
Polymorphic Pipeline Array: A Flexible Multicore
Accelerator with Virtualized Execution for Mobile

Multimedia Applications

Hyunchul Park∗ Yongjun Park Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, MI 48109

{parkhc, yjunpark, mahlke}@umich.edu

ABSTRACT

Mobile computing in the form of smart phones, netbooks, and per-
sonal digital assistants has become an integral part of our every-
day lives. Moving ahead to the next generation of mobile de-
vices, we believe that multimedia will become a more critical and
product-differentiating feature. High definition audio and video as
well as 3D graphics provide richer interfaces and compelling ca-
pabilities. However, these algorithms also bring different computa-
tional challenges than wireless signal processing. Multimedia algo-
rithms are more complex featuring more control flow and variable
computational requirements where execution time is not dominated
by innermost vector loops. Further, data access is more complex
where media applications typically operate on multi-dimensional
vectors of data rather than single-dimensional vectors with simple
strides. Thus, the design of current mobile platforms requires re-
examination to account for these new application domains. In this
work, we focus on the design of a programmable, low-power ac-
celerator for multimedia algorithms referred to as a Polymorphic

Pipeline Array, or PPA. The PPA is designed with flexibility and
programmability as first-order requirements to enable the hardware
to be dynamically customizable to the application. PPAs exploit
pipeline parallelism found in streaming applications to create a
coarse-grain hardware pipeline to execute streaming media appli-
cations. PPA resources are allocated to each stage depending on
its size and ability to exploit fine-grain parallelism. Experimental
results show that real-time media applications can take advantage
of the static and dynamic configurability for increased power effi-
ciency.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Systems]: Real-time
and Embedded Systems

General Terms

Design, Algorithms

∗Currently with Texas Instruments, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

Keywords

Programmable Accelerator, Software Pipelining, Virtualization

1. INTRODUCTION
Mobile computing has become a ubiquitous part of society. More

than half the world’s population now owns on a cell phone, and in
some countries, the number of active cell phone contracts out num-
bers the population. The embedded computer systems that power
mobile devices demand high performance and energy efficiency
to operate in an untethered environment. Traditionally, hardwired
accelerators have done the heavy lifting in terms of computation.
Mobile platforms are designed as heterogeneous systems-on-a-chip
consisting of multiple processors (general-purpose and/or digital
signal processors) and special purpose accelerators constructed for
the most compute-intensive tasks. The performance/energy point
achieved by these designs is impressive - performing tens of giga-
operations per second at sub-Watt power levels.

Moving forward, there is a need to create more programmable
mobile computing platforms. Programmable solutions offer several
key advantages:

• Multi-mode operation is enabled by running multiple appli-
cation standards (e.g., two video codecs) or even multiple
applications on the same hardware. Accelerator-based solu-
tions require a union of hardware blocks to accomplish all
desired applications.

• Time to market of an implementation is lower because the
hardware can be re-used across multiple platforms. More
importantly, hardware integration and software development
can progress in parallel.

• Prototyping and software bug fixes are enabled on existing
silicon with a software change. On-going evolution of speci-
fications are supported in a natural way by allowing software
changes after the chipset and even the device have been man-
ufactured.

• Chip volumes are higher as the same chip can support multi-
ple standards without requiring hardware changes.

Traditionally, the design of programmable mobile computing plat-
forms has focused on software defined radio [3, 2, 9, 18, 30]. These
systems are geared towards wireless signal processing that contain
vast amounts of vector parallelism. As a result, single-instruction
multiple-data (SIMD) hardware is recognized as an effective strat-
egy to achieve both high-performance and programmability. SIMD
provides high efficiency because of its regular structure, ability to

scale lanes, and low control cost. However, mobile computing sys-
tems are not limited to wireless signal processing. High-definition
video, audio, 3D graphics, and other forms of media processing are
high value applications for mobile terminals. In fact, many believe
the quality and types of media support will be the key differentiat-
ing factors of future mobile terminals.

Media applications in a mobile environment offer a number of
different challenges than wireless signal processing. First, the com-
plexity of media processing algorithms is typically higher than sig-
nal processing. Computation is no longer dominated by simple vec-
torizable innermost loops. Instead, loop bodies are larger with sig-
nificant amounts of control flow to handle the different operating
modes and inherent complexity of media coding. This results in
differential dynamic computational requirements. Further, signifi-
cant time is spent in outer loops and acyclic code regions. As a re-
sult, SIMD parallelism is less prevalent and less efficient to exploit
in media algorithms [20]. Second, the data access complexity in
media processing is higher. Signal processing algorithms typically
operate on single dimension vectors, whereas video algorithms op-
erate on two or three dimensional blocks of data where the block
size is variable. Thus, video and other forms of media processing
push designs to have higher bandwidth and more flexible memory
systems. Finally, the power budget is generally more constrained
for media processing than wireless signal processing because of
higher usage times.

To address these challenges, this work focuses on the design of
a flexible media accelerator for mobile computing referred to as a
polymorphic pipeline array or PPA. Our design does not exploit
SIMD parallelism, but rather relies on two forms of pipeline par-
allelism: coarse-grain pipeline parallelism found in streaming ap-
plications [11, 12, 16] and fine-grain parallelism exploited through
modulo scheduling of innermost loops [26]. The PPA consists of
an array of simple processing elements (PEs) that are tightly in-
terconnected by a scalar operand network and a shared memory.
Groups of four PEs form cores that are driven by a single instruc-
tion stream. These cores can execute tasks (filters in a streaming
application) independently or neighboring cores can be coalesced
to execute loops with high degrees of fine-grain parallelism. The
use of a regular interconnection fabric allows the core boundaries
to be blurred, thereby allowing the hardware to be customized dif-
ferently for each application.

The PPA design is inspired by coarse-grain reconfigurable archi-
tectures (CGRAs) that consist of an array of function units inter-
connected by a mesh style interconnect [21, 22]. In CGRAs, small
register files are distributed throughout the array to hold temporary
values and are accessible only by a small subset of function units.
Example commercial CGRA systems that target mobile devices are
ADRES [22], MorphoSys [19], and Silicon Hive [25]. Tiled archi-
tectures, such as Raw, are closely related to CGRAs though are
not intended for mobile computing [27]. CGRAs have two impor-
tant weaknesses that limit their effectiveness on media applications.
First, resources are statically organized as 4x4 or 8x8 grids. Within
a CGRA, there is full connectivity between PEs and to memories,
but across CGRAs only simple connectivity, such as a bus, exists.
Mapping applications across more than one CGRA is thus inef-
ficient. Second, CGRAs are geared towards executing innermost
loops with high efficiency. Outer loop and acyclic code is often
executed on a host processor, or in systems like ADRES, a small
subset of the PEs function as a VLIW processor [22]. The net re-
sult is that a large fraction of the resources are not utilized unless
an innermost loop is executing. The PPA extends the CGRA de-
sign to provide more inherent flexibility and increase efficiency in
applications that are not dominated by innermost loops.

CentralRegisterFile

FU4 FU5 FU6 FU7

FU0 FU1 FU2 FU3

FU8 FU9 FU10 FU11

FU14 FU15FU12 FU13

Mem
Config Register

FileFU

Register

ToNeighbors

CentralRegisterFile
FromNeighborsor

(a)

(b)

0

0.2

0.4

0.6

0.8

1

2x2 4x2 2x4 4x4 6x4 4x6 6x6 8x8

Pe
rf

or
m

an
e

Ra
�

o

Array Size

< 32 < 64

< 96 < 128

< 160

Figure 1: (a) CGRA loop accelerator, (b) Impact of the array
size on the performance across loops with varying numbers of
instructions.

This paper offers the following three contributions:

• An analysis of the available parallelism and its variability in
three media applications (MPEG4 audio decoding, MPEG4
video decoding, and 3D graphics rendering).

• The design, operation, and evaluation of the PPA - a cus-
tomizable media accelerator for mobile computing.

• A virtualized modulo schedule that can execute innermost
loops with a run-time varying number of PPA resources as-
signed to it.

