
EURASIP Journal on
Information Security

Drew et al. EURASIP Journal on Information Security (2017) 2017:2

DOI 10.1186/s13635-017-0055-6

RESEARCH Open Access

Polymorphic malware detection using
sequence classification methods and
ensembles
BioSTAR 2016 Recommended Submission - EURASIP Journal on Information Security

Jake Drew1* , Michael Hahsler2 and Tyler Moore3

Abstract

Identifying malicious software executables is made difficult by the constant adaptations introduced by miscreants in

order to evade detection by antivirus software. Such changes are akin to mutations in biological sequences. Recently,

high-throughput methods for gene sequence classification have been developed by the bioinformatics and

computational biology communities. In this paper, we apply methods designed for gene sequencing to detect

malware in a manner robust to attacker adaptations. Whereas most gene classification tools are optimized for and

restricted to an alphabet of four letters (nucleic acids), we have selected the Strand gene sequence classifier for

malware classification. Strand’s design can easily accommodate unstructured data with any alphabet, including

source code or compiled machine code. To demonstrate that gene sequence classification tools are suitable for

classifying malware, we apply Strand to approximately 500 GB of malware data provided by the Kaggle Microsoft

Malware Classification Challenge (BIG 2015) used for predicting nine classes of polymorphic malware. Experiments

show that, with minimal adaptation, the method achieves accuracy levels well above 95% requiring only a fraction of

the training times used by the winning team’s method.

Keywords: Sequence classification, Minhashing, Polymorphic malware, Strand

1 Introduction
The analogy between information security and biology

has long been appreciated, since Cohen coined the term

“computer virus” [1]. Modern malware frequently takes

the form of a software program that is downloaded and

executed by an unsuspecting Internet user. “Infection” can

be achieved through compromising many thousands of

websites en masse [2], social engineering, or by exploit-

ing vulnerabilities on end-user systems. Regardless of how

the infection occurs, cybercriminals have also undertaken

considerable efforts to evade detection by antivirus soft-

ware [3, 4]. Current signature based detection methods

are highly sensitive to minor changes within the struc-

ture of a malware program. In many cases, a small change

*Correspondence: jakemdrew@gmail.com
1Darwin Deason Institute for Cyber Security, Southern Methodist University,

Dallas, TX, USA

Full list of author information is available at the end of the article

within the malware program alters the program’s signa-

ture sufficiently enough to thwart antivirus detection.

Developers of such polymorphic malware attempt to

avoid the detection of their malicious software by con-

stantly changing the program’s appearance while keep-

ing the functionality the same. This can be achieved by

manipulating the code using multiple forms of obfus-

cation. Techniques include encryption of malicious pay-

loads, obfuscating variable names using character code

shifts, equivalent code replacements, register reassign-

ments, and removal of white space or code minifica-

tion [5–7]. Individual instances of polymorphic malware

canmaintain the same general functionality while display-

ingmany unique source code characteristics. For example,

the computer worm Agobot or Gaobot was first identi-

fied around 2002 [8]. Over 580 variations of this malware

were subsequently identified [9]. Today, eachmalware cat-

egory can spawnmany thousands of mutations, adding up

to as much as one million new “signatures” per day [10]. In

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-017-0055-6&domain=pdf
http://orcid.org/0000-0002-1381-6688
mailto: jakemdrew@gmail.com
http://creativecommons.org/licenses/by/4.0/

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 2 of 12

some cases, variations between malware instances occur

simply to avoid detection. In others, new functionality

emerges over time. Such changes require a robust form of

malware classification which is less influenced by genera-

tional variation.

Gradual changes in polymorphic malware can be seen

as mutations to the code. Thus, these changes are simi-

lar to mutation of biological sequences which occur over

successive generations.

Recently, significant advances have been made in gene

sequence classification in terms of classification accuracy

and processing speed. Originally, classification was based

on expensive sequence alignment tools like BLAST [11]

for comparing sample sequences to other sequences from

known taxonomies. Many newer sequence classification

tools claim to be faster and/or more accurate. Examples

are BLAT [12], the Ribosomal Database Project (RDP)

naive Bayes classifier [13], UBLAST/USEARCH [14],

Strand [15], Kraken [16], and CLARK [17].

Given the similarities between mutations in malware

and in gene sequences, it stands to reason that the tools

developed for gene sequence classification hold the poten-

tial to be applied to polymorphic malware detection.

Consequently, in this paper we set out to apply one such

classifier, called Strand (The Super Threaded Reference-

Free Alignment-Free Nsequence Decoder) [15], to per-

forming classification of polymorphic malware data. We

selected Strand because, unlike the aforementioned gene

sequence classifiers, it can process sequences of arbitrary

alphabets. While BLAST has been adapted by researchers

to process non-biological sequences [18], Strand can be

used on general sequences “out of the box” and performs

more efficiently than BLAST. We then use Strand to clas-

sify the malware dataset used in the Kaggle Microsoft

Malware Classification Challenge (BIG 2015) [19]. We

show how the application achieves comparable accu-

racy to the winning team’s sophisticated malware clas-

sification techniques using only a fraction of the time

required to generate the Strand trainingmodel. This paper

is an expanded version of [20] and includes new fea-

ture extraction and ensemble techniques for the Interac-

tive Disassembler Tool (IDA) files provided by Microsoft

via Kaggle. We explain how 32-Bit vs. 64-Bit hashing

functions influence minhash signature classification accu-

racy and present new results which are approximately

seven times faster than our original results presented

in [20].

