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Abstract

Background: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed
by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate
this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections.
Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better
understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections.

Methods and Findings: Using a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) approach we have
evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial
genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes
including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers,
comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities
included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp.

Conclusions: In this article, we highlight the patterns of population diversity observed in the samples and introduce
preliminary evidence to support the concept of functional equivalent pathogroups (FEP). Here we introduce FEP as
consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this
hypothesis, individual members of these communities when they occur alone may not cause disease but when they
coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known
pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm
infections. Further work is definitely warranted and needed in order to prove whether the FEPs concept is a viable
hypothesis. The findings here also suggest that traditional culturing methods may be extremely biased as a diagnostic tool
as they select for easily cultured organisms such as Staphylococcus aureus and against difficult to culture bacteria such as
anaerobes. While PCR methods also have bias, further work is now needed in comparing traditional culture results to high-
resolution molecular diagnostic methods such as bTEFAP.
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Introduction

Chronic human infections, including chronic wounds, constitute

60–80% of all human infectious diseases [1]. The costs of chronic

infections represent a major portion of the healthcare budget and

these costs continue to grow at exponential rates [2].

Diabetic extremity ulcers develop in approximately 15 percent

of people with diabetes and are a leading cause of hospitalization

and amputation among such patients [3]. Wound infection, faulty

wound healing, and ischemia in combination with a foot ulcer are

the most common precursors to diabetes-related amputations; and

eighty-five percent of lower-limb amputations in patients with

diabetes are preceded by biofilm infected foot ulceration [4–6].

More than 80,000 amputations are performed on the United

States’ diabetic population each year [7]. Diabetic foot ulcer

infection followed by amputation contribute dramatically not only

to the morbidity among persons with diabetes [8] but are also

associated with severe clinical depression and dramatically

increased mortality rates [9]. Such infected ulcers resulting in

amputation account for a threefold increased risk of death within

18 months. Additionally, the psychological impact of an

amputation dramatically increases this risk of mortality within a

similar time period. As such, diabetic foot ulcers are the most

common, disabling, and costly complications of diabetes [10,11].

A primary impediment to the healing of chronic wounds is

biofilm phenotype infections [12–14]. Biofilms, by definition, are

the ubiquitous and natural phenotype of bacteria. They typically

consist of polymicrobial populations of cells, which are attached to
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a surface and encase themselves in hydrated extracellular

polymeric substances. ‘‘Microbial populations that have attached

to a biological or non-biological surface’’ is the most basic

description of a medical biofilm. Thus, most chronic infections,

including bacterial that are associated with chronic wounds, exist

as biofilm communities [13,15–17]. Bacteria that reside within

mature biofilms are highly resistant to many traditional therapies.

Currently, one of the most successful strategies for the manage-

ment of biofilm-related conditions is physical removal of the

biofilm, such as frequent debridement of the diabetic foot ulcers

[12,13,18,19].

A notable wound care committee [3] has recently suggested that

microbiological investigations of wound infections are of limited

use for diagnosing most infections. The limited advantages from

culturing are due to the length of time required to obtain results.

Traditional culturing takes days to obtain results, but molecular

microbial studies can often be performed within 24 hours. The

primary care suggestion for wounds is to obtain results from

microbial analysis before commencing empiric antibiotic therapy.

Because of this only molecular methods have the ability to identify

the bacteria within chronic wounds in a timeframe conducive to

true medical paradigms of evaluate, diagnose, treat, reevaluate.

Little is known about the types of bacteria that might contribute

to the bioburden in diabetic foot ulcers. There have been only a

few recent surveys of bacterial populations associated with various

chronic wounds as reviewed and investigated by our group

[13,17]. Traditionally, microbial studies of the wound microbiota

have focused on the role of easily cultured and well-known

pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa.