2. MOTIVATION
In this section, we identify the current limitations of CGRAs

based on an analysis of three applications from different multime-
dia domains in mobile environments: audio decoding, video decod-
ing, and 3D graphics. Then, we suggest some high-level architec-
ture choices to overcome these bottlenecks and increase scalability
for future embedded systems. The applications consist of:

• AAC decoder: MPEG4 audio decoding, low complexity pro-
file

• H.264 decoder: MPEG4 video decoding, qcif profile

• 3D: 3D graphics rendering

A CGRA that is similar to ADRES [21] (Figure 1(a)) is used
as the baseline accelerator. ADRES consists of 16 function units
(FUs) interconnected by a mesh style network. Register files are
associated with each FU to store temporary values. The FUs can
execute common integer operations, including addition, subtrac-
tion, and multiplication. In contrast to FPGAs, CGRAs sacrifice
gate-level reconfigurability to increase hardware efficiency. As a
result, they have short reconfiguration times, low delay character-
istics, and low power consumption. With a large number of com-
puting resources available on CGRAs, loop level parallelism can

total SWP

loops loops

AAC 102 36

3D 260 83

H.264 269 81

(a) (b)

0

50

100

150

200

250

VLIW 4x4 VLIW 4x4 VLIW 4x4

AAC 3D H.264

E
x
e

c
u

ti
o

n
 t

im
e

 (
M

 c
y

c
le

s)

SWP time

acyclic time

Figure 2: (a) Number of software pipelineable loops, (b) Break-
down of execution time for software pipelineable and acyclic
regions.

be exploited by software pipelining compute intensive innermost
loops.

ADRES can also function as a VLIW processor to execute acyclic
and outer loop code. The first row of FUs and the central register
file provide VLIW functionality, while the remaining three rows of
FUs are de-activated for non-innermost loop code. Other CGRAs
simply execute non-innermost loop code on the host processor and
de-activate the entire array. ADRES provides a higher performance
option by eliminating slow transfer of live-in values between the
host and the array as well as dedicating more functional resources
to the acyclic code than a typical host processor would have.

2.1 Fine-grain Parallelism
Multimedia applications typically have many compute intensive

kernels that are in the form of nested loops. With a large number
of computing elements available, CGRAs can effectively acceler-
ate the nested loops with software pipelining that can increase the
throughput of the innermost nest by overlapping the executions of
different iterations.

Figure 2 shows how much fine-grain parallelism resides in the
three target benchmarks. The number of total loops and the number
of software pipelineable (SWP) loops are shown in Figure 2(a). The
execution time breakdown between SWP loops and the remainder
of the code is shown in Figure 2(b). Each bar in Figure 2(b) shows
the breakdown of execution time spent in the software pipelineable
regions (SWP time) and the rest of the application (acyclic time).
The left bar of each benchmark in Figure 2(b) is the breakdown of
execution time spent when only the VLIW processor (top row of the
CGRA accelerator) is used for the whole application (no software
pipelining), while the right bar shows the breakdown when SWP re-
gions are executed on the entire CGRA. First, we can see that there
are many opportunities for exploiting fine-grain parallelism in the
benchmarks. On average, 35% of loops are software pipelineable
and 71% of execution time is spent in SWP regions. When the
CGRA accelerator is employed to map the software pipelineable
loops, there are large performance gains of 1.76, 3.25, and 1.48
for AAC, 3D, and H.264, respectively. So, it is very important for
multimedia applications to exploit fine-grain parallelism inherent
in them, and CGRAs are effective platforms executing such loops.

An interesting question at this point is how we improve the per-
formance even further when more resources are available in an em-
bedded system. One possible solution is scaling the accelerator to
a bigger array. By introducing more resources into the accelerator,
we can possibly reduce the execution time spent in SWP regions.
To assess the impact of scaling the accelerator, we took all the SWP
regions in the three benchmarks and mapped them onto accelerators
with various array sizes. First, we categorized the SWP loops into
groups based on the number of instructions and measured how the

(a) (b) (c)

Input

RenderingA0

RenderingA1

RenderingA2

RenderingB

Output

31%

31%

27%

9%

Input

HuffDecode

InverseQuant

MSStereo

PNS

IntensityStereo

TNS

Imdct

PostProcess

Output

30%

14.5%

1.5%

1.0%

1.2%

1.0%

46%

5.5%

Input

EntropyDec

InverseQuant

InverseTrans

MotionComp

Output

13%

9%

8%

45%

Deblock25%

Stage 0

Stage 1

Stage 2

Stage 3

Stage 0

Stage 1

Stage 2

Stage 3

Stage 0

Stage 1

Stage 2

Figure 3: Task Graphs: (a) AAC, (b) 3D, and (c) H.264. Nodes
represent tasks, solid edges show control flow, and dotted edges
show data transfers.

average throughput of each group changes as the size of the CGRA
increases. The array sizes of the CGRA are shown in the X-axis
of Figure 1(b), and the scaled throughput on the Y-axis. Through-
put is normalized to the theoretical upper bound of each loop when
mapped onto the 4x4 array. Here, we can notice that the through-
put saturates as we increase the size of the CGRA. Even for the
biggest group, the throughput does not increase that much beyond
the size of 4x4. Moreover, the execution time spent on SWP loops
is relatively small when all the SWP loops are mapped onto the ac-
celerator as shown in Figure 2(b). For H.264, the execution time of
SWP region is only 20% of the total time after accelerating them.

The analysis here reveals the inherent weakness of CGRAs; ac-
celeration is limited to the innermost loops. To further improve the
overall throughput, it is necessary look beyond innermost loops to
include outer loops and acyclic regions.

2.2 Coarse-Grain Pipeline Parallelism
An effective way to accelerate outer loops and acyclic regions

is using coarse-grain pipeline parallelism that is rich in multimedia
applications due to their streaming nature [12]. Figure 3 shows the
task graphs of the target benchmarks. Solid lines indicate control
flow edges, while data communications between tasks are shown as
dotted lines. Each packet of data is processed in a streaming man-
ner through various computing kernels represented as oval nodes.
There is an implicit outer loop around these task graphs that loops
over input data packets. Coarse-grain pipeline parallelism can be
extracted when the task graph can be split into multiple stages
that communicate in a feed-forward fashion and without any inter-
iteration dependences contained within a single stage. By mapping
stages onto different pieces of hardware, the execution of outer loop
iterations can be pipelined and the overall throughput can be in-
creased. Stages can consist of loops as well as acyclic blocks of
code, hence parallelism of this form is not limited to innermost
loops. The amount of execution time in each stage is annotated
next to the nodes. Here, we assume no accelerator in the system
and only the VLIW processor (first row of the CGRA) is used.

When pipelining the three benchmarks with the stages shown in
Figure 3 (horizontal dashed lines denote stage boundaries), perfor-

0

1

2

3

4

5

0 20000 40000 60000 80000 100000

0

1

2

3

4

5

0 20000 40000 60000 80000 100000

0

1

2

3

4

5

0 20000 40000 60000 80000 100000

iter N, stage 4

0

50000

100000

150000

200000

250000

1 21 41 61 81 101 121 141 161 181

c
y

c
le

s

iteration

AAC

3D

(a) (b)

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

iter N+1, stage 3

iter N+2, stage 2

0

10

20

30

40

50

60

VLIW 4x4 VLIW 4x4 VLIW 4x4 VLIW 4x4

st 0 st 1 st 2 st 3

E
x

e
cu

ti
o

n
 t

im
e

 (
M

 c
y

cl
e

s)

(c)

Figure 4: Static/dynamic computation variance: (a) Stage execution time reduction with 4x4 CGRA, (b) Stage execution time change
over iterations, and (c) Resource requirement changes in a single iteration.

mance gains of 2.09x, 3.11x, and 1.93x are observed for AAC, 3D1,
and H.2642, respectively. Indeed, the coarse-grain pipeline paral-
lelism can expose a great deal of performance gain. The stages that
are limiting the overall throughput of the pipeline can be acceler-
ated if fine-grain parallelism is available.

2.3 Computation Variance
Exploiting coarse-grain pipeline parallelism along with fine-grain

parallelism can overcome the limitation of CGRAs and further en-
hance the single-thread performance. The application can be par-
titioned into different stages and each stage can be mapped onto a
different CGRA to exploit coarse-grain pipeline parallelism. The
abundant computing resources in each CGRA can accelerate the
innermost loops when fine-grain parallelism is available. The ma-
jor challenge here is how to determine the size of CGRAs so that
a right amount of resources are allocated to efficiently exploit fine-
grain parallelism. In this analysis, two types of computation vari-
ance are identified.