2 Background
We now give a brief overview of word-based gene

sequence classification, which is typically done using

word matching. Words are extracted from individual gene

sequences and used for similarity estimations between

two or more gene sequences [21]. Gene sequence words

are sub-sequences of a given length. In addition to words

they are often also referred to as k-mers or n-grams, where

k and n represent the word length. The general concept of

k-mers or words was originally defined as n-grams during

1948 in an information theoretic context [22] as a subse-

quence of n consecutive symbols. We will use the terms

words or k-mers in this paper to refer to n-grams cre-

ated from a gene sequence or other forms of unstructured

input data. Over the past 20 years, numerous methods

utilizing words for gene sequence comparison and classi-

fication have been presented [21].

Methods like BLAST [11] were developed for search-

ing large sequence databases. Such methods search for

seed words first and then expand matches. These so

called alignment-free methods [21] are based on gene

sequence word counts and have become increasingly pop-

ular since the computationally expensive sequence align-

ment method is avoided. In this paper, we refer to the

individual characters (A,C,G,T) within a particular gene

sequence as bases. The most common method for word

extraction uses a sliding window of a fixed size. Once the

word length k is defined, the sliding window moves from

left to right across the gene sequence data producing each

word by capturing k consecutive bases from the sequence.

The RDP classifier [13] uses only eight characters within

each gene sequence word during both training and clas-

sification processing. This makes the total possible num-

ber of unique words (i.e., features for the classifier) only

48 = 65, 536 words. Unfortunately, such a small fea-

ture space makes distinguishing between many sequence

classes challenging.

Rapid abundance estimation and sequence classification

tools [16, 17] use longer words and derive a large speed

advantage by utilizing, instead of word counts, a simple

match between the words extracted from sequence data

to identify the similarity between two sequences. How-

ever, this approach comes at the cost of storing a very large

number of sequence words to make accurate classifica-

tions. For example, the extraction of k = 30 base words

results in 430 ≈ 1018 unique word possibilities within

the training data feature space when an alphabet of four

symbols (A,C,G,T) is considered.

The issues with the need to store a large number

of words becomes even more problematic when the

size of the alphabet increases. This is clearly the case

when we consider compiled code or source code. Strand

addresses this problem by utilizing a form of lossy com-

pression called Minhashing [23] which still supports

sequence comparison, but with a much reduced memory

footprint.

3 Strand
Next, we give a very short overview of the Strand classifi-

cation process (see [15] for more details).

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 3 of 12

Strand uses the map reduction aggregation process

shown in Fig. 1 to rapidly prepare and process input data

in parallel during training or classification. Map reduc-

tion aggregation executes using shared memory during all

stages within each Strand worker process. When multiple

worker processes are used in a cluster, a single master pro-

cess combines the outputs from each of the self-contained

workers as they complete.

During stage 1 of map reduction aggregation, multi-

ple threads extract words and associated classes from the

gene sequence data in parallel. Simultaneously, a stage 2

combiner process minhashes each extracted word eventu-

ally creating a minhash signature for each input sequence

provided. Finally, the unique minhash keys within each

minhash signature are summarized by class during the

reduce stage. During training, the reduce step adds min-

hash values into the training data structure, and during

classification, minhash values are looked up within the

training data structure andminhash intersections for each

class are tabulated to determine one or more class similar-

ity estimates.

3.1 Traditional MapReduce vs. map reduction

aggregation

We now compare map reduction aggregation to more tra-

ditional MapReduce style processing for the benefit of

understanding its advantages. Map reduction aggregation

includes a preliminary map stage, any number of required

intermediate map or combiner stages, and a reduce stage.

In traditional MapReduce, a combiner stage is simply

an intermediate or semi-reducer that further processes

data prior to the final reduce stage [24]. In Strand, all

stages required for map reduction aggregation process-

ing are self-contained within a training or classification

worker process which allows each processing stage access

to the same shared memory at all times during machine

learning. This is highly advantageous when compared to

other traditional forms of MapReduce. The traditional

MapReduce execution overview is illustrated in Fig. 2.

The following steps comprise the typicalMapReduce

model [25]:

1. Input data is split into multiple pieces which are

managed by a master process.

2. Next, worker processes await either map or reduce

tasks provided by the master.

3. Specific operations for both the map and reduce

procedures are specified by the user.

4. The master monitors each map task’s successful

completion and notifies reduce workers of the map

file output locations.

5. Intermediate files on local disks are required between

each of the map, combiner, and reduce stages

executed for traditional MapReduce.

6. When the reduce stage reads in mapped files from

disk, the data is also sorted since a large number of

keys may map to a single reduce task.

7. The reduce function processes each sorted map item

according to the user specified reduce operations

writing results to a separate final result file for each

reduce task executed.

8. Finally, the master returns control to the calling

program once all reduce steps have successfully

completed.

Strand’s map reduction aggregation methods take

advantage of the parallelism constructs afforded by the

MapReduce model while avoiding much of the overhead

associated with intermediate file disk I/O, sorting, and

inter-process communication between the master and

worker processes located on different commodity hard-

ware machines.

Fig. 1 Strand map reduction aggregation processing for a single training or classification worker process

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 4 of 12

Fig. 2 Traditional mapreduce execution overview. Courtesy of [25]

The map reduction aggregation method specifies how

targeted input data will be aggregated within the current

system during training and classification worker process-

ing. Input data is consistently dissected by mapping and

optional combiner processes into individual, independent

units of intermediate work typically comprising consis-

tently mapped gene sequence word keys and class values

that are conducive to simultaneous parallel reduction

processing. The reduce method continually and simul-

taneously aggregates the mapped word keys and values

by eliminating the matching keys and aggregating val-

ues consistent with the specified reduce operations for

all matching keys which are encountered during reduce

processing.

All map, combiner, and reduce stages are self-contained

within a single user specified map reduction aggrega-

tion method allowing access to shared memory between

all processing stages. The user specified map reduction

aggregation method operates within any number of train-

ing and classification worker processes to scale as required

by the user or machine learning task at hand. Strand train-

ing worker processes apply map reduction aggregation to

gene sequence input data, reducing the resulting minhash

signatures and associated classes into the Strand train-

ing data structure. In certain Strand embodiments, class

frequencies are maintained for each unique minhash key.

