
Polymorphic Type� Region and E�ect Inference�

Jean�Pierre Talpin�

Pierre Jouvelot���

�CRI� Ecole Nationale Sup�erieure des Mines de Paris� France
�MIT Laboratory for Computer Science� USA

Abstract

We present a new static system that reconstructs the types� regions and e�ects of ex�

pressions in an implicitly typed functional language that supports imperative operations

on reference values� Just as types structurally abstract collections of concrete values�

regions represent sets of possibly aliased reference values and e�ects represent approxima�

tions of the imperative behavior on regions�

We introduce a static semantics for inferring types� regions and e�ects and prove that

it is consistent with respect to the dynamic semantics of the language� We present a

reconstruction algorithm that computes the types and e�ects of expressions and assigns

regions to reference values� We prove the correctness of the reconstruction algorithm with

respect to the static semantics� Finally� we discuss potential applications of our system

to automatic stack allocation and parallel code generation�

� Introduction

Type and e�ect reconstruction is the process that automatically determines the types and
e�ects of expressions in a program� Types specify the structure of values denoted by ex�
pressions� Milner�style polymorphic type reconstruction �Milner� is a typical example for
functional programming languages� It is the subject of much theoretical investigation and
practical developments� in particular to extend it to imperative language constructs and mod�
ule systems ��Tofte�� �Harper�� �Sheldon�	� E�ect systems �Lucassen� are such an extension�
Similar to types� e�ects describe how expressions a�ect the store in a functional language ex�
tended with imperative constructs� Types and e�ects can be statically computed by algebraic
reconstruction �Jouvelot��

Types provide useful information for both the programmer� who can describe the intended
speci
cation of its programs� and the compiler� which can use types to generate more e�cient
code by avoiding type tags� E�ects� as generic abstractions of expression behaviors over sets
of possibly aliased references �represented by regions	� can be used to generate parallel code
while preserving the sequential semantics of programs �Lucassen� Hammel�� They can also be
used in code optimizations for standard architectures� e�g� for stack allocation of temporary
data structures�

This paper builds upon both the ideas of algebraic reconstruction of e�ects and the ML�
style type discipline to statically compute the store e�ects of expressions over inferred regions

�In the Journal of Functional Programming� Vol� �� No� �� Cambridge University Press� �����

�

of references� Our algorithm obtains for each expression its maximal type with respect to
type substitutions� the lower bound of its e�ect� and assigns regions to reference values in a
way that minimizes spurious aliasing among references�

The structure of the report is as follows� Section presents the related work� We describe
the syntax� the dynamic semantics �section �	 and the static semantics �section �	 of the lan�
guage� In section �� we state and prove that the static and dynamic semantics of the language
are consistent� Section � presents our type� region and e�ect reconstruction algorithm the
correctness of which is proved in section �� Before concluding in section �� we show how our
algorithm works on a few examples �section �	�

� Related Work

Our language is equivalent to Core�ML �Mitchell� extended to allow references� The classical
way of dealing with non referentially transparent constructs is described in �Gordon� where
some ad�hoc rules are introduced to avoid creating inconsistencies within the type system�
�Tofte� introduces a nicer imperative type discipline within which types are categorized be�
tween applicative and imperative types� only applicative types can be generalized in let

bindings� An extension of this approach� based on so�called weak type variables� is used
inside the implementation of Standard ML done at Bell Labs �Appel�� Another extension is
proposed by �Leroy� in which function types are labeled with sets of types that are used by
reference values� The notions of regions and e�ects provide more intuitive information about
programs and are presented here as a natural extension of the Hindley�Milner type discipline�
Our static semantics thus gives a more straightforward abstraction of the dynamic semantics
than �Leroy��s system� However� since the problem of polymorphic type generalization escapes
the scope of this paper� our system falls short of allowing some type�safe programs that are
correctly seen as such by other systems�

Abstract interpretation �Cousot� is the usual framework to obtain a computable rep�
resentation of the properties of program executions such as value aliasing and side�e�ects
�Neirynck�� This approach usually requires complex representations of abstract states that
consist of environment and store approximations via graphs� To deal with functional lan�
guages �Larus� Harrison� Deutsch�� this approach is usually coupled with an interprocedural
data �ow analysis� this incurs a heavy computational cost �Rosen��

�Gi�ord� proposes a static semantics that includes a polymorphic type� region and e�ect
checking system� However� the need to specify types� regions and e�ects are burdensome in
real�life programs� �Jouvelot� shows that e�ect reconstruction can be seen as a constraint
satisfaction problem� in the vein of �Morris� who used this approach for type reconstruction�
However� the matching of e�ects required by the static semantics� together with the use of
explicit polymorphism� imply the non�existence of syntactic principal types� E�ect matching
also somewhat limits the kind of accepted programs� the following example is not type correct
in �Jouvelot��s system but is in our�s�

�if true �lambda �x	 x	 �lambda �x	 �get �new x				

Our system reconstructs the type and e�ect of such programs by the addition of subef�
fecting� Sube�ecting is tantamount to subtyping in the domain of e�ects� It is required here
since the latent e�ects of both arms of the conditional are di�erent� but can be coerced to a
common e�ect upper bound�

� Dynamic Semantics

We present the syntax and dynamic semantics of our language�

��� Syntax

The syntax of expressions e � Exp in the language is described below� It uses enclosing
parentheses in the reminiscence of Scheme �Scheme� and shares its dynamic semantics with
Core�ML language� in the ususal call�by�value fashion� We implement operations on references
as special forms since they are of particular interest in the static semantics�

e ��� x j value identi�er
�e e�	 j application
�lambda �x	 e	 j abstraction
�rec �f x	 e	 j recursive function de�nition
�let �x e	 e�	 j lexical binding
�new e	 j �get e	 j �set e e�	 initialization� dereference and assignment

Language Syntax

��� Domains

The dynamic semantics is de
ned by a set of operational rules �Plotkin� that specify the
evaluation of expressions�

Computable values are either the command value u� reference values l or closures� A
closure c is composed of the syntactic value identi
er of the argument� a body expression and
the lexical environment E where it is de
ned� A store s is a
nite map from references to
values� A trace f is a set of labeled reference values that indicate initialized� read and written
locations� a trace is the dynamic counterpart of a static side�e�ect �described in section �	�

v � Value � fug� Ref� Closure values
l � Ref locations
c � Closure � Id� Exp � Env closures