These organisms are cultured easily using traditional microbio-

logical evaluations, and, therefore, standard methods likely

overestimate the contribution of these species to the microbiota

of chronic wounds. Now, the medical and research communities

are beginning to realize that the diversity of bacterial populations

in chronic wounds may be an important contributor to the

chronicity of wounds, such as diabetic foot ulcers. The current

study was undertaken in an attempt to examine the major

populations of bacteria associated with the bioburden of infected

diabetic foot ulcers. By performing a survey of wounds from

different subjects, we hoped to identify genera or noted pathogens

that are consistently present in diabetic ulcers. Alternatively, we

may identify functionally equivalent symbiotic consortia of

bacteria that are associated with chronic wounds.

Methods

Diabetic wound samples
Debridement samples were collected from 40 subjects at the

Southwest Regional Wound Care Center (Lubbock, Texas) in

accordance with Western Institutional Review Board protocol

number 20062347. All patients provided written consent. Subjects

were chosen were chosen for this study who had diabetic extremity

ulcers on their feet. The wounds were from lateral (n = 8), dorsal

(n = 1), plantar (n = 8), ankle (n = 2), 5th metatarsal head (n = 3),

4th metatarsal head (n = 2), 2nd Metatarsal head (n = 2), trans

metatarsal (n = 1), 1st metatarsal head (n = 3), Great toe (n = 3),

heel (n = 7). Sharp debridement samples were collected with sterile

tools using sterile technique and immediately frozen in collection

tubes at 280uC until DNA extraction was performed as described

previously [17].

DNA extraction
After thawing, portions of the debridement (200 mg6100 mg)

were recovered using sterile forceps. The samples were placed in

2 ml sterile micro centrifuge tubes. Samples were centrifuged at

14,000 rpm for 30 seconds and resuspended in 500 ml RLT buffer

(QIAGEN, CA, USA) (with b- mercaptoethanol). A sterile 5 mm

steel bead (QIAGEN, CA, USA) and 500 ml 0.1 mm glass beads

(Scientific Industries, Inc., NY, USA) were added for complete

bacterial lyses in a Qiagen TissueLyser (QIAGEN, CA, USA), run

at 30 Hz for 5 min. Samples were centrifuged briefly, and 100 ml

100% ethanol were added to a 100 ml aliquot of the sample

supernatant. This mixture was added to a DNA spin column, and

DNA recovery protocols were followed as instructed in the

QIAamp DNA Mini Kit (QIAGEN, CA, USA) starting at step 5 of

the Tissue Protocol. DNA was eluted from the column with 30 ml

water and samples were diluted accordingly to a final concentra-

tion of 20 ng/ml for use with SYBR Green RT-PCR (Qiagen,

Valencia, CA). DNA samples were quantified using a Nanodrop

spectrophotometer (Nyxor Biotech, Paris, France).

PCR to create tag encoded amplicons
All DNA samples were diluted to 100 ng/ml. A 100 ng (1 ml)

aliquot of each sample’s DNA was used for a 50 ml step 1 PCR

reaction. The 16S universal Eubacterial primers 530F (59-GTG

CCA GCM GCN GCG G) and 1100R (59-GGG TTN CGN

TCG TTG) were used for amplifying the 600 bp region of 16S

rRNA genes. HotStarTaq Plus Master Mix Kit (Qiagen, Valencia,

CA) was used for PCR under the following conditions: 94uC for

3 minutes followed by 30 cycles of 94uC for 30 seconds; 60uC for

40 seconds and 72uC for 1 minute; and a final elongation step at

72uC for 5 minutes. A step 2 PCR was performed for 454

amplicon sequencing under the same condition by using designed

special fusion primers with different tag sequences as described

previously [20]. The use of a secondary PCR prevents amplifica-

tion of some biases caused by inclusion of tag and linkers during

initial template amplification reactions. After secondary PCR, all

amplicon products from different samples were mixed in equal

volumes, and purified using Agencourt Ampure beads (Agencourt

Bioscience Corporation, MA, USA).