During classification, minhash values within each min-

hash signature resulting from map reduction aggregation

are looked up within the Strand training data structure

to determine an accurate estimation of Jaccard similarity

between the query sequence and all known classes. Min-

hashing is used as a form of lossy compression to reduce

the overall size of the training data structure and decrease

the processing time required to estimate the similarity

between a query sequence and one or more known classes

within the system.

3.2 Minhashing during map reduction aggregation

Minhashing [23] is utilized within Strand to drastically

reduce the amount of storage required for high-capacity

map reduction aggregation and classification function

operations. Map reduction aggregation requires multiple

pipeline stages when lossy compression via minhashing is

deployed.

In Fig. 1, Strand uses a map reduction aggregation

pipeline including an additional combiner step to facil-

itate minhashing. This process also represents a more

accurate method for Jaccard approximation than mere

random selection of words. Minhashing is a form of lossy

data compression used to remove a majority of the gene

sequence words produced during stage one mapping by

compressing all words into a much smaller minhash sig-

nature.

During stage one of the map reduction aggregation

method shown in Fig. 1, transitional sequence word out-

puts are placed into centralized, thread-safe storage areas

accessible to minhash operation workers. In stage 2,

a pre-determined number of distinct hashing functions

are then used to hash each unique key produced dur-

ing the stage one map operation one time each. As the

transitional keys are repeatedly hashed, only one mini-

mum hash value for each of the distinct hash functions

are retained across all keys. When the process is com-

pleted, only one minimum hash value for each of the

distinct hash functions remains in a vector of minhash

values which represent the unique characteristics of the

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 5 of 12

learning or classification input data within a minhash

signature.

To further enhance minhashing performance, only a

single hash function can be used to generate a minhash

signature. This eliminates the overhead of hashing words

multiple times to support the family of multiple hashing

functions traditionally used to create a minhash signature.

In this scenario, all words are hashed by a single hashing

function and nminimum hash values are selected to make

up the minhash signature. These minimum values repre-

sent a random permutation of all words contained within

the target sequence.

The minhash signature is further reduced by storing

each minhash value in a partitioned collection of nested

categorical key-value pairs. The training data structure

illustrated in Fig. 3 is designed in this manner. The train-

ing data structure’s nested key-value pairs are partitioned

or sharded by each distinct hash function used. For exam-

ple, when the minhashing process uses 100 distinct hash

functions to create minhash signatures, the training data

structure is divided into 100 partitions. All unique min-

hash keys created by hash function 0 are stored within

partition 0 of the training data structure. Likewise, all

unique minhash keys created by hash function 99 are

stored in partition 99. However, when only a single hash

function is used, no partitions are required.

The partitioned training data structure shown in Fig. 3

includes minimum hash values which act as the key in

the nested categorical key-value pair collection. Eachmin-

hash key contains as it value a collection of the classes

which are associated with that key in the system. This

collection of classes represents the nested categorical key-

value pairs collection. Each nested categorical key-value

pair contains a known class as its key and an optional

frequency, weight, or any other numerical value which

represents the importance of the association between a

particular class and the minhash value key.

Fig. 3 The strand partitioned training data structure

4 Classification function processing
Using a single training data structure, multiple classifica-

tion scores can be used. Jaccard Similarity between two

sequences represented by a set of words is calculated using

the intersection divided by the union between the two

sets. No frequency values are required for this similarity

measure. For example, the Jaccard similarity between two

sequences represented by two sets S1 and S2, respectively,

is defined as SJ (S1,S2), where:

SJ (S1,S2) =
|S1 ∩ S2|

|S1 ∪ S2|

Weighted Jaccard Similarity can be used when the class

frequency for unique minhash values are retained in the

nested categorical key-value pair collection and taken

into consideration [26]. The Weighted Jaccard similarity

between two sets S1 and S2 is defined as SWJ (S1,S2),

where S1i is the set frequency of token i in a set, and i

iterates over all tokens:

SWJ (S1,S2) =

∑
imin(S1i ,S2i)∑
imax(S1i ,S2i)

In Strand, Jaccard similarity between the sets of all

words in two sequences is approximated by intersect-

ing two sets of minhash signatures where longer signa-

tures provide more accurate Jaccard similarity or distance

approximations [27]. Class frequencies may be used

to produce other Jaccard Index variations such as the

Weighted Jaccard Similarity [26] shown above. However,

large performance gains are achieved in Strand by using

binary classification techniques where no nested cate-

gorical frequency values or log based calculations are

required during classification function operations. In the

binary minhash classification approach, minhash signa-

ture keys are simply intersected with the minhash keys of

known classes to calculate the similarity between a query

sequence and a known class.

We create a minhash signature by performing min-

hashing on all words in a gene sequence. The minhash

signature is a collection of integers which represent the

unique characteristics of all words created from a par-

ticular gene sequence and is typically much smaller than

original collection of words itself

M = minhash(S)

Minhashing allows us to efficiently approximate the

Jaccard index between two sequences, S1 and S2:

SJ (S1,S2) ≈
|minhash(S1) ∩ minhash(S2)|

k
,

where the intersection operator is used here to indicate for

how many hash functions [28] the minhash values agree

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 6 of 12

between the two signatures. This can be seen as a mul-

tivalue extension of the Simple Matching Coefficient [29]

between two vectors where:

SJ (S1,S2) ≈ SSMC(minhash(S1),minhash(S2))

Next, we discuss scoring the similarity between a

sequence minhash signature and the category minhash

signatures used for classification. Category signatures

are created by combining the minhash signatures of all

sequences for the category in the training set. Note that

this means that for many hash functions, we will have

several minhash values from different sequences. Since

sequences in the same category will be similar, many min-

hash values will agree resulting in a compact category

signature.

