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Abstract—Reverse engineering software systems has become a major concern in software industry because of their sheer size and

complexity. This problem needs to be tackled since the systems in question are of considerable worth to their owners and maintainers.

In this article, we present the concept of a polymetric view, a lightweight software visualization technique enriched with software

metrics information. Polymetric views help to understand the structure and detect problems of a software system in the initial phases of

a reverse engineering process. We discuss the benefits and limits of several predefined polymetric views we have implemented in our

tool CodeCrawler. Moreover, based on clusters of different polymetric views, we have developed a methodology which supports and

guides a software engineer in the first phases of a reverse engineering of a large software system. We have refined this methodology

by repeatedly applying it on industrial systems and illustrate it by applying a selection of polymetric views to a case study.

Index Terms—Reverse engineering, object-oriented programming, software visualization, software metrics.
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1 INTRODUCTION

REVERSE engineering large software systems is difficult

due to their sheer size and complexity. However, it is a
prerequisite for their maintenance, reengineering, and

evolution. Chikofsky [1] defines reverse engineering as

“the process of analyzing a subject system to identify the

system’s components and their relationships, and to create

representations of the system in another form or at a higher

level of abstraction.” Maintaining and evolving existing

software systems is difficult for several reasons, among

which are the accelerating turnover of developers, the
increasing size and complexity of software systems, and the

constantly changing requirements of software systems.

These legacy systems are large, mature, and complex

software systems, which are the result of a long-term

investment effort of a company and must therefore be

maintained and evolved because new requirements must be

fulfilled [2], [3] and because the company’s investment has

to pay back. Parnas [4] assessed that most legacy systems
suffer from several typical problems, including original

developers may be no longer available, outdated develop-

ment methods and/or programming languages, and out-

dated, incomplete, or missing documentation.
The maintenance and evolution of such systems is

therefore, apart from being technically difficult, prohibi-

tively expensive: Sommerville [5] and Davis [6] estimate

that the cost of software maintenance accounts for 50 to

75 percent of the overall cost of a software system.

Rewriting these systems from scratch is also problematic

because this would take vast amounts of time, money, and

human resources.
Since legacy systems tend to be large-hundreds of

thousands of lines of poorly documented code are no

exception-there is a definite need for effective approaches

which help in program understanding and problem

detection. We focus on object-oriented legacy systems,

mainly because most current systems are written using this

paradigm and because it is not age that turns a piece of

software into a legacy system, but the rate at which it has

been developed and adapted [7]. Moreover, since the object-

oriented paradigm does not support a sequential reading

order (i.e., the domain model is distributed across classes,

hierarchies, and subsystems), the reverse engineer needs to

know where to look into the system to understand its

structure. We are targeting the first phase (e.g., the first

week) of a reverse engineering process because in this

phase a reverse engineer has to form an initial mental

picture of the system [8]. Our approach helps the reverse

engineer get a mental picture by viewing the system by

means of polymetric views, lightweight software visualiza-

tions enriched with software metrics.
We use software visualization in this context because

visual displays allow the human brain to study multiple

aspects of complex problems-like reverse engineering-in

parallel [9]. Ware states that “Visualization provides an

ability to comprehend huge amounts of data” [10]. How-

ever, software visualizations are often too simplistic and

lack visual cues for the viewer to correctly interpret them

[11]. In other cases, the obtained visualizations are still too

complex to be of any real value to the viewer.
We use software metrics because they can be used to

assess the quality and complexity of a system and because

they are known to scale up well. Furthermore, metrics are a

good means to control the quality and the state of a software

system during the development process [12]. However,

metrics often come in huge tables that are hard to interpret
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and this is even more difficult when metrics are combined
to generate yet other metrics.

We propose a lightweight approach based on the

combination of software visualization and software metrics, by

enriching simple visualizations with metrics information.

We refer to these lightweight combinations as polymetric

views. Depending on the applied polymetric view, the

viewer can visually (e.g., by looking and interacting with

the visualization) extract different kinds of information

about the visualized system, i.e., information about the

structure of hierarchies, about the size of classes and

methods, about the use of attributes, etc. The viewer can

then verify his findings by inspecting the corresponding

source code fragments (according to the program cognition

model vocabulary proposed by Littman et al. [13], we

support an approach of understanding that is opportunistic

in the sense that it is not based on a systematic line-by-line

understanding but as needed). Note that opportunistic code

reading is also useful in a forward engineering context, e.g.,

in such a context our approach helps in code browsing, but

this goes beyond the scope of this paper and is part of our

current research. In this article, we describe several

polymetric views in detail and point out the idea, the

strengths, and the weaknesses of each view.
To guide a reverse engineer in the beginning phases (e.g.,

the first one or two weeks, depending on the size of the
system) of a reverse engineering process we have devel-
oped a methodology based on the polymetric views, which
we have extended and refined by applying it repeatedly on
industrial case studies.

2 OBJECT-ORIENTED REVERSE ENGINEERING

Chikofsky states that “The primary purpose of reverse

engineering a software system is to increase the overall
comprehensibility of the system for both maintenance and new
development” [1]. Therefore, before starting a reverse
engineering process, it is essential to decide which primary
goals to pursuit and which ones are only of secondary
importance. In the context of object-oriented legacy systems,
we settled on the following goals for getting a first
impression and a mental model of a system:

. Assess the overall quality of the system and gain an
overview of the system in terms of size, complexity,
and structure.

. Locate and understand the most important classes
and inheritance hierarchies, i.e., find the classes
and hierarchies that represent a core part of the
system’s domain and understand their structure in
terms of implementation and purpose in terms of
functionality.

. Identify exceptional classes in terms of size and/or
complexity compared to all classes in the subject
system. These may be candidates for a further
inspection or for the application of refactorings.

. Identify the possible presence of design patterns or
occasions where design patterns could be intro-
duced to ameliorate the system’s structure.

The result of a reverse engineering process is therefore
not only a list of problematic classes or subsystems, even if
the identification of possible design defects is a valuable
piece of information. Indeed, we are looking for the bad use
as well as the good use of object-oriented design, e.g.,
obtaining information about how a system has been
implemented is important, independently from the quality
of its implementation. Moreover, in a reengineering context,
the fact that a class may have a design problem does not
necessarily imply that the class should be modified or
completely redesigned, as this would cost time and money.
Indeed, if a badly designed class (e.g., too many methods,
inconsistent use of accessors, dead code, etc.) or subsystem
accomplishes the work it has been assigned to without
having a negative impact on the overall working of the
system, there is no point in changing it. However, being
aware of such information is still valuable for getting a
better mental model of the system.