Massively parallel bTEFAP using a FLX
In preparation for FLX sequencing (Roche, Nutley, New

Jersey), the DNA fragments’ size and concentration were

accurately measured by using DNA chips under a Bio-Rad

Experion Automated Electrophoresis Station (Bio-Rad Laborato-

ries, CA, USA) and a TBS-380 Fluorometer (Turner Biosystems,

CA, USA). A 9.6 E+06 sample of double-stranded DNA

molecules/ml with an average size of 625 bp were combined with

9.6 million DNA capture beads, and then amplified by emulsion

PCR. After bead recovery and bead enrichment, the bead-

attached DNAs were denatured with NaOH, and sequencing

primers were annealed. A two-region 454 sequencing run was

performed on a 70675 GS PicoTiterPlate (PTP) using the

Genome Sequencer FLX System (Roche, Nutley, New Jersey).

Twenty tags were used on region of the PTP. All FLX procedures

were performed using Genome Sequencer FLX System manufac-

turer’s instructions (Roche, Nutley, New Jersey).

bTEFAP sequence processing pipeline
Custom software written in C# within a MicrosoftH.NET

(Microsoft Corp, Seattle, WA) development environment was used

for all post sequencing processing. Discussion of software code is

outside the scope of this report; however, a brief description of the

algorithm follows. Quality trimmed sequences obtained from the

FLX sequencing run were derived directly from FLX sequencing

run output files. Tags were extracted from the multi-FASTA file

into individual sample-specific files based upon the tag sequence.

Microbiome of Diabetic Ulcers
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Tags which did not have 100% homology to the sample

designation were not considered. Sequences which were less than

150 bp after quality trimming were not considered. The resultant

individual samples were assembled using CAP3 after parsing the

tags into individual FASTA files [21]. The ace files generated by

CAP3 were then processed to generate a secondary FASTA file

containing the tentative consensus (TC) sequences of the assembly

along with the number of reads integrated into each consensus.

TC were required to have at least 2-fold coverage. The resulting

TC FASTA for each sample was then evaluated using BLASTn

[22] against a custom database derived from the RDP-II database

[23] and GenBank (http://ncbi.nlm.nih.gov). The sequences

contained within the curated 16S database were both .1200 bp

and considered of high quality based upon RDP-II standards. A

post processing algorithm generated best-hit files with E-values

,10e-114 and bit scores .400. The identities of all hits were

greater than 98%. These parameters, based upon an average TC

length of 260 bp, have been previously evaluated to enable reliable

identification at the genus level [17]. Identification at the species

level should only be considered putative and for the purpose of this

pilot study, species designations have been ignored. Following

best-hit processing a secondary post-processing algorithm was used

to combine genus designations generating a list of genera IDs and

their relative predicted abundance within the given sample.

Statistics
Basic statistics were performed using the Basic comparative

functions and multivariate hierarchical clustering methods of JMP

6.0 (SAS institute, Cary, NC).

Results and Discussion

Bacterial diversity in wounds
Our group was the first to use bTEFAP-like pyrosequencing

approach in the evaluation of chronic wound microbiota [17]. In

our previous study, we conducted a broad survey of wounds using

a variety of molecular methods and concluded that the bacterial

communities in diabetic foot ulcers had a high degree of diversity

[17]. The most prevalent populations of bacteria identified in the

previous study, which surveyed a single pooled sample from 10

diabetic patients, in order, were Staphylococcus, Peptoniphilus,

Pseudomonas, Anaerococcus, Enterococcus, Bacteroides, Veillonella, Finegol-

dia, and Clostridium spp.