After training has completed, classification accuracy

may also be increased by making a single pass of the

training data and pruning or removing minimum hash

values which are associated with more than n cate-

gories. Our own empirical results show that the value

for n may vary based upon a particular set of train-

ing data. In this research, pruning minhash values with

more than one category association achieved the best

results.

However, this means that we do not directly estimate the

Jaccard index between a sequence and the categories, but

we measure similarity based on the number of collisions

between theminhash values in the sequence signature and

the category signature.

Definition 1 (Minhash Category Collision) We define

the Minhash Category Collision between a sequence S rep-

resented by the minhash signature M and a category

signature C as:

MCC(M, C) = |M ∩ C|,

where the intersection is calculated for eachminhash hash-

ing function separately.

We calculate MCC for each category and classify the

sequence to the category resulting in the largest category

collision count. While many other more sophisticated

approaches for scoring sequences are possible, these are

left for future research.

5 Applying strand toMalware classification
The Kaggle Microsoft Malware Classification Challenge

(Big 2015) [19] simulates the file input data processed

by Microsoft’s real-time detection anti-malware products

which are installed on over 160M computers and inspect

over 700M computers each month [19]. The goal of the

Microsoft Malware Classification Challenge is to group

polymorphic malware at a high level into 9 different

classes of malicious programs including: Ramnit, Lol-

lipop, Kelihos_ver3, Vundo, Simda, Tracur, Kelihos_ver1,

Obfuscator.ACY, and Gatak.

5.1 The training and classification input data

Microsoft provided almost a half terabyte of training and

classification input data which included:

1. Binary Files: 10,868 training and 10,873 test files

containing the raw hexadecimal representation of the

file’s binary content with the executable headers

removed.

2. Asm Files: 10,868 training and 10,873 test files

containing a metadata manifest including data

extracted by the Interactive Disassembler Tool. This

information includes things such as function calls,

strings, assembly command sequences and more.

3. Training Labels: Each training and test file name is

a MD5 hash of the actual program. The training

labels file contains each MD5 hash and the malware

class which it maps to. No labels were provided for

the test data input files.

5.2 Challenge evaluation, competitors, and results

Kaggle challenge participants were evaluated using a

multi-class logarithmic loss score. Each test file submis-

sion made required not only the predicted malware class,

but the estimated probabilities for the file belonging to

each of the nine classes. Each submission record included

the file hash and nine additional comma-delimited fields

containing values for the predicted probability that a given

file belongs a particular class. The logarithmic loss score

is defined as:

log − loss = −
1

N

N∑

i=1

M∑

j=1

yij log (pij)

Where N is the number of test set files and M is

the number of classes. The variable yij = 1 when file

i is a member of class j and zero for all other classes.

The predicted probability that observation i belongs

to class j is given by the variable pij. The submitted

probabilities are truncated for the interval [10−15, 1 −

10−15] by pij = max (min (pij, 1 − 10−15), 10−15) prior

to scoring in order to avoid extremes in the log

function [30].

There were 377 international teams competing in the

contest with US$16,000 in available prize money. The

winning team achieved a logarithmic loss ratio score of

0.002833228 where a lower value represents a better score.

The winning team reported that their model produced

an accuracy level greater than 99% during 10-fold cross-

validation [31]. Their process was highly specialized and

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 7 of 12

tailored specifically to the task and available data for

detecting the nine classes of malware presented in the

challenge. Alternatively, we present here the results of a

more general and performance oriented approach which

should work well on many forms of input data where

generational polymorphism occurs.

The winning team’s final submission used a highly com-

plex ensemble of models [32] using a combination of fea-

tures including: byte 4-gram instruction counts, function

names and derived assembly features, assembly op-code

n-grams, disassembled code segment counts, and image

based features using the binary file data. Generating these

features required 500 GB of disk space for the original

training data and an additional 200 GB for engineered fea-

tures. While the final features used for the model required

only 4 GB, both feature creation and generating the top

performing model takes around 48 h. Furthermore, it

takes an additional 24 h to generate the best model ensem-

ble which produced the winning score [32]. In short, the

winning submission takes 72 h to produce using a Google

Compute Engine with 16 CPUs, 104 GB RAM, and 1

TB of disk space. The winning model requires about 700

GB of disk space including 500 GB for the original data

and an additional 200 GB of disk space for the meta data

generated.

6 Applying strand toMicrosoft Malware
classification challenge

While Strand was originally designed to process FASTA

formatted gene sequence files, only minor changes were

required to accommodate for reading and processing

the malware bytes files as input. This is possible since

unlikemany other sequence classifiers and k-mer counters

[16, 17, 33], Strand uses no special encoding of sequence

data and supports any Unicode character within the

sequences.

During gene sequence classification, the short

reads of sequence data commonly generated by

modern sequencers can be in either forward or

reverse-complement order. As a result of this limi-

tation, classification searches on sequence data must

be made using each input sequence’s forward and

reverse-complement effectively doubling the number of

classification searches required. This particular feature

of Strand is gene sequence specific and was irrelevant

for malware classification. After turning off the reverse-

complement search and modifying the sequence file

parsing routine, Strand was able to train and classify

against malware data with no other changes.

6.1 Developing binary file features for strand

We now discuss the feature engineering required to pre-

pare bytes files for training and classification using Strand.

All of the malware feature engineering required to convert

bytes file program data into Strand sequences fits into

just a few lines of code. While conversion of the raw hex

data to a sequence alphabet (A,C,T,G) is possible, it is

not required to produce satisfactory classification results.

The disassembled code files (Asm files) were not used

to produce the score and accuracy results presented later

in Tables 1 and 2 and are covered in detail in the next

section.

Figure 4 illustrates the typical content encountered

within the bytes hex data files provided by Microsoft.

