such that u increases monotonically from 
u ( - o o )  = 0 to u(oo)=  1. (A more general class of initial conditions can be 
handled as well.) Bramson proves that, for any given initial condition u(x), 
there exists a constant fi, 0 <~ fi ~< x/2, and a function me(t ) such that 

lim sup ju(x, t) - w,(x - m~(t))l = 0 (4.6) 
t ~ o O  x 

To leading order in t 

ml3( t ) = c(fl)t + o( t) (4.7) 

fl is determined by the asymptotic decay at + oo. If 

u(x) = 1 --e -~x 

for x--* oo, then c(fl) and co~ are given by (4.4) and (4.3) if fl .G< tic = 
the other hand, c(fi) = x ~  and w~ = w./5 if fl >/L-  

(4.8) 

x/2. On 

The precise time dependence of me(t ) is determined by the fine details 
of the asymptotic decay in (4.8). Bramson's major contribution is to prove 
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logarithmic corrections and in some cases even corrections of order one. 
For example, for the initial condition (3.8), u(x)= Go(x), he shows that 

l c(fl)t+O(1) if /~ </~c = 21/2 

mr ( t )=  21/2t-2 3/21ogt+O(1) if fl=21/2 
21 /2 t -3 .2  3/21ogt+O(1) if fl>/~c 

(4.9) 

5. THE PROBABIL ITY D ISTRIBUTION OF Z(t) 

Since G,(x) defined by (3.4) satisfies the KPP equation with the initial 
condition (3.8), which behaves like 

Go(x)~l-e  ~x (5.1) 

for x ~ 0% we conclude that, up to order 1, 

1 
- o  (log Z(t)) = -mr(t ) (5.2) 

P 

This is because one can write 

1 
( l o g Z ( t ) )  _ dx ({exp(-e-~X)-exp[-e-~xZ(t)]}) 

oO 

= - d x  I - a 0 ( x )  - a , ( x ) ]  ( 5 . 3 )  
oO 

Since in the long-time limit Gt(x) is a front located at the point mr(t), one 
gets (5.2). Thus, the way in which the free energy depends on fl comes from 
the dependence of m~(t) on the initial condition (5.1). In particular, the free 
energy per unit length is given in the long-time limit by the speed c(/~) of 
the traveling wave, 

11 
lim (log Z(t) ) = -c(fl) (5.4) 
t ~  I ~  

At /~, = x/2, there is a transition to a frozen phase. The low-tem- 
perature phase is simply reflected in the solutions of the KPP  equation: 
they all travel with the same minimal speed as t --* oo. So we see that as the 
temperature decreases, the free energy is given by the speed c(/3) 
[-Eq. (4.4)] and when fl reaches/~, there is a freezing at the minimal speed 
x/2 very similar to the freezing phenomenon in spin glasses. ~18) One should 
also notice that, as in spin glasses, c(/~) has an analytic continuation for 
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fl > fl<. given by (4.4) and that the corresponding free energy would be lower 
than the true one c(flc). So the phenomenon (~8) that the free energy varies 
with temperature until it reaches its maximum and sticks there is very 
similar to the fact that there is a minimal speed for the traveling wave 
solutions of the KPP  equation. 

Our next goal is to understand the distribution of the free energy 
around its average, i.e., the distribution of f(t) defined by 

1 1 
f(t) = - -~ log Z(t) + -~ (log Z(t) ) 

P # 

We use the generating function 

Iv ] (exp[-vf( t )  ] ) = ( Z(t) vm) exp - ~ (log Z(t) ) 

As in ref. 19, 

( z ( t ) v / ~ )  = _ _  

(5.5) 

(5.6) 

(e ~f ) = f df 2~(f) evF= 

Here a(fl) is some constant. 