The current study uses the same broad survey approach as the

previous study. However, instead of a single pool of bacteria from

multiple diabetic foot ulcers, the current study evaluates the

bacteria in 40 individual diabetic foot ulcers. We hypothesized that

a single major pathogen such as Staphylococcus aureus would be

associated with all such wounds, while our alternative hypothesis

was that there would be no single pathogen associated with these

samples. The latter hypothesis would suggest that a mixed-species

biofilm (not a lone pathogen) causes the chronic infection observed

in longstanding diabetic foot ulcers. This new concept of

functionally equivalent pathogroup (FEP) populations suggests

individual traditionally ‘‘non-pathogenic’’ species may live symbi-

otically and act synergistically, thereby contributing to or causing

the chronicity of diabetic foot wounds.

The current study disproved the original hypothesis that a lone

species is the common culprit in these chronic infections. No single

genus of bacteria was present in all of the diabetic foot ulcers. The

most ubiquitous genus was Corynebacterium, which was found in 30

of the 40 diabetic ulcers. Bacteroides, Peptoniphilus, Fingoldia and

Anaerococcus spp. were also highly prevalent and were present in 25,

25, 23, and 22 of the samples respectively. Table 1 details all of the

genera that occurred in at least 5% (2 of 40) of the diabetic ulcers.

The table also includes the number of samples that contained each

genus, the average contribution of each genus to the total bacterial

population in those samples as represented as a percentage, the

corresponding range of percentages, and the corresponding

standard deviations. In our previous survey [17], the primary

organism detected was Staphylococcus. Interestingly, this genus was

Table 1. Bacterial genera identified in 40 diabetic foot ulcers.