The first eight characters of each line contain a line

number, and the last line shows how some hex con-

tent is unavailable and displayed as “??”. Both the line

numbers and “??” symbols are removed during Strand

processing.

When reading each bytes file, Strand uses the code

shown in Fig. 5 to convert the bytes malware files

into a Strand sequence. During processing each car-

riage return, space, and “?” character are removed. This

produces a single string or Strand sequence contain-

ing all hex content read from the malware file. Once

the malware hex data is cleaned, sequence words of

length k or k-mers are generated by Strand as previously

described.

6.2 Developing Asm file features for strand

Each Asm file provided for training or classification con-

tains a metadata manifest which includes details extracted

from each malware program’s binary content such as

function calls, assembly commands, strings, and other rel-

evant executable data elements. This data was provided

by Microsoft to Kaggle and generated by the Interac-

tive Disassembler tool. We focused on extracting only

the assembly language commands from each pure code

segment contained within each Asm file.

Figure 6 shows a sample of assembly commands within

an Asm file’s pure code segment. Using known valid

assembly language commands [34] and additional tokens

extracted from the Asm training data, a list of 1251 unique

Asm file commands and tokens were collected. Next, the

commands were assigned a unique index number which

was converted from a base 10 to base 4 value. Finally,

each base 4 number was encoded to a 5 character gene

sequence value where 0 = A, 1 = C, 2 = G, and

3 = T. For instance, the assembly command “adc” was

assigned the base 10 index 4, which converts to the base

4 value 00010, and is encoded to the gene sequence value

“AAACA”.

Using this approach each Asm file’s content is con-

verted to a contiguous string of gene sequence char-

acters. Furthermore, this encoding gives each assembly

command or Asm file token a common length. Unique

assembly commands and tokens collected ranged from

2 to 15 characters in length. Processing this data in

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 8 of 12

Table 1 Ten-fold cross-validation results when using strand with 32-bit hash codes and bytes file hex sequences to predict 10 folds

from the Microsoft malware training data

10-Fold cross-validation results Binary 32-Bit

Fold Classified Correct Sensitivity Precision Training Prediction

1 1087 979 90.06% 90.06% 6:46:31 0:30:38

2 1087 998 91.81% 91.81% 6:25:38 0:30:26

3 1087 1011 93.01% 93.01% 6:35:01 0:31:50

4 1087 995 91.54% 91.54% 6:34:53 0:33:53

5 1087 1004 92.36% 92.36% 6:21:12 0:28:12

6 1087 1003 92.27% 92.27% 6:27:41 0:28:13

7 1087 1006 92.55% 92.55% 6:49:04 0:33:34

8 1087 993 91.35% 91.35% 6:32:48 0:31:45

9 1086 1001 92.17% 92.17% 6:26:36 0:33:26

10 1086 995 91.62% 91.62% 6:51:28 0:29:05

a fashion similar to the bytes files as raw text would

result in many of the unique token values being broken

across each gene sequence word created during Strand

training and classification processing. For example, cre-

ating gene sequence words within Strand of length 50

would ensure that each gene sequence word contained

a block of five assembly commands or Asm file tokens.

After testing word sizes of 45, 50 ,55, and 60, empiri-

cal results showed that a block of five commands opti-

mized both sensitivity and precision during classification

processing.

Extracting only the assembly command sequence data

from each Asm file also greatly reduced the total size

and volume of data being processed by Strand dur-

ing training and classification resulting in an almost

1/7 decrease in processing time when compared to

models produced by using the bytes files as input.

Finally, Asm command sequences also produce a more

accurate classification result as well which is shown in

Section 7.3.

7 Malware classification results using strand
While we did not produce a winning logarithmic

loss score for the Kaggle Microsoft Malware Classi-

fication Challenge (BIG 2015) [19], we were able to

achieve a top score of 0.047999572 when using a 64-

bit minhashing configuration with Strand. We used sev-

eral techniques including model ensembling, pruning,

and prediction adjustments based on the confidence

scores produced by Strand to achieve our best score.

These results are discussed in detail in the following

sections.

The individual Asm sequence model is our most

impressive result achieving greater than 98.59% accuracy

during ten-fold cross validation and a substantial perfor-

mance gain when compared to the winning team’s 72 h

Table 2 Ten-fold cross-validation results when using Strand with 64-bit hash codes and bytes file hex sequences to predict 10 folds

from the Microsoft malware training data

10-fold cross-validation Results Binary 64-Bit

Fold Classified Correct Sensitivity Precision Training Prediction

1 1087 1053 96.87% 96.87% 6:42:54 0:33:22

2 1087 1054 96.96% 96.96% 5:53:21 0:31:36

3 1087 1069 98.34% 98.34% 6:50:26 0:34:12

4 1087 1052 96.78% 96.78% 6:32:24 0:35:00

5 1087 1065 97.98% 97.98% 6:50:25 0:32:50

6 1087 1061 97.61% 97.61% 6:36:49 0:35:21

7 1087 1063 97.79% 97.79% 6:50:02 0:34:48

8 1087 1053 96.87% 96.87% 6:33:02 0:33:30

9 1086 1059 97.51% 97.51% 6:28:38 0:30:58

10 1086 1058 97.42% 97.42% 6:35:53 0:27:17

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 9 of 12

Fig. 4Malware bytes file hex data content

training time. In fact, we are able to generate the Asm

training models for 10-fold cross validation in under 45

min while processing 224 GB of training data and 189 GB

of test data as shown in Table 3 below.

7.1 Influence of hash code size and pruning on

classification accuracy

The individual size of each hash code value making up

Strand’s minhash signature is critical for producing accu-

rate classification results. While hashing words into 32

or 64-bit integers can reduce the memory footprint by

very large amounts, the selected word length can also

influence collisions, drastically impacting classification

accuracy.