We developed our approach in the context of the
European Esprit project FAMOOS, whose main results
have been summarized in a reengineering handbook [14]
which was the basis for a book on object-oriented
reengineering patterns [7]. The goal of the project was to
reengineer several large industrial object-oriented software
systems. The industrial setting of the FAMOOS project
introduced the following constraints:

Simplicity. In software industry, reengineers face many
problems, i.e., short time constraints, little tool support, and
limited manpower. It is for this reason that we wanted our
results to be reproduceable by software engineers at their
workplace, without having to rely on complex or expensive
tools. Moreover, by choosing a lightweight approach, we
were able to get results quickly, in order to evaluate
whether certain ideas were viable or not.

Scalability. We wanted to make sure that our approach
could handle the size of industrial systems, which can be of
several millions of lines of code. The scalability is, on one
hand, guaranteed by the use of software metrics since
metrics can be computed independently from the size of the
system. On the other hand, our approach allowed us to
generate, test, and accept/reject new ideas in short iteration
cycles. After starting the development of our tools, we
constantly tested them in industrial settings to see whether
they were actually viable and could indeed scale up.

Language Independence. In order to handle software
systems written in different languages, we developed
FAMIX [15], a language independent metamodel. Our
implementation in Smalltalk of the FAMIX metamodel,
called the Moose Reengineering Environment [16], is
presented in detail in Section 6.

3 THE APPROACH

3.1 The Principle

Our visualization tool CodeCrawler uses two-dimensional
displays to visualize object-oriented software [17]. The
nodes represent software entities or abstractions of them,
while the edges represent relationships between those
entities. This is a widely used practice in information
visualization and software visualization tools. Ware claims
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that “other possible graphical notations for showing

connectivity would be far less effective” [10]. We enrich

this basic visualization method by rendering up to five

metric measurements on a single node simultaneously, as

we see in Fig.1a. A list of some of the metrics we can enrich

our visualizations with is given in Table 1.
Node Size. The width and the height of a node can each

render one metric measurement. The bigger these measure-

ments are, the bigger the node is in one or both of the

dimensions.
Node Color. The color interval between white and black

can be used to render another metric measurement. The

convention is that the higher the metric value is, the darker

the node is. Thus, light gray represents a smaller metric

measurement than dark gray.
Node Position. The X and Y coordinates of the position

of the node can also reflect two metrics measurements. This

requires the presence of an absolute origin within a fixed

coordinate system. Not all layouts can exploit position

metrics, as some of them implicitly dictate the position of

the nodes (e.g., a tree layout).
In measurement theory, this procedure of rendering

metrics on two-dimensional nodes is called measurement

mapping and fulfills the representation condition, which
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Fig. 1. (a) Up to five metrics can be visualized on one node. The list of possible metrics is given in Table 1. (b) The SYSTEM COMPLEXITY view. This

visualization of classes uses a tree layout. The edges represent inheritance relationships. The metrics we use to enrich the view are NOA (the

number of attributes of a class) for the width and NOM (the number of methods of a class) for the height. The color shade represents WLOC (the

number of lines of code of a class).

TABLE 1
A List of the Software Metrics Used in This Paper



asserts that “a measurement mapping M must map entities
into numbers and empirical relations into numerical
relations in such a way that the empirical relations preserve
and are preserved by the numerical relations” [12]. In other
words, if a number a is bigger than a number b, the
graphical representation of a and b must preserve this fact.

3.2 Software Metrics

We make extensive use of object-oriented software metrics.
In the wide array of possible metrics [18], [19], [12], we
selected design metrics, i.e., metrics that can be extracted
from the source code entities themselves. These metrics are
usually used to assess the size and, in some cases, the
quality and complexity of software. The metrics we use are
termed direct measurement metrics because their computa-
tion involves no other attributes or entities [12]. We don’t
make use of indirect measurement where metrics are
combined to generate new ones because the measurement
mapping presented in the previous section works best with
direct measurements. Examples of indirect metrics include
programmer productivity, defect detection density, or module
defect density, as well as more code-oriented ones like CBO
and RFC, presented in [20]. We chose to use metrics that
can be extracted from source code entities and which have
a simple and clear definition. As such, we don’t use
composite metrics, which raise the issue of dimensional
consistency [19].

In Table 1, we list all metrics mentioned in this article.

3.3 The Actual Visualization: A Polymetric View

An actual visualization of software in CodeCrawler
depends on three ingredients: a layout, a set of metrics, and
a set of entities.

1. A layout. A layout takes into account the choice of
the displayed entities and their relationships and
issues like whether the complete display should fit
on the screen, whether space should be minimized,
whether nodes should be sorted, etc. Some layouts
make sense for all purposes, while others are better
suited for special cases (e.g., a tree layout is better
suited for the display of an inheritance hierarchy
than a circle layout).

As part of our lightweight approach, we chose to
implement only simple layouts, although more
advanced and powerful layouting techniques [21]
are also interesting in this context. We use the
following layouts, described in detail in the Appen-
dix of this article: tree, scatterplot, checker, and
stapled.

2. The metrics. We incorporate up to five metrics
selected from Table 1 into a view, as we have seen in
Section 3.1. The choice of the metrics heavily
influences the resulting visualization, as well as its
interpretation.

3. The entities. Certain views are better suited for
small parts of the system, while others can handle a
complete large system. The reverse engineer must
choose which parts or entities of the subject system
he wants to visualize. These choices are part of the
methodology discussed in depth in Section 4.

Example. Fig. 1b shows a tree layout of nodes enriched
with metrics information. The nodes represent classes,
while the edges represent the inheritance relationships
between them. The size of the nodes reflects the number of
attributes (width) and the number of methods (height) of
the classes, while the color tone represents the number of
lines of code of the classes. The position of the nodes does
not reflect metric measurements in this case, as the nodes’
position is implicitly given by the tree layout. In the figure,
we see that the visualized system is composed of two large
inheritance hierarchies (one of which is quite deep) and
some standalone classes.

The combination of the tree layout, the metrics men-
tioned above, and the selection of classes as nodes and
inheritance relationships as edges yields a polymetric view
that we call SYSTEM COMPLEXITY view, whose properties
are described in more detail in Section 5.1.