Static Variance: The computational requirements vary across
different pipeline stages. For AAC (Figure 3(a)), there are two
nodes that have a high execution time ratio: HuffDecode (30%) and
Imdct (46%). However, their computation patterns are quite differ-
ent. HuffDecode performs huffman decoding that is a very sequen-
tial process, while Imdct contains a large number of filters with
large amounts of fine-grain parallelism. Figure 4(a) shows how
the execution time changes when more resources added for each
stage. The first stage with HuffDecode node does not get much
benefit from the extra resources due to its sequential nature. On
the other hand, the third stage with Imdct can achieve 4.7x speedup
when mapped on a 4x4 array. Similarly, RenderingA in 3D and
MotionComp in H.264 can run 3.9x and 2.4x faster on a 4x4 ar-
ray, respectively. So, not all pipeline stages can get benefit from
the large number of computing resources and resource allocation
should adapt to the computation variance across different stages.

Dynamic Variance: Another important behavior to characterize
in these applications is the dynamic variance in computational re-
quirements. This metric is important because it indicates whether
a static apportioning of resources would yield predictable execu-
tion times and utilization of the hardware. Conventional wisdom
is that processing time is relative constant for media applications,
e.g., each iteration of a loop might operate on the row of an image.

Figure 4(b) shows the execution time for one stage in AAC and
3D over the first 200 frames (outer loop iterations). The x-axis is
the iteration number and the y-axis is the execution time in cycles
on a 4x4 CGRA. As shown, execution time is not constant. In
fact, there is a large variation in execution time. AAC regularly

1RenderingA was fully unrolled.
2Inter-iteration dependency prevented pipelining the outermost
loop. Instead, an inner loop in the solid box was pipelined.

oscillates between 150k and 200k cycles, while 3D starts off high
and gradually becomes less. This behavior is due to several factors.
First, there is an abundance of control flow in these applications
that changes the amount of processing required. Second, there is
some predictable regularity to the behavior. For example, frames
of different types occur at regular intervals and require relatively
constant processing time. Finally, in 3D, the processing time levels
off after an initial startup. Again, such behavior is not constant, but
is predictable.

To view the variability in a different manner, Figure 4(c) shows
the resource requirements for three consecutive coarse grain stages
from AAC over time. The x-axis is cycle number and the y-axis
is the number of resources that achieve the best performance. As
shown, resource requirements change during the execution of a sin-
gle frame. For the top and bottom stages, the resource requirements
are dramatic, going from 16 to near zero. In general, resources
are allocated based on a worst-case scenario. In this case, each
stage would require 16 resources. But, the utilization will be very
poor with this approach. Rather, this behavior indicates that idle
resources could possibly be loaned to neighboring stages or that
shared resources could be designated.

2.4 Summary and Insights
The analysis of these media applications provides several in-

sights. First, multimedia applications are rich in both fine-grain
and coarse-grain pipeline parallelism. Further, these forms of par-
allelism are not mutually exclusive. Rather, they can cooperate to
eliminate the opportunities that were left out when only one of them
is exploited. Pipeline parallelism can accelerate the entire appli-
cation including acyclic regions, while fine-grain parallelism can
accelerate the pipe stages that limit the overall throughput of the
pipeline. Second, resource requirements not only vary statically
across different pipeline stages, but also dynamically both during
the processing of a single frame of data and across different frames.
Dynamic partitioning of resources is thus necessary to simultane-
ously achieve high performance and high utilization.

A central challenge is how to allocate finite resources across dif-
ferent pipeline stages. Pipeline stages have different levels of fine-
grain parallelism. For example, the HuffDecode kernel in AAC
and Deblock in H.264 are inherently sequential and putting more
resources will not improve the performance. Conversely, Imdct
can greatly benefit with more resources. Also, the high dynamic
variance in computation continually changes the resource require-
ments. In real systems, worst-case execution times are often used.
But, in these applications, worst-case will grossly exaggerate the
number of needed resources. The conclusion is that a flexible ex-
ecution substrate that facilitates changing the resource allocation
over time is necessary.

PE PE

PE PE

Core 0

MEM

Arbiter

PE PE

PE PE

Core 2

PE PE

PE PE

Core 1

PE PE

PE PE

Core 3

MEM MEM MEM

PE PE

PE PE

Core 4

MEM

Arbiter

PE PE

PE PE

Core 6

PE PE

PE PE

Core 5

PE PE

PE PE

Core 7

MEM MEM MEM

(a) (b)

FU 0 RF 0

I-CACHE
Loop

Buffer

FU 1 RF 1

PE 0 PE 1

FU 2 RF 2 FU 3 RF 3

PE 2 PE 3

Core 5

RF 1

RF 3

RF 0 RF 1

Loop

Buffer

Loop

Buffer

V-

Control

pred

RF

Figure 5: PPA Overview: (a) PPA with 8 cores, (b) Inside a
single PPA core

3. POLYMORPHIC PIPELINE ARRAY

3.1 Overview
The Polymorphic Pipeline Array (PPA) is a flexible multicore ac-

celerator for embedded systems that can exploit both fine-grain par-
allelism found in innermost loops and pipeline parallelism found
in streaming applications. The PPA design is inspired by CGRAs
but with extensions for both static and dynamic configurability. A
PPA consists of multiple simple cores that are tightly coupled to
neighboring cores in a mesh-style interconnect. A PPA with eight
cores is shown in Figure 5(a). There are a total of 32 processing
elements (PEs) in this PPA, each containing one FU and a register
file. Four PEs are combined to create a core that can execute its
own instruction stream. Each core has its own scratch pad memory
and column buses connect four PEs to a memory access arbiter that
provides sharing of scratch pad memories among cores.

The main characteristics of PPA can be summarized as follows:

• Simple and distributed hardware: The resources are fully dis-
tributed including register files and interconnect. Also, there
is no dynamic routing logic. All the communications are stat-
ically orchestrated by compiler.

• Fast inter-core communications via direct connections be-
tween register files

• Cores can be combined to create a larger logical core to ex-
ploit the available fine-grain parallelism in large loop bodies.

• Virtualized execution: PPA can adapt to fluctuating resource
availability and dynamically partition the array during the ex-
ecution

3.2 Core Description
Inside a Core: Figure 5(b) shows a detailed diagram of a single

PPA core. There is an instruction cache and a loop buffer. A loop
buffer is a small SRAM that stores instructions for modulo sched-
uled loops. A loop buffer minimizes the instruction fetch power
for high density code of loops. Each PE contains a 32 bit FU and
a 16 entry register file with 3 read/3 write ports. Four PEs in a
core share a 64 entry central predicate register file with 4 read/4
write ports, but there is no central register file for data. All FUs
can perform integer arithmetic operations and one FU per core can
do multiply operation. A simple mesh network connects the FUs
in a core. Register files are accessed by the same topology of mesh
interconnect(not shown in the figure). All the FUs can read/write
from the central predicate file.

Inter-core Connectivity: Inter-core interconnect is shown in
dotted lines in the figure. There are three types of inter-core inter-
connect in a PPA: data register file, virtualization controller, and
loop buffer. Direct connections between neighboring RFs in differ-
ent cores allow fast inter-core communications. These RF-to-RF

loop virtualization info

.
.

.
.

Virtualization Controller

v
ta

g
 0

v
ta

g
 1

v
ta

g
 2

v
ta

g
 3

p
re

d

Lo
o

p
 B

u
ff

e
rs

Neighboring Virtual Controllers

I-Cache / Loop Buffers

w
e

w
e

w
e

w
e

ArbitratorArbitrator

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

stage 0

stage 3stage 1

stage 2

(a)

MEM 0 MEM 1 MEM 2 MEM 3 MEM 4 MEM 5 MEM 6 MEM 7

in
st

(b)

P
E

s

sh
u

ff
le

 n
e

tw
o

rk

w
e

in
st

Figure 6: (a) An example of PPA running AAC, (b) Virtualiza-
tion Controller

connections can be utilized when a loop is mapped onto multiple
cores. We found the direct connections between register files more
efficient than FU connections especially for virtualization (discussed
later). Interconnect between neighboring virtualiztion controller is
used for inter-core control communications such as hand-shaking
for coarse-grain pipelining and resource availability check for vir-
tualized execution. Finally, loop buffers can transfer instructions to
the neighboring cores also for virtualized execution. The hardware
components for virtualized execution is explained in details later in
Section 4.