Table 4 illustrates how the available unique hash values

per unique gene sequence word and potential collisions

produced are influenced by both word length and the

selection of an appropriate hash code size. For example,

over 1 billion potential collisions per word are observed

when hashing a 31 base gene sequence word into only

32-bits while a 64-bit hash provides ample room for

each unique 31 base word value. Finally, the remaining

sections of Fig. 4 show that a 32-bit hashing function

provides enough unique values to map single words up

to 16 bases in length, while a 64-bit hashing function

supports unique values for single words up to 32 bases

in length. Collisions may still occur when storing a 31

base word as a 64-bit hash. However, they are drastically

reduced when compared to storing a 31 base word as a

32-bit hash.

Finally, minimum hash values which are associated

with multiple classification categories my add noise to a

given model since multiple categories may receive votes

when a minhash signature contains such a multi-category

value. The Strand classifier includes a function which may

be executed after a training model has been created to

remove any minhash values within the training data that

are associated with multiple categories. Empirical results

show a small lift in classification accuracy on both the

bytes and Asmmodels when all minhash values associated

with more than one category are removed.

7.2 Binary file classification results

Table 1 shows ten-fold cross-validation results for mod-

els using only bytes file hex data. Strand averaged

91.88% accuracy across the ten folds predicted using

only 32-bit hashing functions. Table 2 shows 10-fold

cross-validation results for the version of Strand using

64-bit hash codes. Strand averaged 97.41% accuracy

across the 10 folds. When using 64-bit hashing func-

tions, we were able to drastically reduce the logarith-

mic loss score produced from 0.452784 to 0.222864.

While memory consumption increased slightly, there

was no large degradation in training or classification

performance.

The training times in Tables 1 and 2 represent the time

required to train on 90% of the 10,868 Malware Clas-

sification Challenge training data records (9782 training

records). The classification times in both tables reflect the

time required to classify the number of records reflected

in the “Classified” column which represent 10% of the

training data for each fold. The 32-bit and 64-bit versions

of Strand required 5.482 and 5.483 total hours, respec-

tively, to classify all of the 10,868 training records during

10-fold cross validation.

Fig. 5 Strand C# code used to process malware .bytes hex data files

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 10 of 12

Fig. 6 Sample of assembly commands in an Asm file pure code segment

The 64-bit model takes up approximately 5 GB in

memory and 436 MB compressed on disk while the

32-bit version takes up approximately 3 GB in mem-

ory and 255 MB compressed on disk. Due to the small

size of the model, multiple copies can be loaded into

memory for multiple worker processes to take advan-

tage of process level parallelism when classifying large

volumes of data. For example, 15 classification work-

ers were used to process the test files provided by

Microsoft.

7.3 Asm file classification results

When using the sequence data created from Asm file

assembly commands and tokens, we were able to increase

accuracy during ten-fold cross-validation while drasti-

cally reducing training and classification times to under

45 and 5 mins respectively per fold. The primary rea-

son for this large gain in performance is a substantial

reduction in input data required for processing when

compared to the bytes file models. For instance, 10,873

test data files generated for Asm sequences requires 720

MB size on disk while the same number of correspond-

ing bytes files required 47.3 GB. Likewise, 10,868 training

files generated for Asm sequences required 773 MB on

disk while the same number of corresponding bytes files

also require 47.3 GB. The 64-bit Asmmodel achieved a log

loss score of 0.062721944 when used to predict the Kaggle

test data.

Table 3 shows ten-fold cross-validation results for mod-

els using Asm sequence data as input. We were able to

achieve a higher average sensitivity of 98.59% across each

of the ten folds when compared to the bytes files. Further-

more, both training and classification times are approxi-

mately eight times faster on all folds. The training times

in Table 3 represent the time required to train on 90% of

the 10,868 Malware Classification Challenge training data

records (9782 training records). The classification times

reflect the time required to classify the number of records

reflected in the “Classified” column which represent 10%

of the training data for each fold.

Table 3 Ten-fold cross-validation results when using Strand with 64-bit hash codes and Asm sequences to predict 10 folds from the

Microsoft malware training data

10-fold cross-validation results ASM 64-Bit

Fold Classified Correct Sensitivity Precision Training Prediction

1 1087 1071 98.53% 99.17% 0:40:21 0:04:19

2 1087 1071 98.53% 98.98% 0:39:11 0:05:31

3 1087 1073 98.71% 99.17% 0:39:45 0:05:19

4 1087 1061 97.61% 98.61% 0:40:44 0:05:24

5 1087 1072 98.62% 99.17% 0:37:12 0:04:49

6 1087 1074 98.80% 99.26% 0:40:21 0:05:12

7 1087 1076 98.99% 99.35% 0:41:51 0:04:33

8 1087 1076 98.99% 99.26% 0:31:06 0:04:36

9 1086 1071 98.62% 98.89% 0:38:43 0:05:08

10 1086 1070 98.53% 98.89% 0:33:34 0:04:11

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 11 of 12

Table 4 Average collisions per gene sequence word varying

base word size for 32 and 64-bit hash codes

Hash size Sequence Avg. seq. words per hash value

32 bits 31 base word 1 073 741 824

64 bits 31 base word 0.25

32 bits 16 base word 1

64 bits 32 base word 1

Unlike the previous bytes file models, Strand’s high level

of accuracy leaves it unable to make a handful of pre-

dictions in some cases (43 out of 10878) which makes

distinguishing between Precision and Sensitivity relevant.

In the bytes model case, both values are the same for

each fold. While Strand’s average sensitivity was 98.59%

across each of the ten folds, precision is calculated by

excluding the 43 cases where Strand was unable to make

a prediction. Strand’s precision for the Asm model during

ten-fold cross-validation is 99.10% when considering only

the records which Strand is able to predict.