Interpretation of a View. The polymetric views are
revealers of symptoms which reside at a purely visual level,
i.e., they can be small dark nodes or large nodes, or even
nodes at a certain position. These symptoms provide
information about the subject system and support the
decision process of which next view should be applied on
which part of the system by the reverse engineer. Not all
views lead to other views, but they may also result in
specific reengineering actions that represent the next logical
step after the detection of defects. For example, detecting a
“god class,” defined by Riel [22] as a class that has grown
over the years ending up with too many responsibilities,
may lead to a necessary splitting of the class. For example,
long methods can be analyzed to see if they contain
duplicated code or if they can be split up into smaller,
more reusable methods [23], etc. The interpretation of the
views is based on heuristics which mainly come from the
experience of the authors, but have also been documented
by Riel [22], Fowler [24], Beck [25], and others.

Useful Views. Note that, since our approach allows one
to combine a subset of the metrics presented in Table 1 with
a layout algorithm on any kind of software artifacts, there is
a great number of possible views. However, many of those
are similar to others (e.g., by exchanging the width and
height metrics) and many others do not help the reverse
engineering process. We identified a number of useful
views, i.e., polymetric views that are useful for the reverse
engineering process, and present a subset of them in this
article.

4 A LIGHTWEIGHT VISUAL REVERSE ENGINEERING

METHODOLOGY

We have already presented a first version of our methodol-
ogy [26] and now present an extended and elaborated
version. Ideally, such a methodology defines which views
to apply, what the paths are between the different views,
and on what parts of the system the next view should be
applied. There are many challenges to the elaboration of
such a methodology:

. There is no unique or ideal path through the views
since different views can be applied at the same
stage depending on the current context.
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. The decision to use a certain view most of the time
depends on some interactions with the currently
displayed view. Furthermore, the views can be
applied to different entities implying some naviga-
tion facilities between the different views.

. A view displays a system from a certain perspective
that emphasizes a particular aspect of the system.
However, the view has to be analyzed and the code
understood to determine if the details revealed by
the view are interesting for further investigation.

. The views are heavily customizable. For instance,
exchanging two metrics is easy, yet it may yield
completely different views. The reverse engineer
must steer this process in order to apply and
customize the useful views.

By loosely grouping the polymetric views into clusters

and by indicating alternative views and navigation possi-

bilities between the views we think that these challenges

can be overcome. Furthermore, although the views are

customizable, our tool offers a set of predefined views,

some of which are presented in this paper, that can be

applied directly and without requiring the user to define

them himself, unless he wishes to do so. We identified the

following clusters:
First Contact. The first thing to do with a subject system

is to gain a first overview. We would like to know how big

and complex the system is and in which way it is

structured. The views in this cluster provide answers to

the following questions: How big is the system and how is it

composed: only of standalone classes, or of some (maybe

large/deep) inheritance hierarchies. Is the system com-

posed of many small classes or are there some really big

ones? Where in the system do these large classes reside?

This cluster contains the views SYSTEM HOTSPOTS and

SYSTEM COMPLEXITY.
Inheritance Assessment. Inheritance is a key aspect of

object-oriented programming languages and, thus, repre-

sents an important perspective from which to understand

applications. Inheritance can be used in different ways, for

example, as pure addition of functionality in the subclasses

or as an extension of the functionality provided by the

superclasses. The views in this cluster help in the analysis of

inheritance and provide answers to the following questions:

How are inheritance hierarchies structured and how do they

make use of inheritance? Are subclasses merely adding new

functionality of redefining the functionality defined in the

superclasses? This cluster contains the views INHERITANCE

CLASSIFICATION and INHERITANCE CARRIER.
Candidate Detection. One of the primary goals of a

reverse engineer is to detect candidates which may be

either cases where further investigation is necessary or

where code refactorings are needed. The views in this

cluster help in this problem detection process and provide

answers to the following questions: Where are the large

(small) classes or methods? Are there methods which

contain dead code or attributes which are never used?

This cluster contains the views DATA STORAGE CLASS

DETECTION, METHOD STRUCTURE CORRELATION and

DIRECT ATTRIBUTE ACCESS.

Class Internal. Understanding classes is a key activity in
object-oriented programming since classes represent the
primary abstractions from which applications are built. The
main problem of this task is to quickly grasp the purpose of
a class and its inner structure. We have performed extensive
research on this subject [27], but, to keep this paper within a
certain scope, we do not present the views contained in this
cluster, especially the CLASS BLUEPRINT view. However,
note that several of the views belonging to the other clusters
can easily be applied on single classes as well, such as those
from the candidate detection cluster.

5 A REVERSE ENGINEERING SCENARIO

Reporting about a case study is quite difficult without
sacrificing the exploratory nature of our approach. Indeed,
the idea is that different views provide different yet
complementary perspectives on the software. Conse-
quently, a concrete reverse engineering strategy should be
to apply the views in some specific order, although the
exact order would vary depending on the kind of system at
hand and the kind of questions driving the reverse
engineering effort. Therefore, readers should read this case
study report as one possible use case, keeping in mind that
reverse engineers must always customize their approach to
a particular reverse engineering project.

Some Facts about the Case Study. The system we report
on is called Duploc (version 2.16a), which is a tool for the
detection of duplicated code [28]. We have already done a
preliminary case study on an older version from 1999 of
Duploc [29] and are curious to see how Duploc has evolved
in the meantime. Duploc has become a mature application,
consisting of more than 300 classes. Duploc detects code
duplication by means of a visualization of each line as a dot
in a two-dimensional matrix.

5.1 Reverse Engineering a System

Reverse engineering a system is a nonlinear procedure and
is difficult to present as a sequential text. For reasons of
simplicity, we discuss the views of each of the clusters,
show their application on the case study, and put them into
relation according to our methodology presented in
Section 4, as well as depending on the situations encoun-
tered during the reverse engineering of Duploc.

5.1.1 System Hotspots View

Description: Layout: Checker. Target: Classes. Scope: Full
system. Metrics: Width: NOA. Height: NOM. Color:
WLOC. Sort: Width. Example: Fig. 2a. This simple view
helps to identify large and small classes and scales up to
very large systems. It relates the number of methods with
the number of attributes of a class. The nodes are sorted
according to the former, which makes the identification of
outliers easy.

Symptoms: 1) Large nodes represent voluminous classes
that may be further investigated. 2) Tall and narrow nodes
represent classes which define many methods and few or
no attributes. 3) Wide nodes are classes with many
attributes. When such nodes show a 1:2 width-height ratio,
it may represent a class whose main purpose is to be a data
structure implementing mostly accessor methods. Further
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evidence can be gained from the color, which reflects the
number of lines of code of a class. Should a tall class have a
light color it means that the class contains mostly short
methods.

