
Image metamorphosis has proven to be a

powerful visual effects tool. Many breath-

taking examples now appear in film and television,

depicting the fluid transformation of one digital image

into another. This process, commonly known as mor-

phing, couples image warping with color interpolation.

Image warping applies 2D geometric transformations

on images to align their features

geometrically, while color interpo-

lation blends their colors. Details 

of various image morphing tech-

niques can be found in several

recent papers.1-4

Traditional image morphing con-

siders only two input images at a

time—the source and target images.

In that case, morphing among mul-

tiple images involves a series of

transformations from one image to

another. This limits any morphed

image to the features and colors

blended from just two input images.

Given morphing’s success using this

paradigm, it seems reasonable to

consider the benefits possible from

a blend of more than two images at a time. For instance,

consider generating a facial image with blended char-

acteristics of eyes, nose, and mouth from several input

faces. In this case, morphing among multiple images

involves a blend of several images at once—a process

we call polymorphing.

Rowland and Perrett considered a special case of poly-

morphing to obtain a prototype face from several tens

of sample faces.5 They superimposed feature points on

input images to specify the different positions of fea-

tures in sample faces. Averaging the specified feature

positions determined the shape of a prototype face. A

prototype face resulted from image warping each input

image and then performing a cross-dissolve operation

among the warped images. In performing predictive

gender and age transformations, they used the shape

and color differences between prototypes from differ-

ent genders and ages to manipulate a facial image.

In this article, we present a general framework for poly-

morphing by extending the traditional image morphing

paradigm that applies to two images. We formulate each

input image as a vertex of an (n − 1)-dimensional sim-

plex, where n equals the number of input images. Note

that an (n − 1)-dimensional simplex is a convex polyhe-

dron having n vertices in (n − 1)-dimensional space, such

as a triangle in 2D or a tetrahedron in 3D. An arbitrary in-

between (morphed) image can be specified by a point in

the simplex. The barycentric coordinates of that point

determine the weights used to blend the input images

into the in-between image. When considering only two

images, the simplex degenerates into a line. Points along

the line correspond to in-between images in a morph

sequence. This case is identical to conventional image

morphing. When considering more than two images, a

path lying anywhere in the simplex constitutes the in-

between images in a morph sequence.

In morphing between two images, nonuniform blend-

ing was introduced to derive an in-between image in

which blending rates differ across the image.3,4 This lets

us generate more interesting animations, such as a

transformation of the source image to the target from

top to bottom. Nonuniform blending was also consid-

ered in volume metamorphosis to control blending

schedules.6,7 In this article, the framework for poly-

morphing includes nonuniform blending of features in

several input images. For instance, a facial image can be

generated to have its eyes, nose, mouth, and ears

derived from four different input faces.

Polymorph is ideally suited for image composition

applications. It treats a composite image as a metamor-

phosis of selected regions in several input images. The
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regions seamlessly blend together with respect to geom-

etry and color. The technique produces high-quality

composites with considerably less effort than conven-

tional image composition techniques. In this regard,

polymorphing brings to image composition what image

warping has brought to cross-dissolve in deriving mor-

phing: a richer, more sophisticated class of visual effects

achieved with intuitive and minimal user interaction.

First we’ll look at the mathematical framework for

polymorph, followed by warp function generation and

propagation, blending function generation, and the

implemented polymorph system. Metamorphosis

examples demonstrate the use of polymorph for image

composition.

Mathemat ical framework
This section presents the mathematical framework for

polymorph. We extend the metamorphosis framework

for two images3,4 to generate an in-between image from

several images. The framework is further optimized by

introducing the notion of a central image. Finally, we

introduce preprocessing and postprocessing steps to

enhance the usefulness of the polymorphing technique.

Image representation

Consider n input images I1, I2, …, In. We formulate each

input image to be a vertex of an (n−1)-dimensional sim-

plex. An in-between image is considered a point in the

simplex. All points are given in barycentric coordinates

in Rn−1 by b = (b1, b2, …, bn), subject to the constraints 

bi ≥ 0 and Σn

i =1 bi=1. Each input image Ii corresponds to

the ith vertex of the simplex, where only the ith barycen-

tric coordinate is 1 and all the others are 0. An in-between

image I is specified by a point b, where each coordinate

bi determines the relative influence of input image Ii on I.

In conventional morphing between two images, tran-

sition rates 0 and 1 imply the source and target images,

respectively.3,4 An in-between image is then represent-

ed by a real number between 0 and 1, which determines

a point in 2D barycentric coordinates. The image rep-

resentation in polymorph can be considered a general-

ization of that used for morphing between two images.

In the conventional approach, morphing among n

input images implies a sequence of animations between

two images, for example, I0 → I1 → … → In. The anima-

tion sequence corresponds to a path visiting all vertices

along the edges of the simplex. In contrast, polymorph-

ing can generate an animation corresponding to an arbi-

trary path inside the simplex. The animation contains a

sequence of in-between images that blends all n input

images at a time. In the following, we consider the pro-

cedure to generate the in-between image associated

with a point along the path. The procedure can be read-

ily applied to all other points along the path to generate

an animation.