Memory System: For memory accesses, a memory bus con-
nects FUs in the same column to the memory access arbiter, al-
lowing only one memory access per cycle for FUs in the same
column. A memory arbiter has three memory sharing configura-
tions and provides different load latencies when multiple scratch
pad memories are shared among FUs in different columns. The
sharing modes for a memory arbiter is as follows.

• No sharing : FUs can access the memory in the same column
only. Load latency is 2 cycles.

• Sharing of 2 : FUs in two columns can share memories in the
same columns. Load latency is 4 cycles.

• Sharing of 4 : FUs in four columns can share memories in
the same columns. Load latency is 6 cycles.

For example, when the arbiter operates in the sharing 4 configu-
ration, all the FUs in four cores (i.e., cores 0, 1, 2, and 3) can access
the four memories below them (mem 0, 1, 2, and 3) with a load la-
tency of 6 and up to 4 memory accesses can be made per cycle.
Memory sharing only occurs when cores are combined to create a
bigger logical core for software pipelining of loops. The increased
load latency is not really a big issue since software pipelining can
often hide the long latency of operations. Memory sharing can also
be used to form a bigger logical memory when memory require-
ment is high, behaving as a banked memory system.

Communication with Host Processor The PPA behaves as a
media accelerator connected to a host processor such as ARM.
Since the whole region of the application is off-loaded to the PPA,
the communication between the host and PPA is limited to the pro-
cessing data elements. The data transfer is performed through a
standard AMBA bus along with a DMA. The arbiter in PPA only
controls DMA transfer among PPA cores and is not shared by the
host.

3.3 Supporting Coarse-Grain Parallelism
Figure 6(a) shows how the applications can be accelerated using

different static resource partitions for a PPA with eight cores. Based
on the analysis in Section 2, we provided the possible mapping of
AAC on the PPA shown in Figure 5(a). For the stages with a high
ratio of acyclic regions (not software pipelineable), a single core
is allocated for execution. Stage 0 performs a Huffman decoding
that is very sequential and one core is assigned to this stage. The
memory requirement is not high in AAC, so all the memories oper-
ate in the no sharing mode. Bold solid lines in the figure show the
stages that access memory. When a stage finishes processing data,
the output of each stage is transferred to the next stage’s memory
by a DMA engine. DMA transfers can be omitted when memories
are shared by the arbiter. For example, stage 2 can read the input
from MEM 2 and write the processed data in MEM 5 that can be ac-
cessed by stage 3 directly. Even though memory sharing increases
the load latency, both stage 2 and stage 3 contain high ratio of SWP
region that can tolerate the latency overhead.

3.4 Supporting Fine-Grain Parallelism
The abundance of computation resources makes PPA an attrac-

tive solution for exploiting fine-grain parallelism. When there is
large amounts of fine-grain parallelism in a inner-most loop, multi-
ple cores in the PPA are merged together to create a bigger logical
core. In the logical core, one core behaves as master and orches-
trates the execution of all the participating cores in lock step.

Static Partitioning: The PPA array can be partitioned statically
based on the resource requirements of each coarse-grain pipeline
stage. An example of static partitioning was provided in the previ-
ous section with AAC(Figure 6(a)). The benefit of static partition-
ing lies in the highly optimized schedules since each compute in-
tensive kernel is scheduled targeting only one sub-array. However,
this approach does not adapt to dynamically changing resources
availability discussed in Section 2.3. When an application has a
large variation in execution pattern, static partitioning can either
result in low utilization of resources, or not be able to fully accel-
erate the overall performance when there is not enough resources
available.

Dynamic Partitioning with Virtualization: Coarse-grain pipeline
stages in multimedia applications have different execution patterns.
As a result, the resource availability in the PPA fluctuates at run-
time and it is crucial to adapt to different availabilities and maxi-
mally utilize them for improving the overall throughput of the ap-
plications. One approach is to statically generate a set of different
schedules each of which targets different numbers of resources. For
example, a loop can be scheduled for 1x1, 1x2, 2x1 add 2x2 PPA
cores beforehand, and an appropriate schedule can be selected at
run-time depending on the availability of resources. Each sched-
ule can be highly optimized since the target is fixed. However, the
resulting code bloat prevents it from an attractive solution for em-
bedded systems where minimizing code size is important.

The code bloating problem can be minimized through virtual-
ized execution where a single schedule is converted into different
schedules dynamically with regard to the changing resource avail-

ability. For virtualization, both compiler and hardware support
are required. The compiler is responsible for generating sched-
ules that can be easily converted at run-time (see Section 4). Then,
the hardware can dynamically allocate resources and perform the
conversion of schedules. However, the major down side is the sub-
optimal scheduling result. Since the compiler has to target multiple
sub-arrays, the scheduling result might not be as efficient as static
partitioning approach. Also, there is run-time overhead for virtual-
ization.

3.5 Hardware Support for Virtualization
The major challenges in hardware are how to migrate the sched-

ule across different cores at run-time for virtualized execution and
how to communicate with neighboring cores for checking the re-
source availability. For these purposes, a virtualization controller
(VC) is implemented in each core (Figure 6(b)). Since each core
has a loop buffer, the PPA can prepare for a virtualized execution by
migrating particular sections of a schedule into neighboring cores
from the owning core where the whole schedule is stored.

Each instruction in the loop buffer is tagged with two bits of in-
formation (virtualization tag). This information is used on two pur-
poses. First, it tells to which core the instruction is migrated when
resource allocation is changed at run-time. When more resources
become available, the VC copies a subset of instructions to the
neighboring cores through the connections between loop buffers.
The loop buffer interconnect goes through a shuffle network that
can change the orientation of the copied schedule. Depending on
the location of the available core, the schedule needs to be flipped
horizontally or vertically. Another use of vtag is predicating the
execution of inter-core communications that only execute when the
schedule is spread over multiple cores. The VC compares the cur-
rent resource allocation status and the vtag, and generates a predi-
cate input for the inter-core communication instructions.

4. COMPILER SUPPORT

4.1 Edge-centric Modulo Scheduling
In the PPA, all the communications including inter-core commu-

nications are orchestrated by the compiler. An effective compiler
is essential to utilizing the abundance resources. The major chal-
lenge in scheduling with the presence of distributed hardware is in
managing the communications among resources. Without any cen-
tralized resources, communication is often the bottleneck in finding
optimal schedules, more so than the actual computation.

We extended the edge-centric modulo scheduler(EMS) [24] that
was previously developed for CGRAs. EMS focuses primarily on
the routing problem, with placement being a by-product of the
routing process. Edges in the dataflow graph are categorized ac-
cording to their characteristics, and EMS takes different strategies
to route them. Since the schedule is constructed only by routing
edges, a number of heuristics on routing cost metrics were devel-
oped to improve the quality of schedules. In our baseline accel-
erator(Figure 1(a)), only the innermost loops are mapped onto the
array and the remaining (acyclic and outer loop) regions are ex-
ecuted on the VLIW processor. Since we are offloading acyclic
regions onto PPA as well as loops, we modified the EMS algorithm
so that it can support both cyclic and acyclic regions.