Variations: 1) If we use the lines of code (WLOC) or the
number of methods (NOM), as we see in Fig. 2a for
rendering both the width and height of the nodes, we obtain
a slightly different view which helps to assess the whole
system in terms of raw measure: Are there any big classes
and how big are they actually? 2) In the case of Smalltalk
classes, we can color metaclasses differently and check how
they distribute themselves across the display. Should there
now be large, colored nodes at the bottom of the display, it
may be a sign that these metaclasses have too many
responsibilities or that they function facades or as bridges to
other classes [30].

Scenario: In Fig. 2a, we see all the Duploc classes. The
classes in the bottom row contain more than 100 methods
and should be further investigated. They are DuplocPresen-
tationModelController (107 methods), RawMatrix (107),
DuplocSmalltalkRepository (116), and DuplocApplication (117).
We have colored the nodes representing metaclasses with
gray. Note the bottom-most gray node which is the

metaclass DuplocGlobals with 59 methods. This class, as

suggested as well by the name, is a holder for global values.

However, instead of using the metaclass, one suggestion to

the developer is to apply the singleton design pattern

instead [30].

5.1.2 System Complexity View

Description: Layout: Tree. Target: Classes. Scope: Full

system. Metrics: Width: NOA. Height: NOM. Color:

WLOC. Sort:-. Example: Fig. 2c.
This view is based on the inheritance hierarchies of a

subject system and gives clues on its complexity and

structure. For very large Systems, it is advisable to apply

this view first on subsystems, as it takes quite a lot of screen

space. The goal of this view is to classify inheritance

hierarchies in terms of the functionality they represent in a

subject system. If we want to understand the inner working

at a technical level of inheritance hierarchies, we apply the

views of the inheritance assessment cluster.
Symptoms:

1. Tall and narrow nodes represent classes with few
attributes and many methods. When such nodes
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Fig. 2. (a) A SYSTEM HOTSPOTS view (Variation 1 and 2) of Duploc. The nodes represent all the classes, while the size of the nodes represent the
number of methods they define. They gray nodes represent metaclasses. (b) An INHERITANCE CLASSIFICATION view of the Model hierarchy in
Duploc. The width and height of the class nodes represents the number of added methods and the number of overridden methods, while the color
represents the number of extended methods. (c) A SYSTEM COMPLEXITY view on Duploc. The nodes represent the classes, while the edges
represent inheritance relationships. As metrics we use the number of attributes (NOA) for the width, the number of methods (NOM) for the height,
and the number of lines of code (WLOC) for the color. (d) An INHERITANCE CARRIER view of one hierarchy in Duploc. The width and the color of the
class nodes represents the number of descendants, while the height represents the number of methods.



appear within a hierarchy, applying the INHERI-

TANCE CLASSIFICATION view or the INHERITANCE

CARRIER view helps to qualify the semantics of the
inheritance relationships in which the classes are
involved.

2. Deep or large hierarchies are definitively subsystems
on which the views of the inheritance assessment
cluster help to refine understanding.

3. Large, standalone nodes represent classes with many
attributes and methods without subclasses. It may be
worthwhile to have a look at the internal structure of
the class to learn if the class is well structured or if it
could be decomposed or reorganized.

4. Flat, light nodes with a width to height ration of 1:2
often represent data storage classes that define
several attributes and for each attribute implement
two accessor methods. The light color often denotes
that a class has very short methods as is the case for
accessors.

Scenario: Before showing this view, we perform a

manual preprocessing which consists in removing the class

Object, which is the root class of the Smalltalk language, e.g.,

every class inherits from it. We do this in order to focus on

the use of inheritance within Duploc: Since many classes

inherit directly from Object, this view would be distorted if

we included it in our view. We see the resulting SYSTEM

COMPLEXITY view in Fig. 2c. We can see now that Duploc is

in fact mainly composed of classes which are not organized

in inheritance hierarchies. Indeed, there are some very large

classes which do not have subclasses. The largest inheri-

tance hierarchies are five and six levels deep. Noteworthy

hierarchies seem to be the ones with the following root

classes: AbstractPresentationModelControllerState, AbstractPre-

sentationModelViewState, DuplocSourceLocation. The first one,

with the root class AbstractPresentationModelControllerState

with 31 descendants, seems to be the application of the state

design pattern [30] for the controller part of an MVC

pattern. Such a complex hierarchy within Duploc is

necessary since Duploc does not make any use of advanced

graphical frameworks, but uses the basic standard Visual-

Works GUI framework. Following this track of investiga-

tion, we look for the other signs of the MVC pattern and

find a hierarchy with AbstractPresentationModelViewState as

root class with 12 descendants, which seems to constitute

the view part of the MVC pattern.

5.1.3 Inheritance Classification View

Description: Layout: Tree. Target: Classes. Scope: Subsys-
tem. Metrics: Width: NMA. Height: NMO. Color: NME.
Sort:-. Example: Fig. 2b.

This view qualifies the inheritance relationships by
displaying the amount of added methods relative to the
number of overridden or extended methods. By extended
methods, we mean methods which contain a super call to a
method with the same signature defined in one of the
superclasses.

Symptoms: 1) Flat, light nodes represent classes where a
lot of methods have been added but where few methods
have been overridden or extended. In this case, the semantic

of the inheritance relationship is an addition of functionality
by the subclasses. 2) Tall, possibly darker nodes represent
classes where a lot of methods have been overridden and/
or extended. They may represent classes that have
specialized hook methods [30]. If the nodes are dark, it
means that many methods have been extended, which hints
at a higher degree of reuse of functionality.

Scenario: We have selected only one hierarchy, the one

indicated as the Model hierarchy in Fig. 2c, to demonstrate

the application of this view. We see in Fig. 2b that the Model

hierarchy is mainly composed of flat, lightly colored nodes:

These classes mainly add functionality (denoted by their

width) without really overriding or extending functionality

defined in the superclasses. We also see there are some

exceptions: The subclasses of the two widest class nodes

(RawMatrix and AbstractRawSubMatrix) with 96 and 72

added methods define several methods which are then

overridden or extended by their subclasses. For example,

the two subclasses (SymmetricRawMatrix and Asymmetri-

cRawMatrix) of RawMatrix heavily override functionality,

as is indicated by their tall, narrow shape: Both override

33 methods and add only four, respectively nine, methods.