Basic metamorphosis framework

Suppose that we want to generate an in-between image

I at point b = (b1, b2, …, bn) from input images I1, I2, …, In.

Let Wij be the warp function from image Ii to image Ij. Wij

specifies the corresponding point in Ij for each point in Ii.

When applied to Ii, Wij generates a warped image where-

by the features in Ii coincide with their corresponding fea-

tures in Ij. Note that Wii is the identity warp function, and

Wji is the inverse function of Wij.

To generate an in-between image I, we first derive a

warp function Wi by linearly interpolating Wij for each i.

Each image Ii is then distorted by Wi to generate an inter-

mediate image Ii. Images Ii have the same in-between

positions and shapes of corresponding features for all i.

In-between image I is finally obtained by linearly inter-

polating the pixel colors among Ii.

Each coordinate bi of I is used as the relative weight for

Ii in the linear interpolation of warps and colors. We call

b a blending vector. It determines the blending of geom-

etry and color among the input images to generate an

in-between image. For simplicity, we treat the blending

vectors for both geometry and color as identical,

although they may differ in practice.

Figure 1 shows the warp functions used to generate an

in-between image from three input images. Each warp

function in the figure distorts one image toward the

other so that the corresponding features coincide in

their shapes and positions. Note that warp function Wij

is independent of the specified blending vector b, while

Wi is determined by b and Wij. Since no geometric dis-

tortions exist between intermediate image Ii and the

final in-between image I, it is sufficient for Figure 1 to

depict warps directly from Ii to I, omitting any reference

to 
-
Ii. In this manner, the figure considers only the warp

functions and neglects color blending.

Given images Ii and warp functions Wij, the following

equations summarize the steps for generating an in-

between image I from a blending vector b. Wi •Ii denotes

the application of  warp function 
––
Wi to image I i. p and

r represent points in Ii and I, respectively, related by 

r= Wi(p). Color interpolation is achieved by attenuat-

ing the pixel colors of the input images and adding the

warped images.
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The image on the left in Figure 2 results from ordi-

nary cross-dissolve of input images Ii. Notice that the

image appears triple-exposed due to the blending of

misaligned features. The images on the right of Ii illus-

trate the process to generate an in-between image I using

the proposed framework. Although the intensities of

intermediate images Ii should appear attenuated, we

show the images in full intensity to clearly demonstrate

the distortions. The blending vector used for the figure

is b = (1/3, 1/3, 1/3). The resulting image I equally

blends the shapes, positions, and colors of the eyes,

nose, and mouth of the input faces.

General metamorphosis framework

The framework presented above generates a uniform

in-between image on which we use the same blending vec-

tor across the image. We can obtain a more visually com-

pelling in-between image by applying different blending

vectors to its various parts. For example, consider a facial

image that has its eyes, ears, nose, and mouth derived

from four different input images. We introduce a blending

function to facilitate a nonuniform in-between image that

has different blending vectors over its points.

A blending function specifies a blending vector for

each point in an image. Let 
–
Bi be a blending function

defined on image Ii. For each point p in Ii ,  
–
Bi(p) is a blend-

ing vector that determines the weights used for linearly

interpolating Wij(p) to derive 
––
Wi (p). Also, the ith coor-

dinate of 
–
Bi(p) determines the color contribution of point

p to the corresponding point in in-between image I.

The metamorphosis characteristics of a nonuniform

in-between image are fully specified by one blending

function 
–
Bi defined on any input image Ii. This is analo-

gous to using one blending vector to specify a uniform

in-between image. From the correspondence between

points in input images, the blending information spec-

ified by 
–
Bi can be shared among all input images. The

blending functions 
–
Bj for the other images Ij can be

derived by composing 
–
Bi and warp functions Wji. That

is, 
–
Bj=

–
Bi ° Wji, or equivalently, Bj(p)=

–
Bi(Wji (p)). For all

corresponding points in the input images, the resulting

blending functions specify the same blending vector.

Given images Ii, warp functions Wij, and blending func-

tions 
–
Bi, the following equations summarize the steps for

generating a nonuniform in-between image I. b
j
i(p)

denotes the jth coordinate in blending vector 
–
Bi(p).

Figure 3 illustrates the above framework. We have

chosen blending functions 
–
Bi that make in-between

image I retain the hair, eyes and nose, and mouth and

chin from input images I0, I1, and I2, respectively. The
–
Bi
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determine warp functions 
––
Wi,

which generate distortions of Ii

whereby the parts of interest

remain intact. Here again inter-

mediate images Ii appear in full

intensity for clarity. In practice,

input images Ii are nonuniform-

ly attenuated by applying 
–
Bi

before they are distorted. The

attenuation maintains those

parts to be retained in I at their

full intensity. The strict require-

ment to retain specified features

of the input images has produced

an unnatural result around the

mouth and chin in Figure 3.