4.2 How to Virtualize
Virtualization requires the compiler to generate a single schedule

that can be dynamically mapped onto different target arrays. There
are two approaches for converting schedules: folding and expand-

A’

B’ A’

B’

A0

B0

A1

B1

A0

B0

A1

B1

A0

B0 A0

B0

A1

B1 A1

B1

2 cores 1 core 1 core core X core Y

(a) (b)

A0 A1

B0 B1 A0 A1

B0 B1

A0

A0A1

A1 B0

B0B1

B1

core X core Y

(c)

Figure 7: (a) Folding with interleaving, (b) Expanding with
horizontal cut, (c) Expanding with vertical cut

ing. In both approaches, converting (transforming a schedule from
one array to another) should be performed in a way that observes
the following constraints:

• Modulo constraint: each resource in a converted schedule is
used only once in every II cycles

• Register pressure: : virtualization should not drastically in-
crease register pressure

• Dependency constraint: producer-consumer relation is ob-
served in a converted schedule

4.2.1 Folding Approach

Figure 7(a) shows how the folding scheme works for 1x2 ar-
ray(two cores). First, the compiler generates a schedule shown on
the left. Here, the schedule is composed of two sections(A and B).
Each section is divided into two sub-schedules for each core. A0
and B0 run on core 0, and A1 and B1 run on core 1. Two itera-
tions of the target loop is shown in the figure; the light gray boxes
show the first iteration, and the dark gray ones for the second it-
eration. In the kernel state(shown as an empty rectangle), all the
sub-schedules(A0, A1, B0, and B1) run in parallel in two cores.
When only a single core is available, the whole schedule needs to
run on a single core and the original schedule is folded to create a
narrower and longer schedule shown as A’ and B’. The new sched-
ule is created by interleaving the two sub-schedules cycle by cycle.
For example, each operation at cycle N in A0 is placed at cycle 2N
in A’, and one at cycle N in A1 is placed at cycle (2N + 1) in A’.
Cycle-wise interleaving is the only way to observe the dependency
constraint in the new schedule without re-scheduling. The resource
constraint is also kept naturally since (A0, B0) and (A1, B1) time-
share the resources in a single core. Since A0 and B0 execute in
parallel in the original schedule in the same core, the modulo con-
straint is observed in the new schedule(also observed for A1 and
B1).

The major downside of folding is the increased register pres-
sure. Since the two sub-schedules are interleaved cycle-wise, the
communications bypassing the register file in the original schedule
need to be buffered for one cycle. They need either passing through
a register file(requires re-scheduling) or buffering latches inserted
for each interconnect(hardware overhead). Also, the register live
ranges in each section overlap with the other section, further in-
creasing the register pressure.

4.2.2 Expanding Approach

The expanding scheme starts with a schedule targeting single
core as shown on the left in Figure 7(b). Here, each section (A or
B) is divided into two sub-sections(A0, A1 or B0, B1). The first ex-
panding approach is pipelining each section across two cores(shown
on the right in Figure 7(b)). Basically, the original kernel schedule
is cut horizontally in half and each half runs on a different core.
In each core, two sub-sections are running in parallel((A0, B0) or

A

B

C

D

A

B

A

B

C

D

A

B

C

D

II = 8

II = 4

II = 4

II = 2

II = 2

II = 2

II = 2

core 0 core 0 core 1 core 0 core 1 core 2 core 3

II = 8

II = 4
II = 2

(a) (b) (c) (d)

A B

C D

A B C D

A

B C

D

(e)

A

B

C

D

A

BA

B A

B

C

D C

DC

D C

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

C

C

C

C

C

D

D

D

Figure 8: (a) Execution in a single core, (b) Execution in two
cores, (c) Execution in four cores, (d) Multi-level modulo con-
straints, (e) Code expansion

(A1, B1)). Since they were already running in parallel in the orig-
inal schedule, the modulo constraint is naturally observed. The
dependency constraint is also observed since operations are placed
in the original order. However, this approach results in frequent
inter-core communications shown as the dotted lines in the figure.
The communications across the sub-sections(i.g. A0 and A1) incur
the register copy operations via RF connections.

Another expanding approach is cutting the original schedule ver-
tically as shown in Figure 7(c). This approach pipelines each sec-
tion within single core, rather than across two cores. Again, the
dependency constraint is naturally observed. Also, the inter-core
communications are limited to the section boundary(between A1
and B0). The register pressure does not increase since the consecu-
tive sub-sections are running back-to-back in a single core. The ma-
jor challenge in this approach is the additional modulo constraints
between sub-sections((A0, A1) or (B0, B1)). For example, A0 and
A1 were running sequentially in the original schedule, but they run
in parallel in the new schedule. Therefore, there is no guarantee that
two sub-sections have exclusive resources usage in a single core.

Finally, there is an approach that converts the original schedule
in Figure 7(b) into the left schedule of Figure 7(a). This cannot be
done easily due to the dependency constraint of A0 and A1. Since
there can be producer-consumer relations between A0 and A1, they
cannot run in parallel without re-scheduling.

4.3 Virtualized Modulo Scheduling
Based on the observations in the previous section, we propose

Virtualized Modulo Scheduling that takes the expanding approach
with vertical cut in Figure 7(c). This approach has no hardware
overhead of buffer latches in folding and less inter-communication
over horizontal expanding. Also, the register pressure is minimal
compared to the other two schemes. We proceed the discussion on
VMS with a running example of a schedule that can be mapped
onto three different target arrays: 1x1, 2x1, and 2x2 , shown in
Figure 8.

4.3.1 Minimizing Inter-core Communication

In VMS, a schedule targeting smaller array is divided into the
same number of sections as the number of cores in a bigger array.
When the schedule is expanded at run-time, each section is individ-
ually pipelined in a single core. For example, a loop in Figure 8(a)
shows a schedule for 1x1 array. This schedule can be dynamically
converted into schedules for 1x2 and 2x2 arrays at run-time. Since
it can be mapped onto up to 4 cores, the whole iteration is divided
into four sections(A, B, C, and D). When it is mapped onto a 1x2 ar-
ray, A and B run on core 0, and C and D run on core 1(Figure 8(b).
Each section will be mapped to an individual core when 2x2 array
is available(Figure 8(c)). Therefore, the inter-core communications
can occur only at the section boundaries. Since they can only use
the limited inter-core interconnect and the live register values need
be transferred across the cores, it is important to minimize the com-
munications across the section boundaries.

For this purpose, the dataflow graph of the target loop is parti-
tioned into four clusters minimizing the number of edge cuts. This
is a traditional min-cut problem where each edge-cut denotes an
inter-core communication. For this, we implemented direct con-
nections between neighboring register files that can transfer live
values across the section boundaries. So, the inter-core commu-
nication can occur without wasting the existing computation re-
sources with move operations.

When a loop is scheduled, special register transfer instructions
are added for the live values across section boundaries by the com-
piler. These instructions are guarded with predicates that are only
enabled when the schedule is expanded across multiple cores.

4.3.2 Multi-level Modulo Constraints

The biggest challenge in VMS is to enforce different levels of
modulo constraint, so that no resource conflict occurs when the
schedule is converted at run-time. Figure 8 shows a schedule that
can be mapped onto different target arrays. In 1x1 array, the target
loop runs with II=8 as shown in Figure 8(a). Here, the modulo con-
straint of II=8 is imposed for all four sections. When it is mapped
onto 1x2 array(Figure 8(b)), two different schedules run on each
core with II=4. A and B are running in parallel in core 0, so are
C and D in core 1. Therefore, the additional modulo constraint of
II=4 needs be applied for (A, B) and (C, D), separately. It is impor-
tant to note that this second level modulo constraint is only applied
to the sections running in the same core. Therefore, there is no
modulo constraint of II=4 imposed between A and C, or between
B and D. Finally, each individual section should observe the third
level modulo constraint of II=2(Figure 8(c)). In conclusion, three
levels of modulo constraints need be imposed when scheduling the
target loop for 1x1 array as shown in Figure 8(d).

In general, modulo constraints limit the number of available schedul-
ing slots to (II x # resources). For example, the number of available
slots in Figure 8(a) is 32(= 8 × 4). One might think that the addi-
tional modulo constraints can further reduce the number of avail-
able slots. In reality, the number of available slot stays the same
since each level of modulo constraints has different scopes. The
scopes of three modulo constraints are shown in Figure 8(d). For
example, when scheduling the first section A, the scheduler needs
to observe both II=8 and II=2 modulo constrains(B is not scheduled
yet, so II=4 is not imposed at this point). This reduces the number
of slots to 8(2 x 4), but this is actually what is available in a single
core when section A is individually pipelined in Figure 8(c). The
scheduling slots that were limited by II=2 can be used when sec-
tion B is scheduled, since the scope of II=2 is only valid for section
A. When section B is scheduled, the modulo constraint of II=4 is
imposed instead between section A and B.