5.1.4 Inheritance Carrier View

Description: Layout: Tree. Target: Classes. Scope: Subsys-
tem. Metrics: Width: WNOC. Height: NOM. Color: WNOC.
Sort:-. Example: Fig. 2d.

This view helps to detect classes with a certain impact on
their subclasses in terms of functionality, i.e., it helps to see
which classes transmit the most functionality to their
subclasses.

Symptoms: 1) Tall, dark nodes represent classes that
define a lot of behavior and have many descendants.
Therefore these classes have a certain importance for the
(sub)system in question. 2) Flat, light nodes represent
classes with little behavior and few descendants. 3) Flat,
dark nodes represent classes with little behavior and many
descendants. They can be the ideal place to factor out code
from to the subclasses.

Scenario: Fig. 2d shows this view for the Model
hierarchy. It shows that the classes which are carrying the
weight of the implementation in this hierarchy are first of
all the classes AbstractPresentationModelControllerState and
PMCS, where the latter is the sole subclass of the former.
These classes are emphasized in this view because of their
darker color.

5.1.5 Data Storage Class Detection View

Description: Layout: Stapled. Target: Classes. Scope: Sub-
system. Metrics: Width: NOM. Height: WLOC. Color:
NOM. Sort:-. Example: Fig. 3c.

This view relates the number of methods (NOM) with
the lines of code (WLOC) of classes and interprets this
information in the context of a subsystem or small system.
Ideally, this view should return a staircase pattern from left
to right since the nodes are sorted according to the first
metric and the two metrics are related. Note that this view
works in any setting, i.e., since it puts two values in relation
it doesn’t matter how big the actual measurements are.
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Symptoms: 1) The staircase effect is broken by nodes
which are too tall. These represent classes which have long

methods compared to the classes which comply with the
staircase pattern. 2) The staircase pattern is broken by nodes
which are too short. These classes, given a certain number

of methods, do not have the expected length in terms of
lines of code. Such classes are often data storage classes, i.e.,
classes which have short, simple methods, possibly only

accessor methods. Data storage classes may point to sets of
coupled classes being brittle to changes.

Variations: 1) To enhance the detection of data storage

classes we use the number of attributes (NOA) as color
metric because data storage classes often have many
attributes.

Scenario: We see in Fig. 3c that the fourth class from the

right, DuplocPresentationModelController is very short
(265 lines of code) compared to the great number of
methods (107) indicated by the position on the right. Upon

closer inspection, we see that the class contains dozens of
one-line methods which return constant values. We also see
the inverse case for the first tall class on the left named

ExternalSortComparer which contains 12 methods for a total
length of 330 lines. This class contains methods which can
be refactored by splitting them up in smaller, more reusable

pieces.

5.1.6 Method Structure Correlation View

Description: Layout: Scatterplot. Target: Methods. Scope:

Full system. Metrics: Position (X): LOC. Position (Y): NOS.

Sort:-. Example: Fig. 3b.
This very scalable view shows all methods using a

scatterplot layout with the lines of code (LOC) and the

number of statements (NOS) as position metrics. As the two

metrics are related (each line may contain statements) we

end up with a display of all methods, many of which align

themselves along a certain correlation axis.
Symptoms:

1. Nodes to the right of the display represent long
methods and should be further investigated as
candidates for split method refactorings [24], [25].

2. Nodes to the very left and top of the display
represent empty methods.

3. Nodes to the top of the display, but not necessarily
to the left, represent methods containing commented
lines or possibly dead code.

4. Nodes to the left andmore to the bottomof the display
represent methods which are probably hard to read,
as they contain several statements on each line.

In this case, one should check whether there are formatting

rules within the application which are being violated.

LANZA AND DUCASSE: POLYMETRIC VIEWS—A LIGHTWEIGHT VISUAL APPROACH TO REVERSE ENGINEERING 789

Fig. 3. (a) A DIRECT ATTRIBUTE ACCESS view (Variation 3) of Duploc. The width of each attribute node represents the number of direct local
accesses from within its defining class (NLA). The height of each node represents the number of accesses from outside of its class (NGA), while the
color represents the number of total direct accesses. The nodes are sorted according to the color metrics. (b) A METHOD STRUCTURE CORRELATION

view of Duploc. As horizontal position metric we use the lines of code, while for vertical metrics we use the number of statements. (c) A DATA

STORAGE CLASS DETECTION view on the largest classes in terms of number of methods of Duploc. The color and height metrics represents the
number of lines of code of each class, while the width represents the number of methods. The nodes are sorted according to their width.



Variations: 1) This view can be enriched using size
metrics as well. One useful variation is using the number of
parameters (NOP) for the size of the nodes, which reveals
not only long methods but methods with many input
parameters as well.

Scenario: We can see in Fig. 3b how well this view scales
up: The figure shows nearly 5,000 of Duploc’s methods.
Several method nodes seem to be good candidates for
further investigations. All the methods longer than a certain
number of lines (for example, 30 or 50, depending on the
average length of methods in the subject system) should be
inspected. Note in this regard that the average length of
Smalltalk methods is around seven lines [31]. We can also
see that there are many methods at the top of the display
which therefore do not contain many statements. Upon
closer inspection, we can see this is partly due to code
which is commented out (in some cases dead code) and
partly due to very long comments written by the developer
to explain what the methods are actually doing. Another
insight which can come from this view is a general
assessment of the system. We have seen that the methods
tend to align themselves along a certain correlation axis.
Depending on the age of the system, the axis changes its
angle: Methods are written and corrected all the time and
slowly get messy with many statements on few lines. In this
regard, Duploc can still be considered a young system.

5.1.7 Direct Attribute Access View

Description: Layout: Checker. Target: Attributes. Scope: Full
system. Metrics: Width: NAA. Height: NAA. Color: NAA.
Sort:-. Example: Fig. 3a.

This view uses the number of direct accesses (NAA) for
the width, height, and color of each attribute node, and
sorts the nodes according to this metric.

Symptoms: 1) Small nodes at the top of the display
represent attributes which are never accessed and may
point to dead code. 2) Large, dark nodes at the bottom point
to attributes which heavily directly accessed, which may
lead to problems, in case the internal implementation
changes. For such nodes, one should also check whether
accessor methods have been defined and, if yes, why they
are not always being used.