Additional processing might be

necessary to address the artifacts

inherent in the current process.

First, we will consider how to

reduce runtime computation

and memory overhead in gener-

ating an in-between image.

Optimization with a central

image

The evaluation of warp func-

tions Wij is generally expensive.

To reduce runtime computation,

we compute Wij only once, when

feature correspondences are

established among input images

Ii. We sample each Wij over all source pixels and store the

resulting target coordinates in an array. The arrays for

all Wij are then used to compute intermediate warp func-

tions 
––
Wi, which depend on blending functions 

–
Bi. For

large n, these n2 warp functions require significant mem-

ory overhead, especially for large input images. To avoid

this memory overhead, we define a central image and use

it to reduce the number of stored warp functions.

A central image IC is a uniform in-between image cor-

responding to the centroid of the simplex that consists

of input images. The blending vector (1/n, 1/n, …, 1/n)

is associated with this image. Instead of keeping n2 warp

functions Wij, we maintain 2n warp functions, WiC and

WCi, and compute 
––
Wi from a blending function specified

on IC. WiC is a warp function from input image Ii to cen-

tral image IC. Conversely, WCi is a warp function from IC

to Ii. WCi is the inverse function of WiC.

Let a blending function 
–
BC be defined on central image

IC. 
–
BC determines the metamorphosis characteristics of

an in-between image I. 
–
BC has the same role as 

–
Bi except

that it operates on IC instead of Ii. Therefore, 
–
BC(q) gives

a blending vector that specifies the relative influences of

corresponding points in Ii onto I for each point q in IC.

The equivalent blending functions 
–
Bi for input images Ii

can be derived by function compositions 
–
BC ° WiC .

To obtain warp functions 
––
Wi from Ii to I, we first gener-

ate a warp function WC from IC to I. For each point in IC,

warp functions WCi give a set of corresponding points in

input images Ii. Hence, WC can be derived by linearly

interpolating WCi with the weights of 
–
BC. The Wi are then

obtained by function compositions 
––
WC ° WiC . Figure 4

shows the relationship of warp functions WiC, WCi, and
––
WC with images Ii, IC, and I. Note that WiC and WCi are inde-

pendent of 
–
BC, whereas WC is determined by 

–
BC from WCi.

Given images Ii and warp functions WiC and WCi, the

following equations summarize the steps for generat-

ing an in-between image I from a blending function 
–
BC

defined on central image IC. Let p, q, and r represent

points in Ii, IC, and I, respectively. They are related by

q = WiC(p) and r=
––
WC(q). b

j
i(p) and b

j
C(q) denote the

jth coordinates in blending vectors 
–
Bi(p) and  

–
BC(q),

respectively.
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Note that the • and ° operators denote forward and

inverse mapping, respectively. For an image I and warp

function W, W • I maps all pixels in I onto the distorted

image I′, while I ° W−1 maps all pixels in I′ onto I, assum-

ing that the inverse function W−1 exists. Although the °
operator could have been applied to compute Ii above,

we use the • operator because
––
W −1

i is not readily available.

In Figure 4, central image IC has dashed borders

because it is not actually constructed in the process of

generating an in-between image. We introduced it to

provide a conceptual intermediate step to derive the

necessary warp and blending functions. Any image,

including an input image, can be

made to play the role of the central

image. However, we have defined

the central image to lie at the cen-

troid of the simplex to establish

symmetry in the metamorphosis

framework. In most cases, a central

image relates to a natural in-

between image among the input

images. It equally blends the fea-

tures in the input images, such as a

prototype face among input faces.

Preprocessing and

postprocessing

Polymorphing proves useful in

feature-based image composition,

where selected features from input
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images blend seamlessly in an in-

between image. In that case, if the

shapes and positions of the selected

features do not match among the

input images, the in-between image

might not have features in appropri-

ate shapes and positions. For exam-

ple, the in-between face in Figure 3

retains hair, eyes and nose, and

mouth and chin features from the

input faces, yet it appears unnatur-

al. This results from the rigid place-

ment of selected input regions into a

patchwork of inappropriately scaled

and positioned elements—akin to a

cut-and-paste operation where

smooth blending was limited to

areas between these regions.

We can overcome this problem by

adding a preprocessing step to the

metamorphosis framework. Before

using the framework on input

images Ii, we can apply warp functions Pi to Ii to gener-

ate distorted input images I′i . The distortions change the

shapes and positions of the selected features in Ii so that

an in-between image from I′i has appropriate feature

shapes and positions. In that case, we apply the frame-

work to I′i instead of Ii, treating I′i as the input images.

After deriving an in-between image through the

framework, we sometimes need image postprocessing to

enhance the result, even though the preprocessing step

has already been applied. For example, we might want

to reduce the size of the in-between face in Figure 3—

not readily done by preprocessing input images. To post-

process an in-between image I′, we apply a warp

function Q to I′ and generate the final image I. The post-

processing step is useful for local refinement and glob-

al manipulation of an in-between image.