7.4 Ensemble classification results

We tried multiple approaches for creating ensembles

using both the bytes and Asm models from Strand. While

adding together minhash category scores for both models

did produce a very small lift in accuracy during cross-

validation, we were unable to lower the Kaggle log loss

score using this approach.

There were 61 out of 10,877 Kaggle test records for

which the Asm model was unable to make a prediction.

The final bytes model had no such records. We com-

bined predictions from both models by defaulting to the

bytes model prediction only when no Asm file prediction

was available. This approach produced a Kaggle log loss

score of 0.081511944. A similar and possibly more accu-

rate version of this ensemble could be made by generating

a second Asmmodel using a shorter token length of 50 vs.

55 to pick up additional missing predictions. However, we

leave this to future research.

Strand produces minhash collision scores for each

known category within the training data repository.

Results from multiple training models may be utilized

to perform more accurate predictions in some instances.

Since minhash collisions approximate Jaccard similarity,

winning category MCC scores also reflect confidence in

a particular prediction. For example, a 2400 value min-

hash signature with 2400 collisions for a given category

indicates a Jaccard similarity of approximately 1 while

only 15 collisions may indicate a Jaccard similarity of only

0.00625%. In fact, 15 out of the 16 incorrect predictions

for Fold 1 in Table 3 had less than 221 out of 2400minhash

collisions. This represents a Jaccard similarity of approx-

imately 0.092%, while all had less than 517 or 0.095%

Jaccard similarity approximation.

Our best log loss score was achieved by taking the Asm

and bytes ensemble and setting the values for all categories

to 1/M (total number of categories) for predictions with

very low confidence. In this case, the values for each cat-

egory were 1/9 or equal probability when predictions had

less than 15 minhash collisions. Empirical results showed

that 15 was the best threshold out the values 5, 10, 15,

20, and 25. Using this approach changed 23 out of 10,877

predictions to equal probability producing a final log loss

score of 0.047999572.

8 Conclusions
In this paper we have demonstrated how modern gene

sequence classification tools can be applied to large-scale

malware detection. In this first study, we have shown how

the gene sequence classifier Strand can be used to pre-

dict multiple classes of polymorphic malware using data

provided by the Kaggle Microsoft Malware Classification

Challenge (Big 2015).While the approach, using onlymin-

imal adaptation, did not best the accuracy scores achieved

by the highly tailored approach that won the competition,

we did achieve classification accuracy levels exceeding

98%while making predictions over seven times faster than

the training times required by the winning team.

From the success of this demonstration, we conclude

that gene sequence classifiers in general, and Strand in

particular, hold great promise in their application to secu-

rity datasets. In addition to polymorphic malware, we

anticipate that these classifiers can be used anywhere data

sequences are used, such as in network traces of attacks or

the identification of ransomware.

Authors’ contributions

JD implemented the code required for the Strand application and performed

all experiments on the BIG 2015 Polymorphic Malware Dataset. JD wrote the

first draft version of this paper. MH made substantial contributions to the

architecture of strand and the design of experiments carried out within the

paper. MH gave final approval of the version to be published and made many

revisions to the final publications content. TM contributed to the cyber

security component of the paper making major revisions and drafting large

portions of publication sections related to cyber security. All authors read and

approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details
1Darwin Deason Institute for Cyber Security, Southern Methodist University,

Dallas, TX, USA. 2Department of Engineering Management, Information, and

Systems, Southern Methodist University, Dallas, TX, USA. 3Tandy School of

Computer Science, The University of Tulsa, Tulsa, OK, USA.

Received: 6 October 2016 Accepted: 12 January 2017

References

1. F Cohen, Computer viruses. Comput. Secur. 6(1), 22–35 (1987).

doi:10.1016/0167-4048(87)90122-2

2. NPP Mavrommatis, MARF Monrose, in USENIX Security Symposium. All your

iframes point to us (USENIX Association, Berkeley, 2008), pp. 1–16

3. McAfee: For Consumers (2014). https://www.mcafee.com/consumer/en-

us/store/m0/index.html. Accessed 06 Jan 2016

http://dx.doi.org/10.1016/0167-4048(87)90122-2
https://www.mcafee.com/consumer/en-us/store/m0/index.html
https://www.mcafee.com/consumer/en-us/store/m0/index.html

Drew et al. EURASIP Journal on Information Security (2017) 2017:2 Page 12 of 12

4. Norton Norton Anti (2014). http://us.norton.com. Accessed 06 Jan 2016

5. M Christodorescu, S Jha, S Seshia, D Song, RE Bryant, et al, in Security and

Privacy, 2005 IEEE SymposiumOn. Semantics-aware malware detection

(IEEE, Los Alamitos, 2005), pp. 32–46

6. P Ször, P Ferrie, in Virus Bulletin Conference. Hunting for metamorphic,

(2001)

7. JM Drew, Mass Compromise of IIS Shared Web Hosting for Blackhat SEO:

A Case Study (2014). http://blog.jakemdrew.com/2015/03/10/mass-

compromise-of-iis-shared-web-hosting-for-blackhat-seo-a-case-study/.

Accessed 06 Jan 2016

8. Wikipedia: Agobot (2014). https://en.wikipedia.org/wiki/Agobot.

Accessed 06 Jan 2016

9. M Bailey, J Oberheide, J Andersen, ZM Mao, F Jahanian, J Nazario, in

Recent Advances in Intrusion Detection. Automated classification and

analysis of internet malware (Springer, Heidelberg, 2007), pp. 178–197

10. V Total, File Statistics During Last 7 Days. https://www.virustotal.com/en/

statistics/. Accessed 15 Jan 2015

11. SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman, Basic local alignment

search tool. J. Mol. Biol. 215(3), 403–410 (1990)

12. WJ Kent, Blat-the blast-like alignment tool. Genome Res. 12(4), 656–664

(2002)

13. Q Wang, GM Garrity, JM Tiedje, JR Cole, Naive bayesian classifier for rapid

assignment of RNA sequences into the new bacterial taxonomy. Appl.