Scheduling example: An example of scheduling with multi-
level modulo constraints are shown in Figure 9. A dataflow graph
is shown in Figure 9(a) and it is partitioned into section A and B.
For illustration purposes, partitioning was performed arbitrarily(not
min-cut partitioning). The target arrays are 1x1 array(1 core) and
1x2 array(2 cores) and target IIs are 4 and 2 for 1x1 and 1x2 ar-
ray, respectively. First, section A is scheduled onto 1x1 array with
II=4 and II=2. Figure 9(b) shows the scheduling result of section A
on a single core with 4 FUs. Bold letters with underline show the
actual placement of the operations. Gray letters with underline are
occupancies due to the modulo constraint of II=4 and normal gray
letters show occupancies due to the modulo constraint of II=2. Af-
ter scheduling section A, only 12 slots are available(Figure 9(b)).
However, when section B is scheduled, occupied slots due to mod-
ulo constraint of II=2 becomes available since this modulo con-
straint is limited to section A. Figure 9(c) shows the available slots

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

A0

A1 A2

A3A0

A1 A2

A3

A4

A4

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

B0

B0

B0

B0

B1

B1

B1

B1A0

A1 A2

A3

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

B0

B0

B0

B0

B1

B1

B1

B1

B2

B2

B2

B2
B3

B3

B3

B3

A4

B0

B1 B2

B3

A0

A1 A2

A3

A4

B0

B1

B2

B3

A0

A1 A2

A3

A4

B1

B2

B0

B3

cycle

0

1

2

3

4

5

6

7

FU 0 FU 1 FU 2 FU 3 FU 0 FU 1 FU 2 FU 3 FU 0 FU 1 FU 2 FU 3 FU 0 FU 1 FU 2 FU 3

FU 0 FU 1 FU 2 FU 3

FU 0 FU 1 FU 2 FU 3 FU 0 FU 1 FU 2 FU 3

II = 4

II = 2 II = 2

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 9: (a) Dataflow graph, (b) - (e) Mapping examples, (f)
Modulo schedule for 1x1 array, (g) Modulo schedules for 1x2
array

for section B. First, operation B0 is placed at FU1 in cycle 2(slot
(1, 2)) in Figure 9(d). The II=4 modulo constraint marks slot (1, 6)
as occupied and the II=2 modulo constraint makes slot (1, 0) and
(1, 4) occupied. So, there is no resource conflict so far. When oper-
ation B1 is placed at slot (2, 4), II=2 modulo constraint marks slot
(2, 2) and (2, 6) as occupied, but they are already occupied by A3.
However, this is not a real resource conflict since this II=2 modulo
constraint is only valid for section B. II=2 modulo constraint be-
comes effective only when the schedule is expanded to 1x2 array
where section A and section B run on different cores. The final
schedule of section B is shown in Figure 9(e). Even though the II
for a bigger array is multiple of the smaller II in this example, the
IIs don’t have to be multiple of smaller one in reality. The con-
straints among the multi-level IIs are explained in the following
section.

Code migration at run-time is also shown in Figure 8(e). Here, a
schedule in a single core is expanded over to 2x2 array. Migration
in this case is performed in two steps. First, the instructions in
section C and D are copied to the core on the right. In the next step,
section B and C are copied to the cores below.

Determining Multi-level IIs: In conventional modulo schedul-
ing, the minimum II is selected based on the number of available
resources(ResMII) and the length of inter-iteration dependency cy-
cles(RecMII). Starting from the minimum II, the scheduler increases
the II until it finds a valid schedule. In VMS, scheduling is per-
formed with multiple IIs as shown in Equation 1, where N refers to
the number of cores in target array. Before scheduling with virtual-
ization, VMS generates test schedules for each target array without
virtualization. The achieved II of each level (TestIIk in Equa-
tion 3) determines the benefit of virtualization.

For the first level II, which targets the smallest array, ResMII and
RecMII are calculated in a conventional way.While the ResMII for
level k changes depending on the number of cores(Ck in Equa-
tion 2), the RecMII stays the same since it is not related to the
number of resources available. The calculated ResMII and RecMII
for each level define the lower bound of II to try(Equation 3). The
lower bound is also determined by the II in the next level. When the
II for a bigger array becomes greater than the II for a smaller array,
there is no point of running the loop on a bigger array. Finally, the
II in each level(IIk) is limited to the achieved II of the previous
level (IIk+1) in the test run. This one also tests the benefit of the
virtualization. The scheduling order of II sets is determined by the
weighted summation of all the IIs(Equation 4).

0

0.5

1

1.5

2

2.5

1x1 1x1 1x2 1x1 1x3 1x1 2x2

1 core 2 cores 3 cores 4 cores

P
e

r
fo

r
m

a
n

c
e

 R
a

t
io

Figure 10: Performance evaluation of virtualized modulo
scheduling across varying PPA sub-arrays. Performance is re-
ported as a ratio of the theoretical upperbound performance
for a single core.

IIs = (II1, II2, ..., IIN) (1)

ResMIIk = ResMII1 / Ck, RecMIIk = RecMII1 (k > 1) (2)

IIk ≥ max(ResMIIk, RecMIIk), IIk > IIk+1, IIk < TestIIk−1

(3)

cost(IIs) =

N
X

k=1

“

wk × IIk) (4)

Register Allocation with Multi-level IIs: Traditionally, reg-
ister allocation is performed after scheduling, and spill code is in-
serted when the register requirement exceeds the register file ca-
pacity. Spilling in a highly distributed architecture like PPA is quite
costly since it involves routing to/from the memory units and may
require complete rescheduling of the loop. Moreover, spilling can
easily happen due to the small size of the register files. For this rea-
son, EMS performs register allocation during scheduling to avoid
spilling and guarantee routability through the register files. We take
the same approach of concurrent scheduling and register allocation
in VMS. PPA supports rotating register files that implicitly copy
the stored register values at II boundaries so that values can stay in
the register file more than II cycles. Since VMS has multi-level of
modulo constraints, register allocation needs be performed in a way
that all the modulo constrains are observed inside the register files.
To simply state, the same concept of different scopes in multi-level
modulo constraints can be applied to the register allocation. The
details are omitted due to the space limitation.

5. EXPERIMENTS
We evaluated the performance and power of a PPA that consists

of eight cores as shown in Figure 5(a). First, the performance of
VMS is presented for kernel loops in the three multimedia applica-
tions. The performance was measured by the execution time of the
three multimedia applications with different configurations of core
aggregation and the power was measured using a compute intensive
loop in the H.264 application.

5.1 Virtualized Modulo Scheduling Evaluation
The performance of VMS is evaluated for 200 kernel loops that

can be modulo scheduled in the three benchmarks. Figure 10 shows
the performance ratio of the schedules targeting different sets of
PPA sub-arrays. The performance ratio of the schedules is com-
pared to the theoretical upper bound of each loop when mapped
onto a single PPA core (MinII). The first bar shows the ratio of
schedules targeting a single core. For all three benchmarks, VMS
achieves 83% of the maximum throughput for a single core. Con-
sidering the distributed hardware in PPA, VMS can provide good
quality schedules.

The rest of the bars show how the performance ratio changes
when loops are scheduled targeting multiple sub-arrays for virtual-
ization. The number of target sub-arrays is limited to two since we

discovered that targeting more than two sub-arrays does not work
well in VMS. Improving VMS on more than 2 target sub-arrays re-
mains future work. The left bar in each ’N core’ group shows the
performance of the schedule when running on a single core, and
the right column shows the result for running in multiple cores. As
we expected, the performance of the virtualized schedule in a sin-
gle core decreases by 13% in average. due to the additional modulo
constraint. However, mapping these virtualized loops onto multiple
cores allows a big performance increase. On average, the speedup
of virtualized schedules on 2, 3, and 4 cores are 1.78, 2.21, and
2.75, respectively. Even though there is some performance degra-
dation for a single core, virtualization can accelerate the overall
performance of the application in the presence of fluctuating re-
source availability.