F(v) _~ dx e-VXw~(x + a(fl)) (5.10) 

whereas for v > 0 

F(n-  v) _~ dx f i [exp(-nf lx)  exp(vx)] 

x (Z(t) ~ e x p { -  [ exp ( - f lx ) ]  Z(t)} ) (5.7) 

for n - 1 < v/fl < n and n 1> 1, and 

(Z(t)-vm) =~-~  -oo dx [ e x p ( - v x ) ] ( e x p { - [ e x p ( - f i x ) ]  Z( t )} )  (5.8) 

for v > 0. The solution of the KPP  equation for large t is given by (4.4). 
The translation is taken care of by the subtraction in (5.5). We conclude 
that l im,~ ~ f ( t ) = f  in distribution and that for n -  1 < v/fl < n 

= f df 2~(f)e -~r (e-~r) 

1_ v) ~ eV.~fle_n,x ( ~ ~d )" - F(n f_ dx e ~x w~(x+a(fl)) (5.9) 
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If fl ~>/3c = x/~, then wa = w/~, the wavefront with minimal speed, a(/3) 
corresponds merely to a shift in the distribution of f Since ( f ) = 0 ,  we 
conclude that, for/3 ~> . ,~ ,  2 a ( f ) =  2 /2 ( f ) ,  i.e., the shape of the free energy 
distribution does not change with temperature in the low-temperature 
phase. 

From the asymptotics of w~(x) for x--+ ___oo we infer the behavior of 
2~(f)  for f--+ -T oo. Let us discuss the cases x --+ _ oe separately. 

(i) x-+ c~ corresponding to f--+ -oo .  For /3</3,. the fixed point at 
(w, w ' )=  (1, 0) has the eigenvalues -/3, -2//3. Therefore 

1 - w e ( x ) = a l e  ~X+a2e-2~x+ ... +ble-(2/l~ ... (5.11) 

In (5.9) the contributions from e ~x and its powers cancel and the leading 
term is e -(2/e)x. Therefore (5.9) diverges for v/> 2//3. For/3 > tic, 

1 - w/5(x)  ~-x e x p ( - x f 2  x) (5.12) 

and (5.9) diverges for v >/x/2. 

(ii) x--, - o e  corresponding to f - ~  oo. The fixed point at (w, w ' )=  
(0, 0) has one repelling direction with eigenvalue 

(exp v f )  diverges for v>~cc If fl>flc, 

~ = 2 -  x/2  (5.14) 

We summarize the behavior of the distribution of the free energy 
)o;~(f): If fl </3,, then 

f exp[ ( 2/fl ) f ] 
2a(f )  ~ (exp(-c~f)  

If fl > tic, then 

2 , ~ ,  f - / e x p ( , , ~  f )  
a~J) ~ ~exp[ - (2 - ~ ) f ]  

for f - ~  - o e  
(5.~5) 

for f - - * ~  

for f - - ,  - ~  
(5.16) 

for f - - ,  oo 

The fluctuations in the free energy are of order one at all temperatures. 
At the critical point the distribution freezes. 

Differentiating ( e x p [ - ~ t Z ~ ( t ) ] )  at ~t=0, one obtains equations for 
the moments (Z;3(t)n), which can be solved recursively [cf. (3.3)]. One 
finds that (Z~( t )n) / (Z~( t ) )"  diverges for f l= (2/n) m, in agreement with 
(5.15). 
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At /3=0, Zp(t) is the number n of energy levels at time t. Their 
distribution is 

p,(n) = e '(1 -- e-X')n - - 1  (5.17) 

Therefore, y = - l o g  Zo(t) + t = - l o g  n + t has the limiting distribution 

e x p ( - y )  e x p [ - e x p ( - y ) ]  (5.18) 

As y ~ -o0 ,  the decay is faster than any exponential, consistent with the 
decay exp[(1//32)(/3f)]. For  y ~  ~ the decay is e -y, in agreement with 
~//3 ~ 1 a s / 3  --, 0, 

So much for explicit computation. Let us try to gain some further 
understanding by looking directly at the statistics of energy levels. The 
average level density at energy x is 

e'(27zt)-1/2 e x2/2' (5.19) 

The average level density (5.19) is of order one for 

ao(t) = -~ [2rot - 2 -3/2 log t + O(1)] (5.20) 

For/3-- ,  o% - (1 / /3 ) log  Zp(t) is just the lowest (ground state) energy eo(t). 
From (4.9) we know that eo(t) is typically located at 

- m / 5 ( t )  = -(2x/2t - 3 .2  -3/2 log t) (5.21) 

The distribution of eo(t) is w~fs. Comparing (5.20) with (5.21), we see that 
the prefactor of the logarithmic correction cannot be guessed on the basis 
of the average level density. One has that eo(t) is of the oder log t above 
ao(t). Sitting at ao(t) for most samples, one does not see any energy level at 
all and very rarely a large number of them, By the same method as used for 
the partition function, one can study the number of levels in some interval 
around - m / ~ ( t ) .  From this one concludes that above eo(t) there is a 
discrete set of levels, with an exponentially increasing density, however. If 
/3 > tic, the partition function singles out the levels close to eo(t). Therefore 
Z/~(t) is essentially a finite sum. 