Environ. Microbiol. 73(16), 5261–5267 (2007)

14. RC Edgar, Search and clustering orders of magnitude faster than blast.

Bioinformatics. 26(19), 2460–2461 (2010)

15. J Drew, M Hahsler, in Proceedings of the 5th ACM Conference on

Bioinformatics, Computational Biology, and Health Informatics. Strand: fast

sequence comparison using mapreduce and locality sensitive hashing

(ACM, New York, 2014), pp. 506–513

16. DE Wood, SL Salzberg, Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol. 15(3), 46 (2014)

17. R Ounit, S Wanamaker, TJ Close, S Lonardi, Clark: fast and accurate

classification of metagenomic and genomic sequences using

discriminative k-mers. BMC Genomics. 16(1), 236 (2015)

18. E Peterson, D Curtis, A Phillips, J Teuton, C Oehmen, in Intelligence and

Security Informatics (ISI), 2013 IEEE International Conference On. A

generalized bio-inspired method for discovering sequence-based

signatures, (2013), pp. 330–332. doi:10.1109/ISI.2013.6578853

19. Kaggle: Microsoft Malware Classification Challenge (BIG 2015) (2015).

https://www.kaggle.com/c/malware-classification. Accessed 04 Nov 2015

20. J Drew, M Hahsler, T Moore, in International Workshop on Bio-inspired

Security, Trust, Assurance and Resilience (BioSTAR 2016). Polymorphic

malware detection using sequence classification methods (IEEE, Los

Alamitos, 2016)

21. S Vinga, J Almeida, Alignment-free sequence comparison—review.

Bioinformatics. 19(4), 513–523 (2003)

22. CE Shannon, A mathematical theory of communication. ACM SIGMOBILE

Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)

23. A Gionis, P Indyk, R Motwani, et al, in VLDB. Similarity search in high

dimensions via hashing, vol. 99, (1999), pp. 518–529

24. hadooptutorial.info: Combiner in MapReduce (2014). http://

hadooptutorial.info/combiner-in-mapreduce/. Accessed 02 Apr 2015

25. J Dean, S Ghemawat, Mapreduce: simplified data processing on large

clusters. Commun. ACM. 51(1), 107–113 (2008)

26. S Ioffe, in DataMining (ICDM), 2010 IEEE 10th International Conference On.

Improved consistent sampling, weighted minhash and l1 sketching (IEEE,

Los Alamitos, 2010), pp. 246–255

27. A Rajaraman, JD Ullman,Mining of Massive Datasets. (Cambridge

University Press, Cambridge, 2012)

28. J Leskovec, A Rajaraman, JD Ullman,Mining of Massive Datasets.

(Cambridge University Press, Cambridge, 2014)

29. Wikipedia: Simple Matching Coefficient. https://en.wikipedia.org/wiki/

Simple_matching_coefficient. Accessed 14 Aug 2015

30. Kaggle: Evaluation (2016). https://www.kaggle.com/c/malware-

classification/details/evaluation Accessed 14 Jan 2016

31. Kaggle: Microsoft Malware Winners’ Interview: 1st place, “NO to

overfitting” (2015). http://blog.kaggle.com/2015/05/26/microsoft-

malware-winners-interview-1st-place-no-to-overfitting Accessed: 02

Nov 2015

32. L Wang, Microsoft Malware Classification Challenge (BIG 2015) First Place

Team: Say No To Overfitting (2015). https://github.com/xiaozhouwang/

kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf

Accessed: 02 Nov 2015

33. G Marcais, C Kingsford, A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics. 27(6), 764–770 (2011).

doi:10.1093/bioinformatics/btr011. http://bioinformatics.oxfordjournals.

org/content/27/6/764.full.pdf+html

34. F Cloutier, x86 Instruction Set Reference. http://www.felixcloutier.com/

x86/. Accessed 18 Jul 2015

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://us.norton.com
http://blog.jakemdrew.com/2015/03/10/mass-compromise-of-iis-shared-web-ho sting-for-blackhat-seo-a-case-study/
http://blog.jakemdrew.com/2015/03/10/mass-compromise-of-iis-shared-web-ho sting-for-blackhat-seo-a-case-study/
https://en.wikipedia.org/wiki/Agobot
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/
http://dx.doi.org/10.1109/ISI.2013.6578853
https://www.kaggle.com/c/malware-classification
http://hadooptutorial.info/combiner-in-mapreduce/
http://hadooptutorial.info/combiner-in-mapreduce/
https://en.wikipedia.org/wiki/Simple_matching_coefficient
https://en.wikipedia.org/wiki/Simple_matching_coefficient
https://www.kaggle.com/c/malware-classification/details/evaluation
https://www.kaggle.com/c/malware-classification/details/evaluation
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st -place-no-to-overfitting
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st -place-no-to-overfitting
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Sayn otooverfitting.pdf
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Sayn otooverfitting.pdf
http://dx.doi.org/10.1093/bioinformatics/btr011
http://bioinformatics.oxfordjournals.org/content/27/6/764.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/27/6/764.full.pdf+html
http://www.felixcloutier.com/x86/
http://www.felixcloutier.com/x86/

	Abstract
	Keywords

	Introduction
	Background
	Strand
	Traditional MapReduce vs. map reduction aggregation
	Minhashing during map reduction aggregation

	Classification function processing
	Applying strand to Malware classification
	The training and classification input data
	Challenge evaluation, competitors, and results

	Applying strand to Microsoft Malware classification challenge
	Developing binary file features for strand
	Developing Asm file features for strand

	Malware classification results using strand
	Influence of hash code size and pruning on classification accuracy
	Binary file classification results
	Asm file classification results
	Ensemble classification results

	Conclusions
	Authors' contributions
	Competing interests
	Author details
	References