Genera Samples Avg % Std dev Min-max %

Corynebacterium spp. 30 14.4 27.5 0.22–80.6

Bacteroides spp. 25 24.2 34.8 0.15–98.8

Peptoniphilus spp. 25 13.6 9.9 0.22–38.4

Finegoldia spp. 23 6.7 4.1 0.65–20.5

Anaerococcus spp. 22 7.7 6.1 1.28–23.8

Streptococcus spp. 21 36.5 26.2 1.68–88.8

Serratia spp. 17 21.4 22.9 0.82–98.4

Unknown-b 15 16.8 13.2 0.93–62.2

Staphylococcus spp. 13 8.3 10.0 0.65–32.6

Prevotella spp. 12 7.4 24.9 0.87–37.3

Peptostreptococcus spp. 11 8.7 4.5 0.85–41.5

Porphyromonas spp. 10 7.0 3.6 2.38–24.3

Enterococcus spp. 10 2.8 1.2 0.31–8.4

Actinomyces spp. 9 5.7 5.6 1.81–20.2

Pseudomonas spp. 8 14.5 11.6 0.67–94.3

Clostridium spp. 8 2.3 3.2 0.75–5.9

Helcococcus spp. 5 2.5 3.0 0.91–7.3

Brevibacterium spp. 5 1.8 0.7 0.71–2.46

Varibaculum spp. 4 9.0 10.5 1.46–27.8

Aerococcus spp. 4 3.0 3.6 0.47–7.0

Fusobacterium spp. 3 5.6 2.6 1.99–7.9

Arthrobacter spp. 3 3.8 2.5 1.85–7.4

Bacillus spp. 3 3.5 3.0 0.19–7.5

Anaerobiospirillum spp. 3 2.3 1.1 0.37–3.8

Actinobaculum spp. 3 1.9 1.0 0.53–2.9

Dermabacter spp. 3 1.6 0.9 0.78–2.87

Salmonella spp. 3 1.5 1.1 0.52–3.02

Veillonella spp. 3 1.3 4.5 1.12–1.49

Citrobacter spp. 2 9.5 2.5 7.0–12.0

Rothia spp. 2 5.8 3.2 1.27–10.2

Tissierella spp. 2 4.0 2.7 1.34–6.6

Propionibacterium spp. 2 3.3 0.4 2.82–3.7

Proteus spp. 2 3.1 2.2 0.89–5.3

Aerosphaera spp. 2 2.8 1.9 1.11–4.5

Peptococcus spp. 2 2.5 0.8 1.64–3.3

Dermabacter spp. 2 1.2 0.7 0.61–1.85

Granulicatella spp. 2 1.2 0.3 0.86–1.51

Brevundimonas spp. 2 0.9 0.2 0.63–1.07

The genera identified in the current study of bacterial populations in 40
different diabetic foot ulcers are reported. The genera are sorted by the number
of samples in which they were detected (Samples). The average percentage
each genus contributed to its positive samples is noted (Avg %), as well as the
standard deviation of the percentages (Std dev) and the range of percentages
(Min-max %).
doi:10.1371/journal.pone.0003326.t001
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only detected in 13 of the 40 samples in the current study. These

apparently dissimilar results are likely an effect of pooling the

samples in the previous study where one or more of the samples

pooled may have had an abundance of Staphylococcus, which would

have decreased the representation of the other genera in the pool.

In the current study, each of the samples was individually analyzed

using bTEFAP [20], which enabled us to remove the bias of

pooling samples.

Corynebacterium was the predominant genus identified in this

study. The tentative identification of the species includes C.

striatum, C. amycolatum, C. tuberculostearicum, and C. mucifaciens in

order of occurrence. Corynebacterium striatum was identified in 22 of

the 30 Corynebacterium-positive samples. This species has been

associated with infections involving joints and open fracture

wounds [24]. Another study has associated Corynebacterium with

diabetic foot osteomyelitis [25]. In the noted study, the evaluation

was performed using traditional culturing methods, which

identified the fastidious Corynebacterium, which is commonly

considered a contaminant. In contrast, the easily cultured

Staphylococcus aureus is commonly considered the primary pathogen

in these samples. It must be indicated that there are inherent bias

associated with molecular methods such as bTEFAP as discussed

in our previous work [20]. Yet we suggest that culture techniques

have a much more dramatic bias and greatly overestimate the

importance of organisms that are easily cultured and can

underestimate the importance of fastidious organisms, which

require more specialized culture methods [26].

In another study, Wheat et al [27] use an advanced approach to

culturing bacteria, and their results support our findings. They

discovered Staphylococcus, Enterococcus, and Corynebacterium were the

most common aerobic (or facultative) bacteria in foot ulcers. They

also did an excellent job of evaluating anaerobes in foot ulcers and

identified common anaerobes such as Peptostreptococcus and

Bacteroides species, which also agrees with our results (Table 1).

Other studies [28,29] have identified the importance of Corynebac-

terium in foot ulcers. This genus may be considered to be

nonpathogenic because it is ‘‘normal flora’’ of human skin and

mucous membranes, but bacteria such as Staphylococcus epidermidis

had been previously been mistakenly viewed as nonpathogenic for

the same reason [30]. Although Corynebacterium may not be a

common cause of acute infections, it appears to be a common (but

overlooked) player in chronic diabetic foot ulcer infections [31].

We suggest that a shift in the methods of the clinical microbiology

laboratory would help to overcome this bias. It is appropriate to

routinely use molecular techniques such as PCR or bTEFAP [20]

that are more reliable than traditional culturing methods. By using

approaches that do not rely on the ability of bacteria to grow well

in culture, we can begin to have a less biased view of the bacterial

diversity present in chronic wounds, and we can reexamine the

clinical prejudices associated with the presence of ‘‘nonpathogen-

ic’’ bacteria.

The occurrence of anaerobes in wounds has also been well

documented in the literature, and it suggests that anaerobes are

beginning to be recognized as major populations in chronic wound

biofilms [17,32–36]. The importance of anaerobes such as

Peptostreptococcus, Prevotella, Finegoldia and Peptoniphilus have been

previously reported [32,37–41], and the present study agrees that

these genera represent a significant portion of diabetic ulcer

microbiota. Even though wounds are typically exposed to air [32],

anaerobes may be the most prevalent physiological type for a given

wound or an individual wound type. Bowler et al [32] evaluated

venous leg ulcers using cultural isolation techniques that included

special considerations for the propagation of anaerobes. They

reported that anaerobes represented 49% of the total microbial

composition in such wounds. Dowd et al [17], using a

pyrosequencing approach, reported that 30% of the sequences

from pooled diabetic ulcers were anaerobes.