The random energy model (REM) (18) has an average level density 
identical to branching diffusions. In this case eo(t )'~ ao(t). The statistics of 
levels near eo is Poisson with an increasing density exp (x f2x  ). For  
branching diffusions we did not find a "simple" statistics of energy levels, 
although joint level distributions could be obtained from the solution of the 
K P P  equation. 
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Also, the Sherrington-Kirkpatrick model and the GREM have the 
same average level density. In these cases, however, eo(t) and ao(t) differ 
proportional to t. 

6. T H E  O V E R L A P  

In the case of spin glasses at low temperatures, phase space breaks up 
into many pieces separated by free energy barriers. This many-valley struc- 
ture can be studied by looking at the overlap between spin configurations. 
For branching diffusions the overlap between xi(t) and xj(t) can be defined 
by 

Q0 = fraction of time with xi(s)=xs(s ), O<.s<~ t (6.1) 

Clearly, 0 ~< Qij~ 1. For a given tree, the probability Y(q) of finding an 
overlap q is 

1 ~ e ~x'(t)e-/~v(')x({q<~Qij~q+dq }) (6.2) Y(q) dq = ~ - ~  ,.J= , 

The characteristic function 7~ restricts the average only to those levels that 
have an overlap in the interval q, q + dq. 

It is clear that close to the ground-state energy eo(t) there must be 
energy levels that have an overlap 1 with eo(t), because they just have 
recently branched from eo(t). Without further insight one may expect to 
find near eo(t ) also levels with overlap 0 < q < 1. Surprisingly enough, this 
is not the case. We will show that the overlap is either zero or one, i.e., in 
the limit t ~ o% 

~'(q) dq = (1 - Y) 6(q) + Yf(q - 1) (6.3) 

and that distribution for Y is identical to the one for the Sherrington- 
Kirkpatrick model ~2~ and the REM. 09) 

We consider 

Y~(q) = dq' Y(q') (6.4) 

To obtain the distribution of Yp(q) we first follow ref. 19. Then 

( Y ~ ( q f f ) = F ( 2 v ) F ( n -  v) fl _ dx d#P"-~ ~--OI, t" 

l exp  [ - e - ~ x Z ( t )  - #e -2~x ~ e-~XJ(') e-~X'(t)z( {Qij>~q} )] I 

(6.5) 
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with n >~ 1 and n -  1 < v < n. The configuration at time qt is {xj(qt)}. From 
each xj(qt) there emerges a new tree. In the double sum ~r there is no 
contribution from distinct trees because the overlap Qo>~ q. Therefore the 
average in (6.4) is given by 

(. ) = lexp I-- ~ e-~ExJ(qt)+ x] zj((1--q)t) 

--#~e-Z~[~j(qt)+x]zj((1--q)l)21) (6.6) 
J 

Here the Zj((1 - q ) t )  are independent copies of the partition function. They 
are also independent of the configuration {xj(qt)}. Now, by (3.10) 

(y~(q)V) = r(2v)  r(n - v) [~ _~ dx d# #"-'  ~ O#" ut~)(x, qt) (6.7) 

where u(~)(x, qt) is the solution of the K P P  equation with initial condition 

u~)(x) = (exp[-e-~xz((1 -q ) t ) -#e -2~Z( (1  - q ) t ) 2 ] )  (6.8) 

Before continuing with the calculation of (Y~),  let us first study the 
average overlap ( Y ~ ( q ) ) .  We may either take the limit v ~ 1 in (6.7) or 
use the original definition (6.2), (6.4) and follow the reasoning given above. 
The net result is 

0o ~3 qt ) 
(Y~(q))  = lim f l f  dx-~u(~)(x, (6.9) 

Using (3.4) and (6.8), we conclude that u(~ qt)= G~(x). Therefore we 
have to solve only the linearized K P P  equation, linearized around Gt(x), 
with initial condition 

~(x) = [ e x p ( -  2fix)] (Z((1  - q)t) z exp{ - [ e x p ( - f i x ) ]  Z((1 - q)t)} ) 

= -~X2q ' - -~X  G(,_q)t(x ) (6.10) 