Figure 5 shows the warp functions used in the meta-

morphosis framework including the preprocessing and

postprocessing steps. Warp functions Pi distort input

images Ii toward I′i , from which an in-between image I′
is generated. Applying warp function Q to I′ derives the

final image I. Figure 6 illustrates the process with inter-

mediate images. In preprocessing, the hair of input

image I0 and the mouth and chin of I2 move upwards

and to the lower right, respectively. The nose in I1 nar-

rows slightly. The face in in-between image I′ now

appears more natural than that in Figure 3. In postpro-

cessing, the face in I′ is scaled down horizontally to gen-

erate the final image I.

When adding the preprocessing step to the meta-

morphosis framework, distorted input images I′i deter-

mine the central image I′C and warp functions W′iC and

W′Ci. However, in that case, whenever we apply differ-

ent warp functions Pi to input images Ii, we must recom-

pute W′iC and W′Ci to apply the framework to I′i. This

can become very cumbersome, especially since several

preprocessing iterations might be necessary to derive

a satisfactory in-between image. To overcome this

drawback, we reconfigure Figure 5 to Figure 7 so that

IC, WiC, and WCi depend only on Ii, regardless of Pi. In

the new configuration, we can derive the correspond-

ing points in the I′i for each point in IC by function com-

positions Pi ° WCi. Given a blending function 
–
BC defined

on IC, warp function WC is computed by linearly inter-

polating Pi ° WCi with the weights of 
–
BC. The resulting

WC is equivalent to W′C used in Figure 5. Then, the

warp functions from Ii to I′ can be obtained by 
––
WC ° WiC,

properly reflecting the effects of preprocessing. Warp

functions 
––
Wi from Ii to the final in-between image I,

including the postprocessing step, can be derived by

Q ° WC ° WiC.

Consider input images Ii, warp functions WiC and WCi,

and a blending function 
–
BC defined on central image IC.

The following equations summarize the process to gen-

erate an in-between image I from 
–
BC and warp functions

Pi and Q, which specify the preprocessing and postpro-

cessing steps. Let p, q, and r represent points in Ii, IC, and

I, respectively. They are related by q = WiC(p) and

r=(Q°WC)(q).

The differences between this framework and that in

the section “Optimization with a central image” lie only

in the computation of warp functions WC and 
––
Wi. We

included additional function compositions to incorporate

the preprocessing and postprocessing effects. In Figure

7, images I′i and I′ appear with dashed borders because

they are not actually constructed in generating I. As in the
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case of central image IC, images I′i and I′ provide concep-

tual intermediate steps to derive WC and 
––
Wi.

Figure 8 shows an example of in-between image gen-

eration with the framework. Intermediate images Ii are

the same as the distorted images generated if we apply

warp function Q to images Ii in Figure 6. In other words,

Ii reflects the preprocessing and postprocessing effects

in addition to the distortions defined by blending func-

tion 
–
BC. Hence, only three intermediate images are

needed to obtain the final in-between image I, as in

Figure 3, rather than seven as in Figure 6. Notice that I

is the same as in Figure 6.

Given n input images, generating an in-between

image through the framework requires a solution to

each of the following three problems:

■ how to find 2n warp functions WiC and WCi,

■ how to specify a blending function 
–
BC on IC, and

■ how to specify warp functions Pi and Q for prepro-

cessing and postprocessing.

Warp funct ion generat ion
This section addresses the problem of deriving warp

functions WiC and WCi, and Pi and Q. A conventional

image morphing technique computes warp functions

for (n − 1) pairs of input images. We propagate these

warp functions to obtain Wij for all pairs of input images.

Averaging Wij for each i produces WiC. We compute WCi

as the inverse function of WiC by using a warp genera-

tion algorithm. Pi and Q are derived from the user input

specified by primitives such as line segments overlaid

onto images.

Warp functions between two images

We can derive the warp functions between two input

images using a conventional image morphing technique.

Traditionally, image morphing between two images

begins with establishing their correspondence with

pairs of feature primitives such as mesh nodes, line seg-

ments, curves, or points. Each primitive specifies an

image feature, or landmark. An algorithm then com-

putes a warp function that interpolates the feature cor-

respondence across the input images.

The several image morphing algorithms in common

use differ in the manner in which features are specified

and warp functions are generated. In mesh warping,1

bicubic spline interpolation computes a warp function

from the correspondence of mesh points. In field mor-

phing,2 pairs of line segments specify feature corre-

spondences, and weighted averaging determines a warp

function. More recently, thin-plate splines4,8 and multi-

level free-form deformations3 have been used to com-

pute warp functions from selected point-to-point

correspondences.