5.2 Performance Evaluation of PPA
Figure 11 shows the performance from different configurations

of the PPA across three applications. The graph shows the execu-
tion time for each application in million cycles. The first bar of each
application(acyclic) represents the entire application executing on
a single PPA core without modulo scheduling. The execution time
for 3D goes off the chart and their numbers are shown in the graphs.
The second bar(modulo) represents the execution time when the
acyclic code runs on a single core, and the inner-most loops are
modulo scheduled and execute on 2x2 PPA sub-array. The rest of
the graphs shows the performance results when each application is
mapped onto different number of PPA cores. Within each ’N core’
group, both static(st) and dynamic(dy) partitioning were applied.

First, we can notice that exploiting fine-grain pipeline parallelism
with modulo scheduling allows 2.53x speed up in average on a 2x2
PPA sub-array. As shown in Section 2, increasing the number of
cores beyond four does not allow much performance gain due to
the limited amount of parallelism. When more resources are avail-
able, exploiting coarse-grain pipeline parallelism can further im-
prove the overall performance. In this work, our focus is on the
back-end scheduling of streaming applications. Here, we manu-
ally extracted the task graphs (Figure 3). Other streaming language
such as StreamIt [12] can be employed to extract the coarse-grain
pipeline parallelism and be fed to our VMS framework as input.
We varied the number of PPA cores starting from the number of
stages in each application, and increased up to 8 cores available in
the PPA. For H.264, we merged the second and the third stages in
Figure 3(c) since they have relatively small execution time. Since
the outer-most loop in H.264 was not pipelined due to the memory
dependency, it does not get as much benefit as AAC and H.264.

In general, increasing the number of cores provides the overall
performance gain for all three applications and shows reduced ex-
ecution time over both acyclic and modulo configurations, with an
exception of 4 cores with static partitioning for AAC. This is be-
cause AAC spends most of the execution time in the third stage
in Figure 3(c). Extracting fine-grain pipeline parallelism is mostly
important to improve the overall performance. However, static par-
titioning in 4 cores only allows a single core to be utilized for the
third stage. As a result, coarse-grain pipelining parallelism does
not gives benefit over modulo configuration. Dynamic partitioning
with virtualized execution becomes quite useful in this case. With
virtualization, the compute intensive kernels in the third stages can
utilize additional resources from other stages when they are sitting
idle, allowing 1.66 speedup over static configuration.

The same trend appears on all three applications; the dynamic
partitioning out-performs the static partitioning when there is not
enough resources to fully exploit the available fine-grain pipeline
parallelism. However, the benefit of virtualization diminishes as

0

20

40

60

80

100

st dy st dy st dy st dy

acyclic modulo 5 cores 6 cores 7 cores 8 coresE
x

e
cu

ti
o

n
 T

im
e

 (
M

 c
y

cl
e

s)

3D
238.3

0

20

40

60

80

100

120

st dy st dy st dy st dy st dy

acyclic modulo 4 cores 5 cores 6 cores 7 cores 8 coresE
x

e
cu

ti
o

n
 T

im
e

 (
M

 c
y

cl
e

s)

AAC

0

20

40

60

80

100

120

st dy st dy st dy st dy st dy st dy

acyclicmodulo 3 cores 4 cores 5 cores 6 cores 7 cores 8 coresE
x

e
cu

ti
o

n
 T

im
e

 (
M

 c
y

cl
e

s)

H.264

Figure 11: Performance evaluation of the PPA across three applications.

more resources become available in the target PPA configurations.
For AAC, the static partitioning out-performs the dynamic par-
titioning when 5 cores are utilized. For 3D and H.264, the re-
version of performance appears later at 8 cores and 5 cores, re-
spectively. This is because the amount of fine-grain pipeline par-
allelism is richer in two applications than in AAC. To summa-
rize, exploiting the coarse-grain pipelining parallelism does pro-
vide the overall performance improvement over modulo configu-
ration with both static and dynamic partitioning. When there is a
large number of resources available, static partitioning in 8 cores
can achieve the speedup of 4.16 and 1.79 over acyclic and mod-

ulo respectively in average for three applications. The dynamic
partitioning can maximally utilize the available resource in smaller
arrays, out-performing the static partitioning.

5.3 Power and Area Measurement
Area and power consumption was measured using the RTL Ver-

ilog model of the Polymorphic Pipeline Array (PPA) and synthe-
sized using typical operation conditions in TSMC 90nm technol-
ogy. The model contained both the datapath and control path and
was targeted at 200MHz. Synthesizing higher frequencies was pos-
sible, but at 200MHz the target applications could be completed
and more aggressive frequencies would generate a less energy effi-
ciency design. The memories were generated using standard library
models found in the Artisan SRAM memory compiler. Power con-
sumption was calculated using Synopsys PrimTime PX. PrimTime
calculates the total power consumption of the PPA using the synthe-
sized netlist, parasitic data generated from Physical Compiler and
activity files generated from behavioral simulations. The SRAM
memory power was extracted from data generated by the Artisan
Memory Compiler. The breakdown of average power when 8 PPA
cores are executing the whole code region of H.264 is shown Fig-
ure 12(a). The major portion is in computation units like PEs and
LRFs. The data memory power consumption is relatively low be-
cause H.264 has a high ratio of computation over memory opera-
tions. The average power for 8 cores running in pipelining mode is
255.06mW at 200Hz. The toal area of 8 core PPA is 3.37 mm2.

Figure 12(b) plots the performance vs. power consumption of
the PPA and other existing architectures. The numbers were ob-
tained from a graph in [8]. On this plot, points on the same slope
have roughly equivalent power efficiency in terms of MIPS/mW,
with points towards the upper left having greater power efficiency.
As can be seen from the plot, the PPA is able to achieve good
power efficiency, only beaten by The Tensilica Diamond Core [28].
Embedded procoeessors like ARM11 and TI C6x show reasonable
power efficiency, but their performance is significantly lower than
PPA. Thus, they cannot meet the performace requirement of to-
day’s compute-intensive multimedia applications. The actual data
points for XScale and Itanium2 are outside the range of the plot, but
their efficiency lines are shown. As can be observed, the efficiency
decreases significantly as the hardware becomes more general and
less tailored for embedded applications.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350 400

P
e

rf
o

rm
a

n
ce

 (
M

IP
S

)
Power Consumption (mW)

Tensilica Diamond Core:

12 MIPS/mW

PPA: 9.6 MIPS/mW

TI C6x: 5 MIPS/mW

ARM11: 3.84 MIPS/mW

Itanium2: 0.08 MIPS/mW

XScale: 0.41 MIPS/mW

(a)

(b)

Total PE LRF I-MEM D-MEM Interconnect

Power (mW) 255.06 79.83 108.66 28.57 7.65 30.35

Figure 12: (a) Power breakdown of PPA: running H.264, (b)
Power/performance comparison.

6. RELATED WORKS
Architectures: Combining cores to create a bigger logical core

is relatively a new technique, recently proposed by Core fusion [14]
and Composable Lightweight Processors [15]. Core Fusion is a
CMP architecture that can dynamically allocate independent cores
together for a single thread execution maintaining ISA compatibil-
ity. CLPs also allows dynamic allocation of cores to form a larger
and powerful single-threaded processors. It also keeps the binary
compatibility for the special EDGE ISA. The major difference be-
tween [14] and [15] is the target environment. PPA is designed
to exploit single thread performance in mobile environments where
power consumption and hardware cost is a first-class constraint.
The building blocks of PPA is simple in-order cores similar to clus-
tered VLIW processors [31]. Also, the statically controlled point-
to-point interconnect provides a fast inter-core communication, al-
lowing PPA to exploit fine grain pipeline parallelism efficiently for
multimedia applications.

The PE level view of PPA is similar to Coarse-Grained Recon-
figurable Architectures. ADRES [21] is a reconfigurable architec-
ture where PEs are connected to a mesh-style interconnect. Mod-
ulo scheduling using a simulated annealing is employed to exploit
fine grain pipeline parallelism of nested loops. The top row in
the array behaves as a VLIW processor with a multi-ported cen-
tral register file. However, the non software pipelineable region of
the application can only utilize the VLIW part of the array. So,
it cannot pipeline the application in a coarser granularity as PPA.
With identical resources, PPA outperforms our best approximation
of ADRES by 1.43x. PipeRench [10] is a 1-D architecture in which
processing elements are arranged in stripes to facilitate pipelining,
but it has a fixed configuration of resource partitioning for pipelin-

ing while PPA can partition the array differently as to the charac-
teristics of the target application. RaPiD [7] is another CGRA that
consists of heterogeneous elements (ALUs and registers) in a 1-D
layout, connected by a reconfigurable interconnection network.