Variations: 1) Instead of using as size and color metric the
number of direct global accesses, we use either the number
of accesses via accessor methods to reveal how heavily
these accessor methods are actually used. 2) We use the
number of direct accesses by subclasses as size and color
metric, in order to reveal coupling aspects of classes within
inheritance hierarchies. 3) We use the number of local
accesses (NLA) (from within the class where the attribute
resides) for the width and the number of global accesses
(NGA) (from outside of the class) for the height. Normally,
the attributes rendered like this should be as flat as possible
and, in cases where this does not apply, a deeper inspection
could be useful since tall, narrow nodes represent attributes
which are heavily accessed from outside of its defining class
by means of direct accesses.

Scenario: In Fig. 3a, we use a slight variation of the
regular view definition and render for the width and the
height the number of local, respectively, the number of
nonlocal accesses, while the color renders the total number

of direct accesses. We see that Duploc uses a considerable
number of attributes. The top row contains 11 attributes
which are never accessed and can therefore be removed.
The bottom row contains the most heavily accessed
attributes. For example, the attribute bvcm belonging to
class BinValueColorerInterface is directly accessed 77 times.
Upon closer inspection, we see that, in fact, the class defines
accessor methods, but they are not consistently used, which
may be risky [31]. Note also, the tall, narrow attribute node
at the bottom of this view. This attribute is heavily accessed
directly from outside of its containing class. In such a case,
we suggest to define accessor methods and invoke them
instead of directly accessing the attribute.

5.2 Evaluation

Case study. Our approach provided us with an initial
understanding of the case study and helps us to identify
some of the key classes without having to focus on the
details. The developer of Duploc confirmed several of our
findings and was surprised that we obtained our results in
less than two days. Indeed, one of the major problems with
large systems is to get an overview and some initial
understanding at the beginning without getting lost in
their intrinsic complexity [7]. The methodology based on
clusters of views helps to stay focused at the different levels
of understanding we want to gain. We cannot present all
the results we obtained during this case study, as this
would go beyond the scope of this paper. We rather limit
ourselves to draw some specific conclusions on the major
findings obtained during this case study and some general
conclusions on other case studies we have performed.

First Contact Views. The views in this cluster help us to
get a first feeling for the size and structure of the system
and in more detail to see how a system’s major hierarchies
are composed and where larger classes are located. In the
present case, we have seen that Duploc is composed of
several standalone classes and that a major part of Duploc is
dedicated to the management of the graphical user inter-
face. A first list of prominent classes and hierarchies of the
system is useful to get an orientation. Especially on very
large case studies, this cluster’s views help to obtain results
quickly.

Inheritance Assessment Views. The views in this cluster
are useful for the easy understanding of the complex
mechanisms related to inheritance. We can classify inheri-
tance relationships and detect important classes in large
hierarchies. Especially for larger hierarchies, which how-
ever this case study did not contain, this cluster’s views
reduce the time to understand complete inheritance hier-
archies. In one special case, we reverse engineered a system
which contained very large inheritance hierarchies with
several hundreds of classes and where, in one case, the root
class had 97 direct subclasses. The views obtained after
visualizing this hierarchy led us to coin the term flying
saucer hierarchy because of its very flat shape.

Candidate Detection Views. The views in this cluster
help us to identify many candidates for closer examination.
The problem with those candidates is that their number can
be large. The reverse engineer can easily produce long lists
of suspicious code fragments, classes, methods, etc., but the
usefulness of such an approach is doubtful: In the end, it is
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the software company that decides on which parts of their
system they want to spend time and money for reengineer-
ing. In the case of Duploc, together with its developer, we
inspected several candidates and he confirmed our find-
ings, but it is difficult to present the results in detail because
this would go beyond the scope of this article.

Industrial Experiences. We applied our approach on
several large industrial applications ranging from a system
of approximately 1.2 Million lines in C++ to a Smalltalk
framework of approximately 3,000 classes (600 kLOC).
During our experiments, we were able to quickly gain an
overall understanding of the analyzed applications, identify
problems, and point to classes or subsystems for further
investigation. Moreover, we learned that the approach is
preferably applied during the first contact with a software
system and provides maximum benefit during the first one
or two weeks of the reverse engineering process. However,
due to nondisclosure agreements with the industrial
partners, we cannot deliver a detailed report on those
experiences.

We applied and refined our reverse engineering meth-
odology by using our tool on industrial applications in an
explorative way. The common point about these experi-
ences was that the subject systems were of considerable size
and that there were narrow time constraints (maximum
four days). This led us to mainly get an understanding of
the system’s overall structure (subsystems, important
hierarchies, and their purpose) and produce overviews.
We were also able to point out potential design problems
(overly large classes, unused classes, dead code, overlong
methods, unused attributes) and, on medium-sized case
studies, we even had the time to propose possible redesigns
of the system (for example, in one case, we suggested to
inverse the order of the classes in a hierarchy and increase
its stability by introducing the template method design
pattern, which resulted in a considerable reduction of
complexity of the hierarchy).

Taking the time constraints into account (none of the case
studies lasted more than a few days), we obtained very
satisfying results. The—often initially sceptical—developers
were surprised that we had not only gained an overview
over such large systems, but had also uncovered many
design flaws in such a short time. Even though they were
aware of at least half of the problems we found, many
developers saw the complete software system they were
working on for the first time. The typical result of each case
study was a report containing a presentation of polymetric
views of the system and a list of possible problems and
errors, for example, suspicious classes, overlong methods,
unused attributes, etc. The developers liked our overviews
(for example, the SYSTEM COMPLEXITY view) and even
used them for documentation purposes. The list of
problems and design flaws we delivered was also well
accepted and, although during the final discussion with the
developers we saw that they were keen on examining them,
we do not know to which extent this has been done since
the software companies in question were very protective
regarding such information. We consider this protective-
ness as harmful, as it would allow us to further improve our
approach.

Moreover, our goal is to provide expressive views on a
system, which can easily be complemented with code
browsing. The time it takes the reverse engineer to go from
a visualization to the source code level, must be kept as
short as possible. In this context, we speak about opportu-
nistic code reading, e.g., the polymetric views do not replace
code reading, they support it and point a reverse engineer
to the spots where code reading is needed. Combining the
polymetric views with manual code browsing thus proved
to be a good way to get the results [32]. The obvious
conclusion is that tools are necessary but not sufficient on
their own.