For  large t and q < 1, 

G(~ q)t(x)~-w~(x-m~[(1-q)t]) 

Therefore the initial condition (6.10) is independent of q except for a trans- 
lation, which does not change the value of the integral (6.9). In addition, as 
long as q > 0 ,  the limit (6.9) does not depend on q. Therefore (Y~(q)) 
must be independent of q, provided 0 < q < 1. 
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To compute the limit (6.9) it is convenient to transform to the frame 
moving with velocity the(t). In the moving frame the linearized KPP 
operator is 

1 6 2 0 
L(t)=-~-~x2 + m~(t) ~ x - 1 +2w~ (6.11) 

If O < q <  1, then by (6.9), (6.10) 

(Y t j (q ) )=t l im fl dx exp dsL(s) ~ (x) (6.12) 

with the initial condition 

1 0 2 
~(w) = ( ~  ~--$2 + ~ ~ x ) w ,  (6.13) 

The asymptotics is more clearly displayed upon the similarity transfor- 
mation 

16 2 ( w )L+ 

=/5(t) (6.14) 

Then, rewriting (6.12), 

< Ya(q)> = tlirn 

x exp ds L(s) (x, x')[r (6.15) 

where exp[ . ] ( x , x ' )  denotes the fundamental solution of the linear 
equation ~ =/~(t)~. 

If fl < tic, then ~ = c e and w;/w'~ --* - f l  for x ~ oe and w'~'/w'~ -~ c~ for 
x ~ - o e .  Therefore, in (6.14) rh~+w'c'/w'~>~a>O and the last term 
vanishes. This means that there is a net force to the right: 

is a probability distribution in x' which for large t moves with constant 
speed to the right. There ~/w'~ decays exponentially. We conclude that 
(Y~(q) ) = O. 
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On the other hand, if/3 >/3 c, then 

m. + = t 
3. 2 - 3 / 2 (  1/t) f o r  x - - *  o(D 

(6.16) 
for x ---, -oo  

There is still a force to the right, although with decreasing strength. For 
x ---+ oo 

~, 1(I w,)/w,.. I(1 r (6.17) 
=5 

The potential contribution [rh~-c(~)]w'~/w'~ to L(t) decays as 1/t. 
Therefore, 

I f :  1(~__~) 1 ( r  limoo ex p dsL,(s) ( x ) = ~  1 -  (6.18) 

Noting that ~ dx w'~(x) = 1, we conclude 

(Yp(q) ) = 1 ~ (6.19) 

For/3 </?c the overlap is zero with probability one. For/~ >/3c, since 
Y(q) does not depend on q, the overlap is either zero or one (zero with 
probability ,,/2//~ and one with probability 1-x/2//~).  

Let us return then to the task of determining the distribution of Y. We 
fix /3 > xf2 and some q with 0 < q < 1. The initial condition u~ of the 
KPP equation is given by (6.8). For large t it travels a distance 
m~[- (1-q) t ] ,  which drops out in (6.7), however. Hence 

u(U)(x)=f df  2 ( f ) e x p E - e - ~ C ~ + f ) - # e  -2a(x+y)] (6.20) 

2( f )  is the distribution of the free energy studied in Section 5. 
For # = 0 

u(~ = w /~(x + a(0)) (6.21) 

and the solution to the KPP equation is simply w p ( x - x / 2  t +a(0)).  For 
# > 0 the term in the exponent induces only a local change of we(x ) and the 
asymptotics for x ~ oo is still the one of we(x), i.e., 

1 - u(~)(x) ~- x exp( - x / 2  x) (6.22) 
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Bramson (ref. 17, Chapter 9) shows that also in this case the solution to the 
KPP equation is asymptotically of the form 

we(x - v/2 t + a(l~)) (6.23) 

a(#) is a constant. Because the tail of the initial condition is precisely the 
one of we(x), there are no logarithmic corrections. We insert (6.23) in (6.7) 
and use again ~ dx w'~(x) = 1. Then 

o -v~?" 
< Y ' ) =  (_l)n (,B/x/2) oo /~"-' ~a ( /~ )  (6.24) 

F(2v) F(n -- v) dl~ ~?t~" 

Bramson has also determined the constant a(;t). In fact, let us go back 
to (4.5) using (6.23). In the space-time region where u(x, t ) = 0 ,  paths are 
exponentially suppressed. To locate the front, we have to solve the diffusion 
equation with a linearly moving, absorbing boundary condition. The 
crucial point is that we need to know its location only up to order one. 
Bramson proves that this reasoning is indeed correct. His final result is 