Functionally equivalent pathogroups (FEPs)
The comorbidities associated with the pathophysiology of a

given wound may create a definable host condition. The host

condition and the host’s environment may work together to

influence the ecology of the wound. Patients with similar

comorbidities and similar environmental conditions may share

common wound ecology. Each ecological wound type may be

defined by the unique bacterial consortium, which it supports. If

this is true, research should be performed to link common

bacterial consortia with the common wound ecosystem and the

unique clinical management strategies capable of collapsing each

type of system. We propose that the wound’s microbiota is a key

component that delays healing, and collapsing the microbial

ecosystem would thereby expedite the healing process.

To begin to evaluate the co-occurrence of particular species or

to identify if there are multi-species microbial patterns associated

with chronic wound infections, we used multivariate hierarchical

clustering functions for those bacteria genera that were detected in

greater than 10% of the wounds. This resulted in 8 major clusters

that we term functional equivalent pathogroups (FEP). Figure 1

shows a two-dimensional dendogram depicting these clusters. Our

observations yielded a hypothesis that has yet to be formally tested.

We hypothesize that certain bacterial species may not be capable

of maintaining a chronic infections on their own, but if these

species co-occur in appropriate mixtures, they can act symbiot-

ically to successfully establish a pathogenic biofilm, which

contributes to the chronicity of the wound.

Using the data represented in Figure 1, we can identify

prominent anaerobic FEP including cluster 5, cluster 7, and cluster

8. These clusters may be some of the more important FEP

associated with diabetic ulcers, but they are not easily identified

using traditional culturing methods. Anaerobes also appear to be a

common thread that links all FEP, and this study highlights the

importance of performing further studies that examine the role

that anaerobes may play in promoting the chronicity of diabetic

foot ulcers and other wounds.

As discussed previously [42], it has been demonstrated in the

laboratory [43,44] that obligate anaerobes may cope with the toxic

effects of oxygen by interacting with aerobic or facultative bacteria

populations in a symbiotic manner as part of a process known as

coaggregation. Aerobic species may consume oxygen and create

localized niches, allowing the obligate anaerobes to gain an

advantage when in close proximity to their oxygen-reducing

neighbors. The Lewandowski lab has also shown that oxygen only

penetrates microns into the surface of biofilms, which suggests that

internal regions of the bacterial communities may support only

anaerobes and facultative anaerobes [45]. The symbiotic interac-

tions between different bacterial species and the advantages

associated with the biofilm phenotype have been demonstrated for

specific aerobes and anaerobes.

Specific mixtures of anaerobic and aerobic bacteria in animal

models produce disease states which cannot be reproduced by

individual species [34,35,46–48,48,49]. Similar to previous work

showing gut and oral consortial etiologies, our findings provide a

added perspective to Koch’s postulates and suggest a complexity of

host-pathogen interaction that traditional culturing does not

reveal. Our findings highlight the shortcoming of relying on

culture methods to identify the important bacterial populations

within clinical samples, and our results suggest that identifying and
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understanding the bacterial FEPs in chronic wounds may be

needed in order to better manage these infections.

It has been proposed that sequencing the 16S gene of clinical,

laboratory-cultivated bacteria is advantageous over the traditional

biochemical identification methods [50]. We propose that not only

is a molecular sequencing approach better for the identification of

cultivated microbes, but also sequencing can be used to identify

organisms without the need to culture. The culturability of

pathogens has been at the central dogma of medical microbiology

since its inception, but in this molecular age, it is now possible and

necessary to step beyond this traditional methodology in an

attempt to unravel the complexity of chronic, mixed infections.