6 IMPLEMENTATION

6.1 Moose, a Language Independent Reengineering
Environment

Moose [16] is a language independent reengineering
environment written in Smalltalk. It is based on the FAMIX
metamodel [15], which provides for a language indepen-
dent representation of object-oriented source code and
contains the required information for the reengineering and
reverse engineering tasks performed by our tools. It is
language independent because we need to work with legacy
systems written in different implementation languages. It is
extensible since we cannot know in advance all information
that is needed in future tools. Since for some reengineering
problems (e.g., refactorings [33]) the tools might need for
language specific information, we allow for language plug-
ins that extend the model with language specific features.
Next to that, we also allow the tool plug-ins to extend the
model with tool specific information.

The core FAMIX metamodel comprises the main object-
oriented concepts—Class, Method, Attribute and Inher-
itance—plus the necessary associations between them—
Invocation and Access. Note that the complete FAMIX
metamodel includes many more aspects of the object-
oriented paradigm and contains source code entities like
formal parameters, local variables, functions, etc. We
opted against the use of UML because it is not sufficient
for modeling source code for the purpose of reengineering
since it is specifically targeted towards OOAD and not at
representing source code as such [34].

6.2 CodeCrawler

CodeCrawler uses Moose for representing software and
uses the HotDraw framework [35] for the visualization part.
In the remainder of this section, we discuss some
implementation issues and design decisions.

Extensibility. One lesson learned during all case studies
we made is that none of them is typical or normal. Every
case study posed certain problems: size, use of atypical
language constructs, use of domain specific aspects, to list
just a few. A reverse engineering tool cannot be prepared
for every situation which may arise and must therefore be
easily extended and adapted to the current context.
CodeCrawler provides for an easy way to integrate new
kinds of entities and relationships. In the occasion of a
research project dealing with a legacy system written in
Cobol [36], the changes needed to enable visualizations of
Cobol code were performed in a few hours. Thus, it doesn’t
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necessarily need Moose entities, but can handle and
visualize any kind of entity. The most recent examples
include visualizations from the domain of concept analysis
and visualizations of Prolog statements. CodeCrawler also
exploits the properties of the entities within a Moose model.
These properties, implemented as a dictionary, are freely
and easily extensible and are heavily used, for example, to
add new metric measurements or to add new annotations,
for example, package affiliation, comments, etc. In this
context, we treat Moose models not as a read-only facility,
but enrich it during the reverse engineering process with
additional information which can in turn be used by
CodeCrawler.

Interactivity. Software visualization needs to offer
interactive facilities to the user. As most visualizations can
be heavily parameterized, one must offer an easy way to do
so by means of direct manipulation idioms [37], which give the
user the freedom to directly manipulate the resulting
visualization by means of zooming, scaling, deletion,
elision, etc. [9]. In the case of the systems we reverse
engineered, direct manipulation was necessary to reduce
complexity by providing basic navigation support, as well
as to cut down latency times between visualizations. In this
context, we claim that our visualizations do not merely
represent source code, as in the case of static visualizations
(e.g., static pictures which cannot be manipulated), but they
are the source code. This is further emphasized by another
aspect, which we call code proximity, discussed below. Since
we use the size and color of the nodes to render metric
measurements, it is not possible to display the name or any
other information in the nodes themselves, although
CodeCrawler supports this as well (of course, in this case,
the size does not render metric measurements anymore, but
is dictated by the displayed contents). Since the user wants
to know what he is interacting with, CodeCrawler provides
the requested information in several ways: 1) By means of a
tool-tip figure, 2) by displaying it in the status field at the
top, and 3) by displaying it in a separate window. Another
issue in the context of interactivity is the definition of the
measurement mapping function, whose principles we have
presented in Section 3.1: In order for the user to click on a
desired node, the node must have a certain size. On the
other hand, the size of the node must render the underlying
metric measurement as truthfully as possible. The first idea
which comes to mind is a direct one-to-one mapping.
However, this idea must be rejected because if a measure-
ment is zero, the node will have no dimension. We have
considered several possible solutions [29] for this problem
and have finally settled on defining a minimal node size
(MNS) value, to which the metric measurements are
directly added. The MNS has the experience value of 4,
which can however easily be changed by the user. There-
fore, we obtain a mapping function (width/height = MNS +
metric measurement) that maps the metric measurement 0
on 4, 1 on 5, 2 on 6, 5 on 9, 10 on 14, 100 on 104, etc.

Code Proximity. Providing easy and fast access to the
original source code can greatly reduce latency times. Since
our goal is to provide alternative, yet expressive, views of a
system, it is necessary to quickly verify the correctness of a
visualization (i.e., is that class really that big?), but is also

important to “get down” from the visualization to the
source code level. CodeCrawler provides access to the
source code represented by the nodes in two ways. For
Smalltalk code, it can directly access and open a browser on
the corresponding classes or methods. In the case of non-
Smalltalk code, we gain access to the right location in the
right file by means of a source anchor, which is defined for
every entity.

Scalability. One of the major issues software visualiza-
tion tools are confronted with is scalability. CodeCrawler
can visualize at this time ca. 1 Million entities. Note that we
keep all the entities in memory.

Tool Usability. Our tool has been downloaded over
2,000 times and, although we haven’t performed a user
survey yet, from personal and e-mail discussions with the
users, we have learned that after a short learning time they
know what they can get out of each view. However,
although the views are easily editable, we have also learned
that most of the users apply the predefined views and
seldom create new views of their own.

7 RELATED WORK

Since our approach is a mixture of two already present
approaches, we first discuss the work performed in those
two areas, before focusing on the methodological aspects of
related approaches.

Software Visualization. The graphical representations of
software used in the field of software visualization, a
subarea of information visualization [10], [38], have long
been accepted as comprehension aids to support reverse
engineering. Indeed, software visualization itself has
become one of the major approaches in reverse engineering.
Price et al. have presented an extensive taxonomy of
software visualization, with several examples and tools [39].

Many tools make use of static information to visualize
software, like Rigi [40], Hy+ [41], SeeSoft [42], ShrimpViews
[43], TANGO [44], and the FIELD environment [45] to name
but a few prominent examples.

Substantial research has also been conducted on runtime
information visualization, called program visualization.
Various tools and approaches make use of dynamic
(trace-based) information such as Program Explorer [46],
Jinsight and its ancestors [47], and Graphtrace [48]. Various
approaches have been discussed like in [49] where interac-
tions in program executions are being visualized. In our
current approach, we do not exploit dynamic information.
Richner has conducted research on the combination of static
and dynamic information [50], where the static information
is provided by the Moose Reengineering Environment.