Exploiting Parallelism: Coarse-grained pipeline parallelism
is becoming an attractive approach to accelerate single thread per-
formance as multicore architectures enter the mainstream. [12]
and [16] proposed to exploit coarse-grained pipeline parallelism
for StreamIt language. Even their target architectures(RAW archi-
tectures [17] and Cell processors [13]) are not an embedded system,
their technique of task level software pipelining can be applied to
our execution model in PPA. [29] has proposed a practical ap-
proach to extract a pipeline parallelism from legacy C code. With
a help of the programmer, their static analysis tool can extract the
potential for streaming execution.

Virtualization: There is much related work on virtualization
for binary compatibility for different architectures in literature. Trans-
meta Code Morphing Software [5] dynamically converts x86 ap-
plications into VLIW programs. DynamoRIO [1], Daisy [6], and
DIF [23] are all examples that dynamically translate applications
to target entirely different microarchitectures. Recent work [4]
proposed dynamically binding to cyclic accelerators with modulo
scheduling at run-time. The trace in a host processor is exam-
ined and run-time modulo scheduling is performed to map the ker-
nel loops onto the cyclic accelerator. While this work focuses on
acyclic-to-cyclic conversion, we propose dynamic conversion of
modulo scheduled loops in homogeneous multi-core architectures.

7. CONCLUSION
This paper proposes the polymorphic pipeline array (PPA), a

flexible multicore accelerator for mobile multimedia. Fine-grain
and coarse-grain pipeline paralellism cooperatively improve a sin-
gle thread performance of computation-rich multimedia applica-
tions. To efficiently extract both forms of parallelism on the same
piece of hardware, the PPA supports a flexible execution model
where cores can operate independently or be combined to create
more powerful cores. The array resources can be either statically or
dynamically partitioned depending on the computational require-
ments and behavior of the application. For dynamic partitioning,
we propose virtualized modulo scheduling that can generate a sin-
gle schedule of a target loop that can be easily converted to tar-
get different sub-arrays at run-time. With both static and dynamic
partitioning, an 8-core PPA can achieve up to 4.16 speedup over a
single core execution, and up to 8x over a 4-wide VLIW processor.

8. ACKNOWLEDGMENTS
Thanks to Hong-seok Kim, Sukjin Kim, Taewook Oh, and Heeseok

Kim for all their help and feedback. We also thank the anonymous
referees who provided good suggestions for improving the qual-
ity of this work. This research was supported by Samsung Ad-
vanced Institute of Technology, the National Science Foundation
grants CNS-0615261 and CCF-0347411, and equipment donated
by Hewlett-Packard and Intel Corporation.

9. REFERENCES
[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic

optimization system. In Proc. of the SIGPLAN ’00 Conference on Programming
Language Design and Implementation, pages 1–12, June 2000.

[2] K. Berkel, F. Heinle, P. Meuwissen, K. Moerman, and M. Weiss. Vector
processing as an enabler for software-defined radio in handheld devices.
EURASIP Journal Applied Signal Processing, 2005(1):2613–2625, 2005.

[3] H. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher. A programmable
platform for software-defined radio. In Intl. Symposium on System-on-a-Chip,
pages 15–20, Nov. 2003.

[4] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized execution accelerator
for loops. In Proc. of the 35th Annual International Symposium on Computer
Architecture, pages 389–400, June 2008.

[5] J. Dehnert et al. The Transmeta code morphing software: using speculation,
recovery, and adaptive retranslation to address real-life challenges. In Proc. of
the 2003 International Symposium on Code Generation and Optimization,
pages 15–24, Mar. 2003.

[6] K. Ebcioglu and E. Altman. Daisy: Dynamic compilation for 100%
architectural compatibility. In Proc. of the 24th Annual International
Symposium on Computer Architecture, pages 26–38, June 1997.

[7] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture.
In Proc. of the 5th IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 106–115, Apr. 1997.

[8] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the computation gap
between programmable processors and hardwired accelerators. In Proc. of the
15th International Symposium on High-Performance Computer Architecture,
pages 313–322, Feb. 2009.

[9] J. Glossner, E. Hokenek, and M. Moudgill. The sandbridge sandblaster
communications processor. In Proc. of the 2004 Workshop on Application
Specific Processors, pages 53–58, Sept. 2004.

[10] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia
acceleration. In Proc. of the 26th Annual International Symposium on Computer
Architecture, pages 28–39, June 1999.

[11] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli, A. Lamb, C. Leger,
J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for
communication-exposed architectures. In Tenth International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 291–303, Oct. 2002.

[12] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs. In 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 151–162, 2006.

[13] IBM. Cell Broadband Engine Architecture, Mar. 2006.
[14] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fusion: Accommodating

software diversity in chip multiprocessors. In Proc. of the 34th Annual
International Symposium on Computer Architecture, pages 186–197, 2007.

[15] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler. Composable lightweight processors. In Proc. of
the 40th Annual International Symposium on Microarchitecture, pages
381–393, Dec. 2007.

[16] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on
multicore platforms. In Proc. of the SIGPLAN ’08 Conference on Programming
Language Design and Implementation, pages 114–124, June 2008.

[17] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe. Space-time scheduling of instruction-level parallelism on a
RAW machine. In Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 46–57, Oct. 1998.

[18] Y. Lin et al. Soda: A low-power architecture for software radio. In Proc. of the
33rd Annual International Symposium on Computer Architecture, pages
89–101, June 2006.

[19] G. Lu et al. The MorphoSys parallel reconfigurable system. In Proc. of the 5th
International Euro-Par Conference, pages 727–734, 1999.

[20] A. Mahesri et al. Tradeoffs in designing accelerator architectures for visual
computing. In Proc. of the 41st Annual International Symposium on
Microarchitecture, pages 164–175, Nov. 2008.

[21] B. Mei et al. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. In Proc. of the 2003 Design,
Automation and Test in Europe, pages 296–301, Mar. 2003.

[22] B. Mei, A. Lambrechts, J. Y. Mignolet, D. Verkest, and R. Lauwereins.
Architecure exploration for a reconfigurable architecture template. In Proc. of
the 2005 Design, Automation and Test in Europe, pages 90–101, Mar. 2005.

[23] R. Nair and M. Hopkins. Exploiting instruction level parallelism in processors
by caching scheduled groups. In Proc. of the 24th Annual International
Symposium on Computer Architecture, pages 13–25, June 1997.

[24] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. seok Kim. Edge-centric
modulo scheduling for coarse-grained reconfigurable architectures. In Proc. of
the 17th International Conference on Parallel Architectures and Compilation
Techniques, pages 166–176, Oct. 2008.

[25] M. Quax, J. Huisken, and J. Meerbergen. A scalable implementation of a
reconfigurable WCDMA RAKE receiver. In Proc. of the 2004 Design,
Automation and Test in Europe, pages 230–235, Mar. 2004.

[26] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proc. of the 27th Annual International Symposium on
Microarchitecture, pages 63–74, Nov. 1994.

[27] M. B. Taylor et al. The Raw microprocessor: A computational fabric for
software circuits and general purpose programs. IEEE Micro, 22(2):25–35,
2002.

[28] Tensilica Inc. Diamond Standard Processor Core Family Architecture, July
2007. http://www.tensilica.com/pdf/Diamond WP.pdf.

[29] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to
exploiting coarse-grained pipeline parallelism in c programs. In Proc. of the
40th Annual International Symposium on Microarchitecture, Dec. 2007.

[30] M. Woh et al. From soda to scotch: The evolution of a wireless baseband
processor. In Proc. of the 41st Annual International Symposium on
Microarchitecture, pages 152–163, Nov. 2008.

[31] H. Zhong, K. Fan, S. Mahlke, and M. Schlansker. A distributed control path
architecture for VLIW processors. In Proc. of the 14th International Conference
on Parallel Architectures and Compilation Techniques, pages 197–206, Sept.
2005.