In this article, we use the multilevel free-form defor-

mation algorithm3 to generate warp functions between

two input images. We selected this algorithm because

it efficiently generates C2-continuous and one-to-one
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warp functions. The one-to-one property guarantees

that the distorted image does not fold back upon itself.

A warp function represents a mapping between all

points in two images. In this work, we save the warp func-

tions in binary files to reduce runtime computation. A

warp function for an M × N image is stored as an M × N

array of target x- and y-coordinates for all source pixels.

Once feature correspondence between two images Ii and

Ij is established, we can derive warp functions in both

directions, Wij and Wji. Therefore, we store two M × N

arrays of target coordinates for each pair of input images

for which feature correspondence is established.

Figure 9 depicts the warp generation process. In

Figures 9a and 9b, the specified features are overlaid on

input images I0 and I1. Figures 9c and 9d illustrate warp

functions W01 and W10 generated from the features by

the multilevel free-form deformation.

Warp function propagation

We can derive the warp functions between two images

by specifying their feature correspondence. Multiple

images, however, require determining warp functions

for each image to every other image. This exacerbates

the already tedious and cumbersome operation of spec-

ifying feature correspondence. For instance, n input

images require establishing feature correspondence

among n(n−1)/2 pairs of images. We now address the

problem of minimizing this feature specification effort.

Consider a directed graph G with n vertices. Each ver-

tex vi corresponds to input image Ii, and an edge eij con-

nects vi to vj if warp function Wij from Ii to Ij has been

derived. To minimize the feature specification effort, we

first select (n − 1) pairs of images so that the associated

edges constitute a connected graph G. We specify the

feature correspondence between the selected image

pairs to obtain warp functions between them. These

warp functions can then be propagated to derive the

remaining warp functions for all other image pairs. The

propagation occurs in the same manner as that used for

computing the transitive closure of graph G. The con-

nectivity of G guarantees that warp functions are deter-

mined for all pairs of images after propagation.

To determine an unknown warp function Wij, we tra-

verse G to find any vertex vk shared by existing edges eik

and ekj. If we can find such a vertex vk, we update G to

include edge eij and define Wij as the composite function

Wkj ° Wik. When there exist several such vk, the composed

warp functions through those vk are computed and aver-

aged. If no vk connects vi and vj, Wij remains unknown

and eij is not added to G. This procedure iterates for all

unknown warp functions, and the iteration repeats until

all warp functions are determined. If Wij remains

unknown in an iteration, it will be determined in a fol-

lowing iteration as G gets updated. From the connec-

tivity of G, at most (n − 2) iterations are required to

resolve every unknown warp function.

With the warp propagation approach, the user must

specify feature correspondences for (n − 1) pairs of

images. This is far less effort than considering all 

n(n−1)/2 pairs. Figure 10 shows an example of warp

propagation. Figure 10a illustrates warp function W02,

which was derived by specifying feature correspondence

between input images I0 and I2. To determine warp func-

tion W12 from I1 to I2, we compose W10 and W02, shown

in Figure 9d and Figure 10a, respectively. Figure 10b

illustrates the resulting W12 = W02 ° W10. Notice that the

left and right sides of the hair have widened in W12 and

narrowed in W02.

Warp functions for central image

We now consider how to derive the warp functions

among the central image IC and all input images Ii. IC is

the uniform in-between image corresponding to a

blending vector (1/n, 1/n, …, 1/n). Hence, from the

basic metamorphosis framework, warp functions WiC

from Ii to IC are straightforward to compute. That is,

WiC(p)=Σn
j=1 Wi j(p)/n for each point p in Ii. Computing

warp function WCi from IC back to Ii, however, is not

straightforward.

We determine WCi as the inverse function of WiC. Each

point p in Ii is mapped to a point q in IC by WiC. The

inverse of WiC should map each q back to p. Hence, the

corresponding points q for pixels p in Ii provide WCi with

scattered positional constraints, WCi(q) = p. The multi-

level free-form deformation technique, used to derive

warp functions, can also be applied to the constraints to

compute WCi.

When warp functions Wij are one-to-one, it is not

mathematically clear that their average function WiC is

also one-to-one. Conceptually, though, we can expect

WiC to be one-to-one because it is the warp function that

might be generated by moving the features in Ii to the
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averaged positions. In the worst case that WiC is not one-

to-one, the positional constraints, WCi(q) = p, may have

two different positions for a point q. In that case, we

ignore one of the two positions and apply the multilevel

free-form deformation to the remaining constraints.

Figure 11 shows examples of warp functions between

input images and a center image. Figure 11a illustrates

warp function W0C from I0 to IC, which is the average of

the identity function, W01 in Figure 9c, and W02 in Figure

10a. In Figure 11b, WC0 has been derived as the inverse

function of W0C by the multilevel free-form deforma-

tion technique.