Several systems make use of the third dimension by
rendering software in 3D. Brown and Najork explore three
distinct uses of 3D [9], namely, 1) expressing fundamental
information about structures that are inherently two-
dimensional, 2) uniting multiple views of an object, and
3) capturing a history of a two-dimensional view. They
exemplify these uses by showing screen dumps of views
developed with the Zeus algorithm animation system [51].
However, they also state that “the potential use of
3D graphics for program visualization is significant and
mostly unexplored.” Some of the systems cited above make
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use of both 2D and 3D visualizations. Until now, we have
refrained from using 3D for our visualizations, mainly
because it would contradict the lightweight constraint.
However, we consider the exploration of the use of 3D as
possible future work.

Metrics. Metrics have long been studied as a way to
assess the quality and complexity of software [12] and,
recently, this has been applied to object-oriented software as
well [18], [19]. Metrics profit from their scalability and, in
the case of simple ones, from their reliable definition.
However, simple measurements are hardly enough to
sufficiently and reliably [52] assess software quality. Some
metric tools visualize information using diagrams for
statistical analysis, like histograms and Kiviat diagrams.
TAC++ [53] and Crocodile [54] are tools that exhibit such
visualization features. However, in all these tools, the
visualizations are mere side effects of having to analyze
large quantities of numbers. In our case, the visualization is
an inherent part of the approach, hence, we do not visualize
numbers, but constructs as they occur in source code.

Methodology. To the best of our knowledge, none of the
approaches we reference in this paper present a reverse
engineering methodology, which can help a reverse en-
gineer to apply a certain tool or technique. Storey et al.
present in [8] some basic ideas on how to build a mental
model during software exploration, but do not provide the
much-needed, yet difficult to obtain, empirical evidence.
We suppose this is because of the ad hoc nature of reverse
engineering tools (including ours) and because software
industry has not yet adopted such tools as concrete aids for
their development process.

8 CONCLUSIONS AND FUTURE WORK

In this article, we have presented the polymetric views,
lightweight visualizations enriched with software metrics.
Furthermore, we have presented a reverse engineering
methodology based on clusters of the polymetric views. This
methodology enables to quickly gain insights into the inner
structure of large software legacy systems and helps to
detect problems.

Furthermore, we have shown CodeCrawler, a reverse
engineering tool which was built on the principles of
using simple ideas and applying them constantly on
industrial case studies. CodeCrawler has been successfully
used for reverse engineering several large industrial
software systems.

Finally, we have used our methodology by applying
different views and have reverse engineered a case study.
We have been able to understand different aspects of the
case study, among which an overview of the application, a
discussion on the used inheritance mechanisms, the detec-
tion of design patterns, the detection of several places where
in-depth examinations are needed, as well as propositions
on where possible refactorings could be applied.

We have also seen that reverse engineering is not a
systematic process, but that the understanding of a system
nonlinear and complemented by opportunistic code reading.
This corroborates the work of Mayrhauser and Vans [32] in
which they show that the understanding resides at all level
of astractions.

Our lightweight approach is especially useful in the first
phase (one to two weeks) of a reverse engineering process.
We believe it can be combined with more complex and
traditional approaches (code reading being one of the
simplest) because our approach can point out where these
complementary approaches can/should be used. However,
we also believe the approach could be used iteratively
during the complete reverse engineering process to gen-
erate snap shots of the system at the different stages. This has
however not been tried out systematically and is part of our
future work.

8.1 Future Work

Language specific views. Since FAMIX is language-indepen-
dent, we have focused on developing views in this context.
We believe there are views which exploit language specific
information, for example, modifier information in lan-
guages like C++ and Java or metaclasses in Smalltalk.

New entities and relationships. The introduction of new
entities and relationships, which may but do not need to
have an equivalent in software could help to generate new
views based on these new artifacts. A way to interactively
generate these artifacts can be supported by grouping
mechanisms, similar to the ones implemented in Rigi [40],
which group entities and relationships according to certain
rules (i.e., naming conventions, types, etc.).

Usability and navigation. The extensive use of direct-
manipulation idioms [37], especially those relevant to the
reverse engineering process, should further increase the
malleability and flexibility of our tools. The introduction of
navigation mechanisms can further increase the efficiency
of the reverse engineering process.

3D. The use of the third dimension (see, for example,
[55]) can help to exploit and visualize more semantic
information, although we believe that using such techni-
ques generates results which cannot be classified as “light-
weight” anymore.

Forward engineering. We are convinced the presented
approach has also many benefits for forward engineering,
code browsing, and programming environments. We are
currently integrating CodeCrawler with the VisualWorks
Smalltalk development environment.

APPENDIX

A.1 Software Metrics

In the context of this article, we make use of the software

metrics described in Table 1. The metrics are divided into

three groups, namely, class, method, and attribute metrics,

i.e., these are the entities the metric measurements are

assigned to. Note that our metrics engine is able to compute

many more metrics, which we have omitted in the table, as

they are not mentioned within this article. Since one of our

main constraints is to reengineer systems written in

different object-oriented languages, we have chosen to

include in our metrics engine metrics whose computation

does not depend on any language-specific features, but can

be based directly on our language-independent metamodel,

which we present in Section 6.
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A.2 Layouts

In the context of this article, we make use of the following

layouts:

. Tree. It positions all entities according to some
hierarchical relationship. See Fig. 1b for an example.
This layout is essential to visualize hierarchical
structures. In the case of object-oriented program-
ming languages, this applies especially for classes
and their inheritance relationships.

. Scatterplot. It positions nodes in an orthogonal grid
(origin in the upper left corner) according to two
measurements. Entities with two identical measure-
ments will overlap. This algorithm is useful for
comparing two metrics in large populations. See
Fig. 3b for an example. This layout is very scalable
because the space it consumes is due to the
measurements of the nodes and not to the actual
number of nodes.

. Checker. It sorts nodes according to a given metric
and then places them into several rows in a
checkerboard pattern. It is useful for getting a first
impression, especially for the relative proportions
between the measurements of the visualized nodes.
See Fig. 2a for an example. This layout’s advantage is
that is uses little space to layout large numbers of
nodes. Moreover, since the nodes are sorted accord-
ing to a certain metric, it can also be used to easily
detect outliers.

. Stapled. It sorts nodes according to the width metric,
renders a second metric as the height of a node and
then positions nodes one besides the other in a long
row. This layout is used to detect exceptional cases
for metrics that usually correlate because it nor-
mally results in a steady declining staircase, while
exceptions break the steady declination. See Fig. 3c
for an example.
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