Using bTEFAP, it is now possible (and will soon be practical) to

avoid the biased culture methods currently used to identify the

bacteria in clinical samples.

Functional equivalence, in relation to biofilm and the bacterial

populations found in chronic wounds, is an important concept that

may dramatically alter the single-pathogen paradigm of chronic

infections. For instance, we may discover that Corynebacterium spp.

and anaerobes such as Fingoldia and Peptoniphilus spp. work together

to create a pathogenic group (FEP) that is equivalent to commonly

noted pathogens such as Pseudomonas aeruginosa or Staphylococcus

Figure 1. Dendrogram of Functional Equivalent Pathogroups (FEPs). The most prevalent bacterial genera were used to perform multivariate
hierarchical clustering. Using a geographic X scale and a color map we represent the 40 different wounds along the Y-axis and the predominant
genera along the X-axis in this dendogram, which shows 8 primary clusters associated with possible functional equivalent pathogroups (FEPs). Thus,
in cluster 1 (red dots) we see that the predominant genera are Serratia spp. and anaerobes (Finegoldia, Peptoniphilus and Anaerococus spp.). Together
these genera contribute to FEP in cluster 1. Cluster 2 (yellow Y’s) is made up of Corynebacterium and the same anaerobes as cluster 1. The most
predominant cluster, cluster 3 (orange squares), involves Streptococcus and anaerobes including the previously mentioned genera from clusters 1 and
2 as well as Bacteroides. Cluster 4 (green diamond) is only a single sample but involves co-occurrence of Pseudomonas, Streptococcus and
Porphyomonas spp. Cluster 5 (blue x’s) is heavily populated by anaerobes particularly Bacteroides, Anaerococcus, Fingoldia, and Peptoniphilus spp.
Cluster 6 (green crosses) is only made up of two samples and includes Enterococcus as the primary organism with significant signatures from
Anaerococcus, Finegoldia, and Peptoniphilus spp. Cluster 7 (blue Z’s) has the strongest color map signatures associated with anaerobes, especially
Clostridium, Fingoldia, Porphyromonas and Peptoniphilus spp. Finally, cluster 8 is strongly associated with the anaerobes Anaerococcus and Fingoldia
spp. with additional contributions from Streptococcus spp. The location of each extremity ulcer is also encoded into this figure along the Y-axis. The
codes for the wound locations are lateral foot ulcer (L), dorsal foot ulcer (D), plantar foot ulcer (P), ankle ulcer (A), 5th metatarsal head ulcer (A), 4th
metatarsal head ulcer (4), 2nd Metatarsal head ulcer (2), trans metatarsal ulcer (T), 1st metatarsal head ulcer (1), Great toe ulcer (G), and heel ulcer (H).
doi:10.1371/journal.pone.0003326.g001
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aureus. Diverse pathogenic biofilms are more stable than less

diverse biofilms [51], and the presence of a single, predominant

pathogenic species in a chronic infection is arguably naive [52].

Our current and previous work [13,17] indicates the strong

possibility and validity of the ‘‘functional equivalence’’ hypothesis.

The presence of FEPs could explain the recalcitrance of some

wounds when managed using a single treatment, and a high

diversity of bacterial species may explain why multiple concurrent

strategies benefit the course of chronic wound healing [14].

For diverse species to work as a whole to collectively produce a

persistent infection, they must possess the properties that allow

single pathogens to be successful. Thus, these diverse consortia

must possess ‘‘functional equivalence’’ which allows the whole to

establish and maintain the chronic infection. Whereas, pathogens

such as P. aeruginosa may be capable of performing all of the

essential roles required for pathogenesis, FEPs may distribute these

roles among multiple species. In a single FEP, at least one

representative species within the consortia must be able to perform

each essential role. The significance of this hypothesis may prove

important in developing improved methods for diagnosing and

treating chronic wound infections.
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