, ~  a(/~)= lim [ - , j 2 z - l o g  v(z)] (6.25) 
z ~ o o  

with 

v( z ) = lira ~ e' f dy [ l - u ( y ) ]  

x (27tt) -1/2 { e x p [ - ( z + ~ f 2 t - y ) 2 / 2 t ] } { 1 - e x p ( - 2 y z / t ) }  (6.26) 

The term in the final curly brackets is due to the absorbing boundary 
conditions. The initial condition must satisfy 1 -  u(x )~  x e x p ( - , , ~  x) for 
X --+ OO.  

We insert (6.20) in (6.25). Then 

v(z) = f dy { l - exp[ - exp ( - ,By)  - # exp( - 2fly)] } 

x lim (exp t) f df  2(f )  
t ~ o o  

x (2~t) -1/2 {exp[ - (z + f +  x/2 t -  y)2/2t] } { 1 - exp[ - 2 ( y - f ) z / t ]  } 

(6.27) 

Since 2(f)_--- - f e x P ( x ~ f )  for f - - ,  - oo  [cf. (5.16)], the limit t ~  oo is 

822/51/5-6-7 



836 Derrida and Spohn 

equal to const, z e x p [ - 2 1 / 2 ( z - y ) ]  with a constant independent of z and 
y. We conclude 

= - l o g  I dy { 1 - exp[ - e x p ( -  fly) - # e x p ( -  2fly)] } 21/2a(~) exp(21/2y) 

(6.28) 

In combination with (6.24), this shows that Y has the same distribution (~9) 
as found for the REM and the SK model. 

The distribution of Y has a structure that is not apparent from the 
moments. It diverges near 1 as (1 - Y)-'/~/~ and has cusp singularities at 
the points l/n, n = 2, 3,...; see ref. 21 for details. 

7. G E N E R A L  O V E R L A P  

Do branching diffusions always have overlap either zero or one? The 
generalization of the REM (22 25) indicates that one should get any overlap 
desired through a simple modification: we only have to consider that the 
diffusion coefficient D changes slowly in time (so far we have set D = 1). Let 
then D(~), 0 ~< z ~< 1, be given. If the process branches up to time t, then at 
time s the common diffusion coefficient is D(s/t), 0 <~ s <<. t. We also assume 
that D(z) is decreasing. Other cases, e.g., time-dependent branching rate, 
nonmonotone D(~), can be worked out also. 

The mechanism responsible for a general overlap may be understood 
already from the simplest case D ( r ) =  D~ for 0 ~< ~ ~< r 0 and D(~)=  O 2 for 
~o <~ r ~< 1, D1 >~ D2. To obtain the generating function for Z(t) ,  we employ 
the technique developed in Section 3 iteratively. First we have to solve the 
K P P  equation with diffusion coefficient D2 (!) for the initial condition 
u ( x ) = e x p [ - e x p ( - f l x ) ] .  Let 5(x) be the solution at time ( 1 - r o ) t .  We 
then have to solve the K P P  equation with diffusion coefficient D1 for the 
initial condition ~(x). The solution at time rot is the generating function for 
Z(t).  Also, we need the velocity of the traveling wave for constant diffusion 
D. It is given by 

~ l / f l + D f l  if f l<f lc=( l /D)  1/2 (7.1) 
c(fl, D ) = ] 2 x / -  ~ if f i>f lc  

As an example, let us compute the free energy. The K P P  solution first 
travels with speed c(fl, D2) for a time 1 -- %. Then the diffusion coefficient 
changes to D 1 and the front has to adjust to a new speed. Since 
tic(l) < tic(2), the new speed is c(fi, D1). We conclude that, in general, the 
free energy per unit length of the walk is given by 

f ( f l )  = - dz c(fl, D(r))  (7.2) 
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For the average overlap (Y(q)) ,  the case of interest is fl > (1/D2) ~/2. If 
q > to, then at r0 t the solution of the KPP  equation needed is of the form 

w t~c(z)(X - 2D {/2( q - Zo) t + a(# ) ) 

At rot the solution accelerates to the new speed 2Dl/2. This has no influence 
on a(/z), however. Therefore 

( Y ( q ) ) = l - ( 1 / f l ) ( 1 / D 2 )  1/2, r o < q < l  (7.3) 