Warp functions for preprocessing and

postprocessing

Warp functions Pi for preprocessing are derived in a

similar manner to those between two images—we over-

lay primitives such as line segments and curves onto

image Ii. However, in this case, the primitives select the

parts in Ii to distort, instead of specifying feature corre-

spondence with another image. Pi is defined by moving

the primitives to the desired distorted positions of the

selected parts and computed by applying the multilevel

free-form deformation technique to the displacements.

Figure 12 shows the primitive and its movement speci-

fied on input image I2 to define warp function P2 in

Figure 6. The primitive has been moved to the lower

right to change the positions of the mouth and chin.

We can derive warp function Q for postprocessing in

the same manner as Pi. In this case, primitives overlaid

on in-between image I′ in Figure 7 select parts to distort

toward the final in-between image I. The overlaid prim-

itives are moved to define Q, and multilevel free-form

deformation computes Q from the movements. We con-

struct I′ only to allow for the specification of features

and their movements, not for the process of in-between

image generation. The postprocessing operation illus-

trated in Figure 13 horizontally scales down the primi-

tive specified on I′ to make the face narrower.

Blending funct ion generat ion
This section addresses the problem of generating a

blending function 
–
BC defined on the central image IC. A

blending vector suffices to determine a 
–
BC that gener-

ates a uniform in-between image. A nonuniform in-

between image, however, can be specified by assigning

different blending rates to selected parts of various input

images. We derive the corresponding 
–
BC by gathering

all the blending rates onto IC and applying scattered data

interpolation to them.

Uniform in-between image

To generate a uniform in-between image from n input

images, a user must specify a blending vector b = 

(b1, b2, …, bn), subject to the constraints bi ≥ 0 and 

Σn
i=0 bi=1. If these constraints are violated, we enforce

them by clipping negative values to zero and dividing

each bi by Σn
i=0 bi . The blending function 

–
BC is then a

constant function having the resulting blending vector

as its value at every point in IC.

Nonuniform in-between image

To generate a nonuniform in-between image I, a user

assigns a real value bi ∈ [0,1] to a selected region Ri of

input image Ii for some i. The value bi assigned to Ri deter-

mines the influence of Ii onto the corresponding part R of

in-between image I. When bi approaches 1, the colors

and shapes of the features in Ri dominate those in R.

Conversely, when bi approaches 0, the influence of Ri on

R diminishes. Figures 14a, 14b, and 14c show the poly-

gons used to select regions in I0, I1, and I2 for generating

I in Figure 3. All points inside the polygons in Figures

14a, 14b, and 14c have been assigned the value 1.0.

We generate a blending function 
–
BC by first projecting

the values bi onto IC. We can do this by mapping points

in Ri onto IC using warp functions WiC. Figure 14d shows

the projection of the selected parts in Figures 14a, 14b,

and 14c onto IC. Let (b1, b2, …, bn) be an n-tuple repre-

senting the projected values of bi onto a point in IC. This

n-tuple is defined only in the projection of Ri on IC. Since

the user does not have to specify bi for all Ii, some of the

bi may be undefined for the n-tuple.

Let D and U denote the sets of defined and undefined

elements bi in the n-tuple, respectively. Further, let s be

the sum of the defined values in D. There are three cases

to consider: s > 1, s ≤ 1 and U is empty, and s ≤ 1 and U is

not empty. If s > 1, then we assign zero to the undefined

values and scale down the elements in D to satisfy s = 1.
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If s ≤ 1 and U is empty, then we scale up the elements in

D to satisfy s = 1. Otherwise, we assign (1−s)/k to each

element in U, where k is the number of elements in U.

Normalizing the n-tuples of the projected values lets

us obtain blending vectors for the points in IC that cor-

respond to the selected parts Ri in Ii. These blending vec-

tors can then be propagated to all points in IC by

scattered data interpolation. We construct an interpo-

lating surface through the ith coordinates of these vec-

tors to determine bi of a blending vector b at all points

in IC. For the scattered data interpolation, we use mul-

tilevel B-splines,9 a fast technique for generating a C2-

continuous surface.

After constructing n surfaces, we have an n-tuple at

each point in IC. Since each surface is generated inde-

pendently, the sum of the coordinates in the n-tuple does

not necessarily equal one. In that case, we scale them to

force their sum to one. The resulting n-tuples at all

points in IC define a blending function 
–
BC that satisfies

the user-specified blending constraints.

Figure 15 illustrates the constructed surfaces to

determine 
–
BC used in Figure 3. The heights of the sur-

faces in Figures 15a, 15b, and 15c represent b0, b1, and

b2 of blending vector b at the points in IC, respectively.

In Figure 14b, b1 is 1.0 at the points corresponding to

the eyes and nose in IC, satisfying the requirement spec-

ified in Figure 14b. They are 0.0 around the hair, mouth,

and chin due to the value 1.0 assigned to those parts in

Figures 14a and 14c. Figures 15a and 15c also reflect the

requirements for b0 and b2 specified in Figure 14.

Implementat ion
This section describes the implementation of the poly-

morph framework. We also present the implemented

system’s performance.