On the other hand, if q < %, then we are back to the situation studied in 
Section 6. The distribution of free energies has to be taken at the inverse 
temperature fl,.(2) = (1/D2) 1/2. We conclude 

( Y ( q ) ) = l - ( 1 / f l ) ( 1 / D , )  '/2, 0 < q < r o  (7.4) 

If D(r) takes only two values, then the overlap is either q--0,  r0, or 1. One 
should notice that the case Dt < D 2 would imply t ic( l )> tic(2) and lead to 
a rather different solution as it does in the GREM and only the overlaps 
q = 0 or 1 would be possible. In general, if D(r) is an decreasing function of 
r, one obtains 

( Y ( q ) )  = 1 - (1/fi)[1/D(q) ] ~/2 (7.5) 

for f l>  [1/D(1)] u2. As already noted for the GREM, if define x (q)=  
1 - ( Y ( q ) ) ,  then for f l>  [1/D(1)] 1/2 

1 1 1 
(7.6) 

Using the method of Section 6, one could also obtain also the full 
statistics of Y(q) in the limit t--, co. It is precisely the intricate statistics of 
overlaps derived from the "superimposed" Poisson statistics with exponen- 
tially increasing density. (26) 

8. B A C K  TO T H E  D I S C R E T E  T I M E  P R O B L E M  

It is reasonable to expect that most of the properties of the KPP  
equation have their analogues in the discrete time problem, which was 
governed by Eq. (2.9), 

G, + ~(x) = f dV  p( V)[ G,(x + V)] K (8.1) 
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Let us briefly indicate here the properties for the solution of this equation 
without giving any demonstration. 

In the long-time limit, the front moves with a constant speed c(fl), 
which depends on the decay of the initial condition: If 

Go(x ) = 1 - e -~x (8.2) 

for x ~ 0% then the speed c(fl) of the front is given by 

e~c(~)=Kf dVp(V)  e-~v, fl<fic (8.3) 

where/3< is the value of fi for which c(fl) is minimal, 

o~ c(/~) =0 (8.4) 

For initial conditions (8.2) with fl > tic, the front moves with speed c(fl<.) in 
the long-time limit. 

As in Section 5, the speed c(fl) gives the free energy per unit length in 
the long-time limit, 

_ l l  ( l o g Z ( t ) ) = f - c ( f l  ) if fl~fl<. (8.5) 
t fl ]-c(fl<) if f l>flc 

The knowledge of the shape of the front determines, in principles, the shape 
of the probability distribution of the free energy. For example, for 
f -~ - oo, again 

~e ~f if fl</7< (8.6) 
2n(f)  = [ - f e  ~<i i f  fi >~ fl<. 

where ~s is the solution (ip >/7) of 

for fl < fl<. and Oc =O(fic) = fl<. for fl > tic. As in the continuum version, the 
distribution 2~(f) decays exponentially for f - - ,  -oo.  For f ~ o% the decay 
depends in a more complicated way on the distribution p(V) and we will 
not discuss it here. 

Finally, the overlaps can be calculated for any distribution p(V). The 
result is that the overlap is 0 for fl < fl<. and that the overlap is either 0 or 1 
for fl>fic. For fl>flc, (Ye(q) )  is given by 

(Ye(q) )  = 1 - ~,,, (8.8) 
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where 7,~ is the extremum of 

l [log K+ log f dV p(V)e-~v;= (8.9) 

where c(fl) is the solution of (8.3). Then it is clear that 7,, is given by 

7,, =/%/fl (8.20) 

and the expression (8.8) is very similar to (6.19). 

9. C O N C L U S I O N S  

In the present work we have seen that the problem of a self-avoiding 
walk on a disordered tree can be reduced to the study of traveling wave 
distribution of the free energy of the self-avoiding walk is given by the 
shape 
of the front in the KPP equation and that the minimal speed property 
of the solutions of the KPP equation is closely related to a spin-glass-like 
transition with broken replica symmetry in the self-avoiding walk problem. 

We think that it would be interesting to know whether the analogy 
between the mean field theory of spin glasses and the theory of traveling 
waves could be pushed further. One can also wonder whether the nature of 
the frozen phase with broken replica symmetry remains unchanged in finite 
dimension for the self-avoiding walk problem. This would certainly be 
useful to better understand the controversial subject of polymers in random 
media. (27) 
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