Polymorph system

The polymorph system consists of three modules. The

first module is an image morphing system that consid-

ers two input images at a time. It requires the user to

establish feature correspondence among two input

images and generates warp functions between them.

We adopted the morph system presented by Lee at al.3

because it facilitates flexible point-to-point correspon-

dences and produces one-to-one warp functions that

avoid undesirable foldovers. The first module is applied

to (n − 1) pairs of input images, which correspond to the

edges selected to constitute a connected graph G. The

generated warp functions are sampled at each pixel and

stored in binary files.

The second module is the warp propagation system. It

first reads the binary files of the warp functions associat-

ed with the selected edges in graph G. Those warp func-

tions are then propagated to derive n(n−1) warp

functions Wij among all n input images Ii. Finally, the sec-

ond module computes 2n warp functions in both direc-

tions between the central image IC and all Ii. The resulting

warp functions, WiC and WCi, are stored in binary files and

used as the input of the third module, together with all Ii.

The third module is the in-between image generation

system. It lets the user control the blending characteris-

tics and the preprocessing and postprocessing effects in

an in-between image. To determine the blending char-

acteristics of a uniform in-between image, the user must

provide a blending vector. For a nonuniform in-between

image, the user selects regions in Ii and assigns them

blending values. If preprocessing and postprocessing are

desired, the user must specify primitives on images Ii and

I′, respectively, and move them to new positions. Once

the user input is given, the third module first computes

blending function 
–
BC and warp functions Pi and Q. The

module then generates an in-between image by apply-

ing the polymorph framework to Ii, WiC, and WCi.

The polymorph system modules are independent of

each other and communicate by way of binary files stor-

ing warp functions. Any image morphing system can

serve as the first module if it can save a derived warp

function to a binary file. The second module does not

need input images and manipulates only the binary files

passed from the first module. The first and second mod-

ules together serve to compute warp functions WiC and

WCi. Given input images, these modules run only once,
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and the derived WiC and WCi pass to the third module.

The user then runs the third module repeatedly to gen-

erate several in-between images by specifying different
–
BC, Pi, and Q.

Performance

We now discuss the performance of the polymorph

system in terms of the examples already shown. The

input images’ resolution in Figure 2 is 300 × 360, and

we measured the runtime on a Sun Sparc10 worksta-

tion. The first module, when applied to input image pairs

(I0, I1) and (I0, I2), derived warp

functions W01, W10, W02, and W20.

The second module, which runs

without user interaction, computed

WiC and WCi in 59 seconds.

The third module took seven sec-

onds to obtain the uniform in-

between image in Figure 2 from

blending vector b = (1/3, 1/3, 1/3).

A nonuniform in-between image

requires more computation than a

uniform in-between image because

three surfaces must be constructed

to determine blending function 
–
BC.

It took 38 seconds to derive the in-

between image in Figure 3 from the

user input shown in Figure 14. To use

preprocessing and postprocessing,

we must compute warp functions Pi

and Q. It took 43 seconds to derive

the in-between image in Figure 8,

which includes the preprocessing

and postprocessing effects defined

by Figure 12 and Figure 13.

Metamorphosis examples
The top row of Figure 16 shows

the input images, I0, I1, and I2. We

selected three groups of features in

these images and assigned them

blending value bi = 1 to generate in-between images. The

feature groups consisted of the hair, eyes and nose, and

mouth and chin. Each feature group was selected in a

different input image. For instance, Figure 14 shows the

feature groups selected to generate the leftmost in-

between image in the middle row of Figure 16. Notice

that the in-between image is the same as I′ in Figure 6.

The middle and bottom rows of Figure 16 show the in-

between images resulting from all possible combinations

in selecting those feature groups from the input images.

Figure 17 shows the changes in in-between images

when we vary the blending values assigned to selected

feature regions in the input images. For example, con-

sider the middle image in the bottom row of Figure 16.

We derived that image by selecting the mouth and chin,

hair, and eyes and nose from input images I0, I1, and I2,

respectively. Blending value bi = 1 was assigned to each

selected feature group. In Figure 17, we generated in-

between images by changing bi to 0.75, 0.5, 0.25, and

0.0, from left to right and top to bottom. Note that

decreasing an assigned blending value diminishes the

influence of the selected feature in the in-between

image. For instance, with bi = 0, the selected features in

all the input images vanish in the lower right in-between

image in Figure 17.

In polymorph, an in-between image is represented by

a point in the simplex whose vertices correspond to input

images. We can generate an animation among the input

images by deriving in-between images at points that con-

stitute a path in the simplex. Figure 18 shows a meta-

morphosis sequence among the input images in Figure

16. We obtained the in-between images at the sample
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points on the circle inside the triangle shown in Figure

19. The top left image in Figure 18 corresponds to point

p0. The other images, read from left to right and top to

bottom, correspond to the points on the circle in coun-

terclockwise order. Every in-between image blends the

characteristics of all the input images at once. The blend-

ing is determined by the position of the corresponding

point relative to the vertices in the triangle. For exam-

ple, input image I0 dominates the features in the top left

in-between image in Figure 18 because point p0 lies close

to the vertex of the triangle corresponding to I0.

Figure 20 shows metamorphosis examples from four

input images. The input images appear in the top row.

Figure 20e is the central image, a uniform in-between
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image generated by blending vector (1/4, 1/4, 1/4,

1/4). In Figure 20f, the hair, eyes and nose, mouth and

chin, and clothing were derived from Figures 20d, 20a,

20b, and 20c, respectively. We rotated and enlarged the

eyes and nose in Figure 20a in the preprocessing step

to match them with the rest of the face in Figure 20f.

The eyes and nose in Figure 20g resulted from select-

ing those in Figures 20b and 20d and assigning them

blending value bi = 0.5. The hair and clothing in Figure

20g were derived from Figure 20c and 20d, respective-

ly. In Figure 20h, we retained the hair and clothing from

Figure 20a. The eyes, nose, and mouth were blended

from Figures 20b, 20c, and 20d with bi = 1/3. The

resulting image resembles a man with a woman’s hair-

style and clothing.

Discussion
In this section, we discuss the application of poly-

morph in feature-based image composition and exten-

sions of the implemented system.

Application

Polymorph ideally suits image composition applica-

tions that seamlessly blend elements from two or more

images. The traditional view of image composition is

essentially one of generalized cut-and-paste. That is,

we cut out a region of interest in a foreground image

and identify where to paste it in the background image.

Composition theory permits several variations for

blending, particularly for removing hard edges.

Although image composition is widely used to embell-

ish images, current methods are limited in several

respects. First, composition is generally a binary oper-

ation restricted to only two images at a time—the fore-

ground and background elements. In addition,

geometric manipulation of the elements is not effec-

tively integrated. Instead, it is generally handled inde-

pendently of the blending operations.

Our examples demonstrated the use of polymorph-

ing for image composition. We extended the tradition-

al cut-and-paste approach to effectively integrate

geometric manipulation and blending. A composite

image is treated as a metamorphosis between selected

regions of several input images. For example, consider

the regions selected in Figure 14. Those regions seam-

lessly blend together with respect to geometry and color

to produce the in-between image in Figure 6. That

image would otherwise be considerably more cumber-

some to produce using conventional image composi-

tion techniques.

Extensions

In the polymorph system, we use warp propagation

to obtain warp functions Wij for all pairs of input images.

To enable the propagation, we need to derive warp

functions associated with the edges selected to make

graph G connected. The selected edges in G are inde-

pendent of each other in computing the associated

warp functions. We can specify different feature sets

for different pairs of input images to apply different

warp generation algorithms. This permits the reuse of

feature correspondence previously established for a dif-

ferent application, such as morphing between two

images. Also, simple transformations like an affine

mapping may serve to represent warp functions

between an image pair when appropriate.

We derive warp functions Wij between input images

to compute warp functions WiC and WCi. Suppose that

we specified the same set of features for all input

images. For example, given face images, we can spec-

ify the eyes, nose, mouth, ears, and profile of each

input face Ii as its feature set Fi. In this case, WiC and

WCi can be computed directly without deriving Wij.

That is, we compute the central feature set FC by aver-

aging the positions of feature primitives in Fi. We can

then derive WiC and WCi by applying a warp generation

algorithm to the correspondence between Fi and FC in

both directions.

With the same set of features on input images, we

can derive warp functions 
––
Wi for a uniform in-between

image in the same manner as WiC. Given a blending

vector, we derive an in-between feature set F by weight-

ed averaging feature sets Fi on input images. 
––
Wi can

then be computed by a warp generation algorithm

applied to Fi and F. With this approach, we do not need

to maintain WiC and WCi to compute 
––
Wi for a uniform

in-between image. However, this approach requires a

warp generation algorithm to run n times whenever

an in-between image is generated. This takes more

time than the approach we described using WiC and

WCi. In the polymorph system, once we have derived

WiC and WCi, we can quickly compute 
––
Wi by linearly

interpolating warp functions and applying function

compositions.

Conclusions
Polymorph provides a general framework for mor-

phing among multiple images. We extended conven-

tional morphing to derive in-between images from

more than two images at once. This paradigm requires

feature specification among only (n−1) pairs of input

images, a significant savings over all n(n−1)/2 pairs.

The use of preprocessing and postprocessing stages

accommodates fine control over the scaling and posi-

tioning of selected input regions. In this manner we

resolve conflicting positions of selected features in input

images when they are blended to generate a nonuni-

form in-between image.

Polymorph is ideally suited for image composition

applications where elements from multiple images are

blended seamlessly. A composite image is treated as a

metamorphosis between selected regions of input

images. Future work remains in simplifying the feature

specification process through the use of snakes3 and

intelligent scissors.10 ■
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