E � Env � Id
�n
� Value environments

s � Store � Ref
�n
� Value stores

f � Trace � P�n�init�Ref	 � read�Ref	 � write�Ref		 traces

Computable Values

��� Dynamic Semantics

Given a store s and an environment E� the dynamic semantics associates an expression e

with the value v it computes� the trace f of the side�e�ects it performs during its evaluation
and the possibly updated store s�� This is noted s� E � e� v� f� s��

�

For any map m� we note Dom��	m	 the domain of m� mx the map m with x unbound�
fx �� vg the map from x to v and m � fx �� vg the extension of m to x�

�var	 �
x � Dom��	E	

s� E � x� E�x	� �� s
�abs	 �

s� E � �lambda �x	 e	� hx� e� Exi� �� s

�rec	 �
c � hx� e� Ef�x � ff �� cgi
s� E � �rec �f x	 e	� c� �� s

�app	 �

s�� E � e� hx� e��� E�i� f� s
s� E � e� � v�� f �� s�

s�� E� � fx �� v�g � e�� � v��� f ��� s��

s�� E � �e e�	� v��� f � f � � f ��� s��

�let	 �
s�� E � e� v� f� s s� Ex � fx �� vg � e� � v�� f �� s�

s�� E � �let �x e	 e�	� v�� f � f �� s�

�new	 �
s�� E � e� v� f� s l �� Dom��	s	

s�� E � �new e	� l� f � finit�l	g� s� fl �� vg

�get	 �
s�� E � e� l� f� s

s�� E � �get e	� s�l	� f � fread�l	g� s

�set	 �
s�� E � e� l� f� s s� E � e� � v� f �� s�

s�� E � �set e e�	� u� f � f � � fwrite�l	g� s�l � fl �� vg

Dynamic Semantics

� Static Semantics

We present the static semantics of our language� We begin by de
ning the algebra of types
and e�ects� and specify the static semantics� There are three static domains� regions� e�ects
and types�

r � RegConst
� � RegVar
� � Region � RegConst� RegVar
� � E�ect � ��� � j init��	 j read��	 j write��	 j � � � j �

� � Type � ��� unit j � j ref���	 j �
�
� �

Regions � E�ects and Types

The domain of regions � is the disjoint union of a countable set of constants and variables
�� Every data structure corresponds to a given region in the static semantics� this region
abstracts the memory locations in which it will be allocated at run time� Two values are in
the same region if they may share some memory locations�

�

Basic e�ects � can either be the constant � that represents the absence of e�ects� e�ect
variables � � or store e�ects init��	� read��	 or write��	 that approximate memory side�e�ects
on their region argument �� init��	 denotes the allocation and initialization of a mutable
reference value in the region �� The e�ect read��	 describes accesses to references in the
region �� while write��	 represents assignments of values to references in the region ��

E�ects can be gathered together with the in
x operator � that denotes the union of e�ects�
e�ects de
ne a set algebra� The equality on e�ects is thus de
ned modulo associativity�
commutativity and idempotence with � as the neutral element� We de
ne the set�inclusive
relation w of subsumption on e�ects� � w �� if and only if there exists an e�ect ��� such that
� � �� � ����

The domain of types � is composed of the constant unit describing the type of commands�
type variables �� reference types ref ���	 in region � to values of type � � function types �

�
� � �

from � to � � with a latent e�ect �� The latent e�ect of a function is the e�ect incurred when
the function is applied� it encapsulates the side�e�ects of its body�

��� Type and E�ect Rules

The inference rules of the static semantics associate a type environment E and an expression
e with its possible types � and e�ects �� noted E � e � �� ��

Generic types can be created for variables that are bound in let forms to referentially
transparent expressions� One way to statically enforce that such expressions are pure would
be to require their e�ects to be �� We did not adopt this policy here since it would have re�
quired a non�deterministic backtrack�based inference algorithm� which would have departed
too much from existing syntax�directed type reconstruction algorithms� Among various syn�
tactic type generalization policies �Tofte� Harper�� we chose the simplest one� based on the
expansiveness property of expressions� a non�expansive expression is syntactically guaranteed
to never allocate references�

Variables and lambda�abstractions are non�expansive expressions �Tofte�� By extension�
a let expression is non�expansive if and only if both its binding expression and its body
are non�expansive� We de
ne the boolean function expansive for expansive expressions by
induction�

expansive��e�� � case e of
x j �lambda �x	 e�	 j �rec �f x	 e	 	 false

�new e�	 j �get e�	 j �set e� e��	 j �e� e��	 	 true
�let �x e�	 e��	 	 expansive��e���
 expansive��e����

Expansive Expressions

Non�expansive let expressions� which can be generalized over� are handled by syntactic
substitution of the binding for the variable in the body� This avoids the complication of
introducing sophisticated type schemes inside the static semantics that would mimic the
algebraic type schemes used in the algorithm� Indeed� this simple technique provides an
equivalent way of expressing the property that non expansive expressions may admit multiple
types� Even though the static semantics of let expressions uses explicit syntactic substitution�

�

the reconstruction algorithm works very much like an ordinary Hindley�Milner type inferencer
does when it handles let� Type environments E are
nite maps from identi
ers to types�

We write e��e�x� for the textual substitution of e for x in e� with bound variables renamed
as usual� Sube�ecting is introduced by the �does	 rule� Note that this rule can be used
whenever a type or e�ect mismatch exists in the application rule �app� and the assignment
rule �set��

�var	 �
x �� � � E
E � x � �� �

�rec	 �
Ef�x � ff �� �

�
� � �g � fx �� �g � e � � �� �

E � �rec �f x	 e	 � �
�
� � �� �

�abs	 �
Ex � fx �� �g � e � � �� �

E � �lambda �x	 e	 � �
�
� � �� �

�app	 � E � e � �
���

� � �� � E � e� � �� ��

E � �e e�	 � � �� � � �� � ���

�let	 �

�expansive��e��
E � e � �� �
E � e��e�x� � � �� ��

E � �let �x e	 e�	 � � �� ��

�ilet	 �

expansive��e��
E � e � �� �
Ex � fx �� �g � e� � � �� ��

E � �let �x e	 e�	 � � �� � � ��

�does	 �
E � e � �� � �� w �

E � e � �� �� �new	 �
E � e � �� �

E � �new e	 � ref���	� � � init��	

�get	 �
E � e � ref���	� �

E � �get e	 � �� � � read��	
�set	 �

E � e � ref���	� � E � e� � �� ��

E � �set e e�	 � unit� � � �� � write��	

Static Semantics

� Consistency of dynamic and static semantics

We use the proof method introduced in �Tofte� to show that the static and dynamic semantics
are consistent with respect to a structural relation between values and types� de
ned as the
maximal
xed point of a monotonic property�

We introduce store models S to tell which region � and type � correspond to a reference
value l�

S � StoreModel � Ref
�n
� Region� Type

We note S � S� if and only if l � Dom��	S	� S�l	 � S��l	�

De�nition � �E�ects consistency� A dynamic trace of side e�ects f � Trace is consistent
with the e�ect � � E�ect for the model S � StoreModel� noted S j� f � �� if and only if�

 init�l	 � f� S�l	 � ��� �	 � init��	 � �
 read�l	 � f� S�l	 � ��� �	 � read��	 � �

 write�l	 � f� S�l	 � ��� �	 � write��	 � �

�

Note that� if S � S� and S j� f � �� then S� j� f � �� Also� when S j� f � � and S j� f � � ���
then S j� f � f � � � � ���

We de
ne typed stores as models for describing the relation between values and types�

s � S � TypedStore � Store� StoreModel

De�nition � �Consistent values and types� Given a typed store s � S� the value v is
consistent with the type � � noted s � S j� v � � � if and only if v and � verify one of the
following properties�

s � S j� u � unit
s � S j� l � ref���	� S�l	 � ��� �	 and s � S j� s�l	 � �
s � S j� hx� e� Ei � � � there exists E and s � S j� E � E and E � �lambda �x	 e	 � �� �

We note s � S j� E � E if and only if Dom��	E	 � Dom��	E	 and s � S j� E�x	 � E�x	 for
every x � Dom��	E	�

As shown in �Tofte�� this structural property between values and types does not uniquely
de
ne a relation and must be regarded as a
xed point equation on the domain R �
TypedStore�Value�Type of the relation� We de
ne a function F on P�n�R	� P�n�R	� Its

xed points are the relations on R that verify the property de
ned above�

F�Q	 � f�s�S� v� �	n
if v � u then � � unit
if v � l then there exist � and � � such that

� � ref���
�	 and S�l	 � ��� � �	 and �s�S� s�v	� � �	 � Q

if v � hx� e� Ei then there exists E such that
s � S j� E � E and E � �lambda �x	 e	 � �� �g

In order to guarantee the existence of
xed points for F � it is su�cient to show that F is
monotonic�

Lemma � �Monotony of F� If Q � Q� then F�Q	 � F�Q�	�

Proof Let us consider Q and Q� two subsets of R such that Q � Q�� We assume that
q � F�Q	 and prove that q � F�Q�	� Let q be �s�S� v� �	�

� If v � u� then q � F�Q�	 by de
nition�

� If v � Ref� then there exist � and � � such that � � ref���
�	� S�v	 � ��� � �	 and

�s�S� s�v	� � �	 � Q� Since Q � Q�� we have q � F�Q�	�

� Finally� if v � Closure� then v � hx� e� Ei and there exists a type environment E such
that s � S j� E � E � so that q � F�Q�	 �

Among the
xed points of F � we choose the greatest
xed point gfp�F	 as our relation�
gfp�F	 is de
ned by�

gfp�F	 � �fQ � R n Q � F�Q	g

A set Q such that Q � F�Q	 is called F �consistent�

�

The relation between types and values is thus de
ned by�

s � S j� v � � � �s�S� v� �	 � gfp�F	

In order to use induction in the consistency proof� we need to check that the relation
between a type and a value� whenever correct for some typed store s � S� is preserved when
the store is properly expanded� We note�

s � S v s� � S� � S � S� and� for all v and �� s � S j� v � � 	 s� � S� j� v � �

Lemma � �Side E�ects� Assume s � S j� v � � � If S�l	 � ��� �	� then s � S v sl � fl �� vg �
Sl � fl �� ��� �	g� Otherwise� for every region �� s � S v s � fl �� vg � S � fl �� ��� �	g�

Proof We only consider here the
rst case to be non�trivial� The proof is by induction on
the structure of typings and values� De
ne s� � sl � fl �� vg and S� � Sl � fl �� ��� �	g� We
have to show that s � S v s� � S �� i�e�� s� � S� j� v� � � � from the hypothesis s � S j� v� � � ��
s � s� and S � S��

We consider the typed store s � S� and Q � R such that Q � f�s��S�� v�� � �	 n s � S j� v� �
� �g� We show that Q is F �consistent� i�e�� that Q � F�Q	� Let q be �s��S�� v�� � �	 in Q�

� If v� � u� then q � F�Q	�

� If v� is a reference� by de
nition of s � S j� v� � � �� there exist �� and � �� such that
� � � ref����

��	� S�v�	 � ���� � ��	 and s � S j� s�v�	 � � ��� Since s � s� and S � S � then
S��v�	 � ���� � ��	 and s � S j� s��v�	 � � ��� so that �s��S�� s��v�	� � ��	 � Q and q � F�Q	�

� Finally� if v� � hx� e� Ei� then there exists a type environment E such that s � S j� E � E �
This means that s � S j� E�x	 � E�x	 for every x � Dom��	E	� Thus� by de
nition of Q�
we have �s��S �� E�x	� E�x		 � Q� so that q � F�Q	 �

Theorem � �Consistency of dynamic and static semantics� Let E be an environment
and E its type� Let s � S be a typed store such that s � S j� E � E� Provided that E � e � �� �
and s� E � e� v� f� s�� there exists a store model S� such that s � S v s� � S� with�

S� j� f � � and s� � S� j� v � �

Proof The proof is by induction on the length of the dynamic evaluation� for each syntactic
category of expressions�

Non�expansive expressions in let�bindings require a particular treatment� Assume that
�expansive��e�� and s� E � e � v� f� s holds� Then� s� Ex � fx �� vg � e� � v�� f �� s� holds if
and only if there exists a proof of s� E � e��e�x�� v�� f �� s�� Thus� without loss of generality�
we consider that non�expansive expressions in let bindings are explicitly substituted in the
body of let constructs�

Case of �var� The hypothesis are�

s � S j� E � E and s� E � x� E�x	� �� s and E � x � E�x	� �

We must have x � Dom��	E	 and x � Dom��	E	� From s � S j� E � E and by taking
S� � S� we conclude�

S j� � � � and s � S j� E�x	 � E�x	

�

Case of �abs� The hypothesis are�

s � S j� E � E

E � �lambda �x	 e	 � �
�
� � �� �

s� E � �lambda �x	 e	� hx� e� Exi� �� s

By the de
nition of the relation gfp�F	� taking S� � S� it follows that�

S j� � � � and s � S j� hx� e� Exi � �
�
� � �

Case of �rec� The hypothesis are�

s � S j� E � E
s� E � �rec �f x	 e	� c� �� s

E � �rec �f x	 e	 � �
�
� � �� �

This requires that�

Ef�x � ff �� �
�
� � �g � fx �� �g � e � � �� � and c � hx� e� Ef�x � ff �� cgi

Let E � � Ef � ff �� �
�
� � �g� then E �x � fx �� �g � e � � �� �� By de
nition of the rule �abs�� we

have�

E � � �lambda �x	 e	 � �
�
� � �� �

Let E� � Ef�x � ff �� cg� If we take S� � S� proving that s� � S� j� c � �
�
� � � is equivalent to

showing that �s�S� c� �
�
� � �	 � gfp�F	� To this end� we de
ne

Q � gfp�F	� f�s�S� c� �
�
� � �	g

and show that Q is F �consistent�
So� take q � Q� If q � gfp�F	 then� since gfp�F	 � Q and F is monotonic� q � F�Q	� Oth�

erwise� q � �s�S� c� �
�
� � �	� Since E � � �lambda �x	 e	 � �

�
� � �� �� and �s�S� E�y	�E�y		� Q

for every y � Dom��	E	� and �s�S� c� �
�
� � �	 � Q� we get�

for every y � Dom��	E	� �s�S� E��y	� E ��y		 � Q

and have proved that Q is F �consistent� As a result�

S j� � � � and s � S j� c � �
�
� � �

Case of �app� The hypothesis are�

s � S j� E � E
E � �e e�	 � � �� ��
s� E � �e e�	� v�� f � f � � f ��� s�

By the de
nition of rule �app�� there exist � � �� �� and ��� such that �� � � � �� � ��� with

E � e � �
���

� � �� � and E � e� � �� ��

�

By de
nition of the rule �app� in the dynamic semantics� we have�

s� E � e� hx� e��� E�i� f� s�
s�� E � e� � v� f �� s�
s�� E

� � fx �� vg � e�� � v�� f ��� s�

By induction on e� there exists a store model S� such that s � S v s� � S� verifying�

s� � S� j� hx� e��� E�i � �
���

� � � and S� j� f � �

By the side�e�ects lemma� this implies that s� � S� j� E � E � By induction on e�� there
exists a store model S� such that s� � S� v s� � S� verifying�

s� � S� j� v � � and S� j� f � � ��

We have s� � S� j� hx� e��� E�i � �
���

� � � by the side�e�ects lemma� By de
nition of the j�
relation� there exists a type environment E � such that s� � S� j� E� � E �� By the side�e�ects
lemma�

s� � S� j� E� � fx �� vg � E � � fx �� �g

By induction hypothesis on e��� there exists a model S� such that s� � S� v s� � S� which
veri
es the theorem� Thus�

S � j� f �� � ��� and s� � S� j� v� � � �

By transitivity of v� this allows us to conclude that S� veri
es s � S v s� � S� with�

s� � S� j� v� � � � and S � j� f � f � � f �� � � � �� � ���

Case of �new� The hypothesis are�

s � S j� E � E
E � �new e	 � ref���	� � � init��	
s� E � �new e	� l� f � finit�l	g� s� � fl �� vg

By de
nition of the semantics� this requires that�

s� E � e� v� f� s� and E � e � �� �

By induction on e� there exists a store model S� such that s � S v s� � S� verifying�

S� j� f � � and s� � S� j� v � �

By de
nition� we have fl �� ��� �	g j� finit�l	g � init��	� Since l �� Dom��	s�	� we de
ne
S� � S� � fl �� ��� �	g� we have�

s� � S� v s� � fl �� vg � S�

By transitivity of v� we conclude that s � S v s� � fl �� vg � S� with�

S� j� f � finit�l	g � � � init��	 and s� � fl �� vg � S � j� l � ref���	

��

Case of �get� The hypothesis are�

s � S j� E � E
E � �get e	 � �� � � read��	
s� E � �get e	� s��l	� f � fread�l	g� s�

This requires that s� E � e� l� f� s� and E � e � ref���	� �� By induction hypothesis on e�
there exists S� such that s � S v s� � S � verifying�

S� j� f � � and s� � S� j� l � ref���	

By de
nition� fl �� ��� �	g j� fread�l	g � read��	� Since fl �� ��� �	g � S�� we conclude
that�

S� j� f � fread�l	g � � � read��	 and s� � S� j� s��l	 � �

Case of �set� The hypothesis are�

s � S j� E � E
E � �set e e�	 � unit� � � �� � write��	
s� E � �set e e�	� u� f � f � � fwrite�l	g� s��l � fl �� vg

In the dynamic semantics� this requires that�

s� E � e� l� f� s and s�� E � e� � v� f �� s��

In the static semantics� we must have�

E � e � ref���	� � and E � e� � �� ��

By induction hypothesis on e� there exists a model S� such that s � S v s� � S� verifying�

S� j� f � � and s� � S� j� l � ref���	

Similarly� there exists S� such that s� � S� v s�� � S� with�

S� j� f � � �� and s�� � S� j� v � �

Since S� � S�� we have fl �� ��� �	g � S�� Thus�

S� j� fwrite�l	g � write��	

We conclude that s � S v s��l � fl �� vg � S� with�

S� j� f � f � � fwrite�l	g � � � �� � write��	 and s��l � fl �� vg � S� j� u � unit

��

Case of �ilet� The hypothesis are�

s � S j� E � E
expansive��e��
E � �let �x e	 e�	 � � �� � � ��

s� E � �let �x e	 e�	� v�� f �� s�

By de
nition of the dynamic semantics� we have�

s� E � e� v� f� s� and s�� Ex � fx �� vg � e� � v�� f �� s�

In the static semantics� we must have�

E � e � �� � and Ex � fx �� �g � e� � � �� ��

By induction on e� there exists a store model S� such that s � S v s� � S� verifying�

S� j� f � � and s� � S� j� v � �

Moreover s� � S� j� E � E implies that s� � S� j� Ex � fx �� vg � Ex � fx �� �g� By
induction hypothesis on e�� there exists S� such that s� � S� v s� � S� verifying�

S� j� f � � �� and s� � S� j� v� � � �

We conclude that s � S v s� � S� with�

S� j� f � f � � � � �� and s� � S� j� v� � � � �

�

� Type� Region and E�ect Reconstruction

We now present the algorithm for reconstructing the types� regions and e�ects of expres�
sions� We discuss the central ideas of our approach� describe the uni
cation process� give the
reconstruction algorithm and discuss its properties�

��� Presentation

Given a type environment and an expression� the reconstruction algorithm determines a type
and an e�ect consistent with all type and e�ect assignments of the static semantics� The
reconstructed solution� if one exists� satis
es the criteria of maximality of the type with respect
to substitution on variables� and minimality of the e�ect with respect to the subsumption on
e�ects�

We view the reconstruction of types and e�ects of expressions as a constraint satisfaction
problem� The algorithm computes equalities between types and regions� and inequalities
between e�ects� For an expression to admit a type and an e�ect in the static semantics� this
set of inequations must have at least one solution�

An important invariant of our method is that latent e�ects of functions are always repre�
sented by e�ect variables in the algorithm� The algorithm only deals with region variables�
region constants only appear in the static semantics� This makes the problem of solving equa�
tions tractable by a simple extension to a uni
cation algorithm on free algebras �Robinson�
used on types� region variables and e�ect variables�

	 � Subst � �TyVar
�n
� Type	 � �RegVar

�n
� Region	 � �EfVar

�n
� E�ect	

 � Constraint � P�n�EfVar � E�ect	
����n����
	 � TyScheme

E � TyEnv � Id
�n
� TyScheme

Substitutions and Constraint Sets

Constraints
 consist of sets of inequalities between e�ect variables and e�ect sets� The
inequality � w � in
 enforces a lower bound � for the inferred e�ect variable � � consistent
with the static semantics� It is built during the processing of lambda and rec expressions
which is the place where e�ects are introduced into types� By construction� constraint sets
always admit at least one solution �see below	�

In order to avoid recomputing the type of non�expansive binding expressions in let con�
structs as would a naive implementation of the syntactic substitution in the �let	 rule� we
use algebraic type schemes to generically represent their types and associated constraints�
Algebraic type schemes ����n����
	 are composed of a type � and a set of inequalities
 uni�
versally quanti
ed over type� e�ect and region variables ����n� Algebraic type schemes are used
to implement the textual substitution speci
ed in the �let	 binding rule for non�expansive ex�
pressions e� The type and constraint set associated with e only depend on the free variables
of e and� thereby� on the type environment E � An algebraic type scheme caches the e�ect
constraint that would have to be recomputed each time e appeared in the substituted body�
Constrained type environments E map value identi
ers to algebraic type schemes�

��

Equations on types� e�ect variables and regions are solved by a Robinson�like uni
cation
algorithm �Robinson� operating on the free algebra of types handled by the reconstruction
algorithm� It returns a substitution 	 which is the most general uni
er of two type terms�
Substitutions 	 are de
ned on variables and extended on types and environments in the
obvious way� We note Id the identity substitution�

��� The reconstruction algorithm

Given a type environment E and an expression e� the reconstruction algorithm I computes a
substitution 	 ranging over the free type� e�ect and region variables of the type environment
E � a type � � an e�ect � and an inequality system
 containing the inequalities that need to
be satis
ed by e�ect variables in order to preserve the static semantics�

I�E � x		
if x �� ����n����
	 � E then

let f�����ng new
	 � �n

i��f�i �� ��ig
in hId� 	�� �� 	
i

else fail

I�E � �let �x e	 e�			
let h	� �� ��
i� I�E � e	 in
if �expansive��e�� then

let ����n � �fv��	 � fv�
		 n fv�E	
E � � 	Ex � fx �� ����n����
	g
h	�� � �� ���
�i � I�E �� e�	

in h	�	� � �� ���
�i
else let E � � 	Ex � fx �� �g

h	�� � �� ���
�i � I�E �� e�	
in h	�	� � �� 	�� � ��� 	�
 �
�i

I�E � �lambda �x	 e			
let �� � new

h	� �� ��
i� I�Ex � fx �� �g� e	

in h	� 	�
�
� �� ��
� f� w �gi

I�E � �rec �f x	 e			
let �� ��� � new

E � � Ef�x � ff �� �
�
� ��g � fx �� �g

h	� �� ��
i� I�E �� e	
	� � U�	��� �	

in h	�	� 	�	��
�
� ��	� �� 	��
 � f	� w �g	i

I�E � �e e�			
let h	� �� ��
i� I�E � e	

h	�� � �� ���
�i � I�	E � e�	
�� � new

	�� � U�	��� � �
�
� �	

��� � 	���	�� � �� � �	
in h	��	�	� 	���� ���� 	���	�
 �
�	i

I�E � �new e			
let � new

h	� �� ��
i� I�E � e	
in h	� ref���	� � � init��	�
i

I�E � �get e			
let h	� �� ��
i� I�E � e	

�� � new
	� � U�ref���	� �	

in h	�	� 	��� � � read�	��	� 	�
i

I�E � �set e e�			
let h	� �� ��
i� I�E � e	

h	�� � �� ���
�i � I�	E � e�	
� new
	�� � U�ref���

�	� 	��	
��� � 	���	�� � �� � write��		

in h	��	�	� unit� ���� 	���	�
 �
�	i

Reconstruction Algorithm

Note that a consequence of the uni
cation of e�ect variables �induced by type uni
cation	
� and � � is that� in the constraint set� the inequalities f� w �� � � w ��g are replaced by
f� w �� � w ��g� which is equivalent to f� w � � ��g�

��

��� Uni�cation

The algorithm U below solves the equations on types� region and e�ect variables that are
built by the reconstruction algorithm� It returns a substitution 	 as the most general uni
er
of two terms� or fails� Note that the reconstruction algorithm only needs to unify region and
e�ect expressions that are variables�

Lemma � �Correctness of U 	Robinson
� Let � and � � be two type terms in the domain
of U � If U��� � �	 � 	� then 	� � 	� � and� whenever 	�� � 	�� �� there exists a substitution 	��

such that 	� � 	��	�

Proof U uni
es terms over a free algebra� and is thus complete following �Robinson� �

U��� � �	 � case ��� � �	 of
�unit� unit	 	 Id

��� ��	 	 f� �� ��g
��� �	j��� �	 	 if � � fv��	 then fail else f� �� �g

��i
�
� �f � �

�
i

� �

� � �f 	 	 let 	 � f� �� � �g and 	� � U�	�i� 	�
�
i	 in U�	

�	�f � 	
�	� �f 		

�	

�ref���	� ref���� �		 	 let 	 � f� �� ��g in U�	�� 	� �		
� � 	 	 fail

Uni�cation Algorithm

��� Constraint Satisfaction

An expression e is type and e�ect safe if and only if I applied to e does not fail and returns
a constraint set
 that admits at least one solution�

De�nition � �E�ect Model� A substitution from EfVar to E�ect is a model of a con	
straint set
� noted j�
� if and only if� for each inequality � w � �
� � w ��

Theorem � �Satisfaction� Every constraint set
 admits at least one model�

Proof Let
n � f�i w �i� i � ���ng be a constraint system and consider� for all i� ��
i �

�n
i���i n �

n
i���i� Then f�i �� ��

ig is a model of
n �

An important result is that the constraint systems of the reconstruction algorithm always
admit a unique minimal model with respect to the subsumption relation w on e�ects� The
relation w is straightforwardly extended by extension to models�

Theorem � �Minimality� Any constraint set
 admits a unique minimal model Min�
	
such that� for any model of
� we have w Min�
	�

We assume here that the e�ect variables on the left hand sides of the inequations are
distinct� following upon our remark in the section ���

Min��		 Id and Min�f� w �g �
�		 let � Min�
�	 in f� �� � n �g

��

The algorithm Min recursively computes the minimal model of
 by composing the model
 of the constraint subset
� with the substitution of � � Note that the solution is independent
of the order with which constraints are selected�

Proof The proof is by induction on
 �

	 Correctness of the Reconstruction Algorithm

Lemma � �Substitution� If E � e � �� � then 	E � e � 	�� 	� for every substitution 	�

Proof The proof is straightforward by induction on the structure of expressions �

Theorem � �Termination� On all inputs �E � e	� the algorithm I either fails or terminates�

Proof I works by induction on the structure of expressions of
nite height �

Algebraic type schemes are used to implement the textual substitution speci
ed in the
�let	 binding rule for non�expansive expressions e� Without loss of generality� we assume in the
correctness proofs that� in programs to be typechecked� non�expansive let�bound expressions
are explicitly substituted in the body� type environments thus simply map identi
ers to types�

Theorem � �Soundness� Let E be the reconstruction environment and e an expression� If
I�E � e	 � h	� �� ��
i and j�
 for some model � then 	E � e � �� ��

The soundness result states that the application of any model of the reconstructed in�
equality system to the reconstructed type and e�ect is a solution of the static semantics�

Proof The proof is by induction on the structure of expressions�

Case of �var� In the case of identi
ers� note that whenever I�E � x	 � hId� �� �� �i then
x �� � � E � By de
nition of the rule �var	� we have�

E � x � �� �

Case of �abs� By hypothesis� we have I�E � �lambda �x	 e		 � h	� 	�
�
� �� ��
� f� w �gi

and consider any model of
 � f� w �g�
By de
nition of the algorithm� we have I�Ex � fx �� �g� e	 � h	� �� ��
i� Moreover� is

a model of
� so that� by induction hypothesis on e� we have�

	�Ex � fx �� �g	 � e � �� �

Since models f� w �g� we have � w � by de
nition� By the rule �does�� this requires
that 	�Ex � fx �� �g	 � e � �� � � By de
nition of the rule �abs	� we can conclude that�

	E � �lambda �x	 e	 � �	�
�
� �	� �

��

Case of �rec� The assumption is that�

I�E � �rec �f x	 e		 � h	�	� 	�	��
�
� ��	� �� 	��
 � f	� w �g	i

Let us consider any model of 	��
� f	� w �g	� By de
nition of our algorithm� we have�

	� � U�	��� �	 and I�Ef�x � ff �� �
�
� ��g � fx �� �g� e	 � h	� �� ��
i

Note also that 	� is a model of
� so that by induction hypothesis on e� we get�

	�	�Ef�x � ff �� �
�
� ��g � fx �� �g	 � e � 	��� 	��

Since 	� models f	� w �g� we have 	�	� w 	�� by de
nition� By the rule �does�� this
requires that�

	�	�Ef�x � ff �� �
�
� ��g � fx �� �g	 � e � 	��� 	�	�

By uni
cation� 	�� � 	�	��� By the de
nition of the rule �rec�� we get�

	�	E � �rec �f x	 e	 � 	�	��
�
� ��	� �

Case of �app� In the case of the application construct� we assume that

I�E � �e e�		 � h	��	�	� 	���� 	���	�� � �� � �	� 	���	�
 �
�	i

We suppose that is a model of 	���	�
�
�	� By the de
nition of our algorithm� we must
have 	�� � U�	��� � �

�
� �	 for fresh variables � and � � and also�

I�E � e	 � h	� �� ��
i and I�	E � e�	 � h	�� � �� ��
�i

Since is a model of 	���	�
 �
�	� we have also 	��	� j�
 and 	�� j�
�� so that by
induction hypothesis� we get�

	��	�	E � e � 	��	��� 	��	�� and 	��	�	E � e� � 	��� �� 	����

By uni
cation� we have 	��	�� � 	���� �
�
� �	� By the de
nition of the rule �app	� we

conclude�

	��	�	E � �e e�	 � 	���� 	���	�� � �� � �	

Case of �ilet� We assume that I�E � �let �x e	 e�		 � h	�	� � �� 	������ 	�
�
�i and suppose
that is a model of 	�
 �
�� By de
nition of the algorithm I� we have�

I�E � e	 � h	� �� ��
i and I�	Ex � fx �� �g� e�	 � h	�� � �� ���
�i

Since is a model of 	�
 �
�� we have 	� j�
� so that by induction hypothesis on e� we
get�

	�	E � e � 	��� 	��

Now� since we also have j�
�� we get by induction hypothesis on e��

��

	��	Ex � fx �� �g	 � e� � � �� ��

By the de
nition of rule �ilet	� we conclude that�

	�	E � �let �x e	 e�	 � � �� �	�� � ��	

Case of �new� We suppose that I�E � �new e		 � h	� ref���	� �� init��	�
i and that j�
�
We must have I�E � e	 � h	� �� ��
i� By induction hypothesis on e� we get�

	E � e � �� �

By the de
nition of the rule �new	� we conclude that�

	E � �new e	 � �ref���		� �� � init��		

Case of �get� We suppose that I�E � �get e		 � h	�	� 	��� � � read�	��	� 	�
i and that j�
	�
� For some �� we must have�

I�E � e	 � h	� �� ��
i and 	� � U��� ref���		

By induction hypothesis on e� since 	� is a model of
� we get�

	�	E � e � 	��� 	��

By the rule �get	� and since 	�� � 	�ref���	 by uni
cation� we conclude that�

	�	E � �get e	 � 	��� 	��� � read��		

Case of �set� Assume that I�E � �set e e�		 � h	��	�	� unit� 	���	��� ���write��		� 	���	�
�

�	i and that is a model of 	���	�
 �
�	� By the de
nition of our algorithm� we must have�

	�� � U�ref���
�	� 	��	

I�E � e	 � h	� �� ��
i
I�	E � e�	 � h	�� � �� ���
�i

Since 	��	� j�
 and by induction hypothesis on e� we have�

	��	�	E � e � 	��	��� 	��	��

Since 	�� j�
� and by induction hypothesis on e�� we get�

	��	�	E � e� � 	��� �� 	����

By uni
cation� we have 	��	�� � 	��ref���
�	� So� by the rule �set�� we conclude that�

	��	�	E � �set e e�	 � unit� 	���	�� � �� � write��		 �

The completeness theorem states that the reconstructed type � � and e�ect �� are maximal�
with respect to any inferred type � and e�ect �� for some substitution 	�� that veri
es the
computed constraints
��

��

Theorem �Completeness� If 	E � e � �� �� then I�E � e	 � h	�� � �� ���
�i and there exists
a substitution 	�� modeling
� such that�

	E � 	��	�E and � � 	��� � and � w 	����

Proof The proof is by induction on the structure of expressions�

Case of �var� We assume that 	E � x � �� �� By the de
nition of the rule �var�� this
requires that 	E � x � �� �� As a consequence� there exists � � such that � � 	� � and E�x	 � � ��
By de
nition of the algorithm�

I�E � x	 � hId� � �� �� �i

The theorem is satis
ed with 	�� � 	�

Case of �abs� Assume that 	E � �lambda �x	 e	 � �
�
� � ��� �� By the de
nition of the rule

�abs�� we have�

	Ex � fx �� �g � e � � ��� �

This is equivalent to �	 � f� �� �g	�Ex � fx �� �g	 � e � � ��� � for some type variable ��
By induction hypothesis on e� we have�

I�Ex � fx �� �g� e	 � h	�� � �� ���
�i

and there exists a substitution 	��� modeling
� and verifying�

�	 � f� �� �g	�Ex � fx �� �g	 � 	���	
��Ex � fx �� �g	 and � �� � 	����

� and � w 	����
�

By the de
nition of the algorithm� for some � � we have�

I�E � �lambda �x	 e		 � h	�� 	��
�
� � �� ��
� � f� w ��gi

Since � is fresh in algorithm I� the substitution�

	�� � 	��� � f� �� �g

is a model of both
� and f� w ��g� Thus� we can conclude that�

	E � 	��	�E and �
�
� � �� � 	���	��

�
� � �	

Case of �rec� We suppose that 	E � �rec �f x	 e	 � �
�
� � ��� �� By the rule �rec�� this

requires that�

	�Ef�x � ff �� �
�
� � ��g � fx �� �g	 � e � � ��� �

For fresh �� �� and � � this can be rewritten as�

�	 � f� �� �g � f�� �� � ��g � f� �� �g	�Ef�x � ff �� �
�
� ��g � fx �� �g	 � e � � ��� �

��

Now� let us note E � � Ef�x � ff �� �
�
� ��g � fx �� �g� By induction hypothesis on e� we

get�

I�E �� e	 � h	��� �
�� ���
�i

and there exists a model 	��� of
� such that�

�	 � f� �� �g � f�� �� � ��g � f� �� �g	E � � 	���	
�
�E

� and � �� � 	����
� and � w 	����

�

By uni
cation� since � �� � 	���	
�
��

� � 	����
�� there exists 	�� such that 	�� � U�	���

�� � �	� Thus�
by the de
nition of the algorithm I� we get�

I�E � �rec �f x	 e		 � h	��	
�
�� 	

�
�	

�
���

�
� ��	� �� 	���

� � f	��� w �g	i

Since uni
cation is complete� there exists 	�� such that 	��� � 	��	��� Since � � 	���	
�
�� and

� w 	����
�� then 	�� j� 	��f	

�
�� v ��g� Moreover� since 	��� j�
�� then 	�� j� 	��

�� We conclude
that 	�� is a model of 	���

� � f	��� w ��g	 such that�

	E � 	��	��	
�
�E and �

�
� � �� � 	��	��	

�
���

�
� ��	

Case of �app� We assume that 	E � �e� e�	 � � �� ��� By de
nition of rule �app�� there
exist �� �� and �� such that �� � �� � �� � � verifying�

	E � e� � �
�
� � �� �� and 	E � e� � �� ��

By induction hypothesis on e�� we have�

I�E � e�	 � h	��� �
�
�� �

�
��

�
�i

and there exists a substitution 	��� modeling
�� such that�

	E � 	���	
�
�E and �

�
� � � � 	����

�
� and �� w 	����

�
�

Since 	E � 	���	
�
�E � then 	���	

�
�E � e� � �� ��� So by induction hypothesis on e�� we have�

I�	��E � e�	 � h	��� �
�
�� �

�
��

�
�i

There exists a substitution 	��� modeling
�� such that�

	���	
�
�E � 	���	

�
�	

�
�E and � � 	����

�
� and �� w 	����

�
�

First note that�

	E � 	���	
�
�E � 	���	

�
�	

�
�E

Take � and � new� Let V be the set of the free variables of 	��	
�
�E � �

�
�� �

�
� and
�� and de
ne

	��� as follows�

	���� �

�����
����

	����� � � V

� �� � � �
�� � � �

	����� otherwise

�

By this de
nition� we get�

	E � 	���	
�
�	

�
�E and �

�
� � � � 	�����

�
�

�
� �	 and 	����

�
� � 	����

�
�

Now� for every � in � ��� �
�
� and
��� either � is in fv�	��E	 or � is new� by de
nition of I�

Then� for every such � in fv�	��E	� since 	���	
�
��	

�
�E	 � 	���	

�
��	

�
�E	 � 	����	

�
�E	� we have�

	���	
�
�� � 	���	

�
�� � 	����

Otherwise� � is new� and thus 	��� � �� so that we have�

	���	
�
�� � 	���� � 	����

We get�

�
�
� � � � 	���	

�
��

�
� and 	����

�
� � 	���	

�
��

�
� and 	���	

�
� j�
��

It follows that�

	��� j� 	��

�
� �
��

Since 	���	
�
��

�
� � 	�����

�
�

�
� �	 and by the correctness of uni
cation� there exists a substitution

	�� such that 	�� � U�	���
�
�� �

�
�

�
� �	 verifying�

	��	
�
��

�
� � 	����

�
�

�
� �	

By the de
nition of the algorithm� we get�

I�E � �e� e�		 � h	��	
�
�	

�
�� 	

�
��� 	

�
��	

�
��

�
� � ��

� � �	� 	���	
�
�

�
� �
��	i

Now� since 	�� is the most general uni
er of 	���
�
� and � ��

�
� �� there exists a substitution

	�� such that

	��� � 	��	��

We have proved that 	�� models 	���	
�
�

�
� �
��	 and veri
es�

	E � 	��	��	
�
�	

�
�E and � � � 	��	��� and �� w 	��	���	

�
��

�
� � ��

� � �	

Case of �ilet� We assume that 	E � �let �x e�	 e�	 � ��� �� By the rule �let�� this requires
that there exist �� and �� such that � � �� � �� verifying�

	E � e� � ��� �� and 	Ex � fx �� ��g � e� � ��� ��

By induction hypothesis on e�� we have�

I�E � e�	 � h	��� �
�
�� �

�
��

�
�i

There exists a substitution 	��� modeling
�� such that�

	E � 	���	
�
�E and �� � 	����

�
� and �� w 	����

�
�

We also have 	Ex � fx �� ��g � e� � ��� ��� which is equivalent to�

�

	����	
�
�Ex � fx �� � ��g	 � e� � ��� ��

By induction hypothesis on e�� this implies that�

I�	��Ex � fx �� � ��g� e�	 � h	��� �
�
�� �

�
��

�
�i

and that there exists 	��� modeling
�� such that�

	����	
�
�Ex � fx �� � ��g	 � 	���	

�
��	

�
�Ex � fx �� � ��g	 and �� � 	����

�
� and �� w 	����

�
�

By the de
nition of the algorithm� we get�

I�E � �let �x e�	 e�		 � h	��	
�
�� �

�
�� 	

�
��

�
� � ��

�� 	
�
�

�
� �
��i

Note that�

	E � 	���	
�
�E � 	���	

�
�	

�
�E

As for application� let V be the set of the free variables of 	��	
�
�E � �

�
�� �

�
� and
�� and de
ne

	�� as follows�

	��� �

�
	����� � � V

	����� otherwise

Thus 	�� is a model of 	��

�
� �
��� and as for application� it satis
es�

	E � 	��	��	
�
�E and �� � 	��� �� and � w 	���	���

�
� � ��

�	

Case of �new� We suppose that 	E � �new e	 � ref���	� �� init��	� By the rule �new�� this
requires that 	E � e � �� �� By induction hypothesis on e� we have�

I�E � e	 � h	�� � �� ���
�i

and there exists 	��� modeling
� such that�

	E � 	���	
�E and � � 	����

� and � w 	����
�

By the de
nition of the algorithm� we get for some new ��

I�E � �new e		 � h	�� ref���
�	� �� � init��	�
�i

Considering 	�� � 	��� � f� �� �g� we can conclude that�

	E � 	��	�E and ref���	 � 	��ref���
�	 and � � init��	 w 	����� � init��		

Case of �get� We suppose that 	E � �get e	 � �� ��read��	� By the rule �get�� this requires
that 	E � e � ref���	� �� By induction hypothesis on e� we have�

I�E � e	 � h	��� �
�� ���
�i

and there exists a substitution 	��� modeling
� such that�

	E � 	���	
�
�E and ref���	 � 	����

� and � w 	����
�

Let 	��� � 	��� � f� �� �g � f� �� �g where � and � are new� We have 	����ref���		 � 	����
��

Thus� ref���	 and � � unify� Let 	�� be such that�

	�� � U�ref���	� �
�	

By completeness of U � there exists 	�� such that 	��� � 	��	��� By the de
nition of the algorithm�
we then get�

I�E � �get e		 � h	��	
�
�� ref���

�	� �� � read�	���	� 	
�
�

�i

So that 	��� which models 	��

�� satis
es the theorem�

	E � 	��	��	
�
�E and � � 	��	��� and � � read��	 w 	����� � read�	���		

Case of �set� We suppose that 	E � �set e e�	 � unit� � � �� �write��	� By the rule �set��
this requires that�

	E � e � ref���	� � and 	E � e� � �� ��

By induction hypothesis on e� we have�

I�E � e	 � h	��� �
�
�� �

�
��

�
�� i

and there exists 	��� modeling
�� such that�

	E � 	���	
�
�E and ref���	 � 	����

�
� and � w 	����

�
�

Since 	E � 	���	
�
�E and 	E � e� � �� ��� we get�

I�	��E � e
�	 � h	��� �

�
�� �

�
��

�
�i

By induction hypothesis on e�� and there exists 	��� modeling
�� such that�

	���	
�
�E � 	���	

�
�	

�
�E and � � 	����

�
� and �� w 	����

�
�

Take � new� Let V be the set of the free variables of 	��	
�
�E � �

�
�� �

�
� and
�� and de
ne 	���

as follows�

	���� �

���
��

	����� � � V
�� � � �

	����� otherwise

�

As for application� there exists a substitution 	�� � U�ref���
�
�	� 	

�
��

�
�	� By de
nition of the

algorithm� we get�

I�E � �set e e�		 � h	��	
�
�	

�
�� unit� 	

�
��	

�
��

�
� � ��

� � write��		� 	���	
�
�

�
� �
��	i

Since uni
cation is complete� there exists 	�� such that 	��� � 	��	�� which models 	���	
�
�

�
��

�
�	

and satis
es�

	E � 	��	��	
�
�	

�
�E and � � �� � write��	 w 	��	���	

�
��

�
� � ��

� � write��		 �

 Examples

We consider two examples that demonstrate the e�ectiveness of our algorithm to infer e�ects
of programs as well as to interpret and use e�ect information to perform code optimizations�
All of the additional language constructs we use in this section can be easily integrated in the
framework de
ned in this paper�

Program Documentation

This
rst example illustrates the e�ectiveness of program documentation provided by the use
of our system� The expression below creates an integer reference value counter and initializes
it to the value initial� The counter is then used in the gensym�like closure returned by the
expression�

�lambda �initial	
�let �counter �new initial		

�lambda �inc	
�begin �set counter �� �get counter	 inc		

�get counter					

In the algorithm� the identi
er counter is assigned the type ref��integer	� Then� the type
and e�ect of the body of the returned lambda expression�

�begin �set counter �� �get counter	 inc		 �get counter		

are computed� We get integer as type and read��	�write��	 as e�ect� As a consequence� the
whole expression is assigned the following type and related constraint set�

integer
�
� �integer

� �
� integer	� f� w init��	� � � w read��	� write��	g

In the static semantics� this corresponds to the type�

integer
init���
� �integer

read ����write���
� integer	

�

Parallel Code Generation

The second example illustrates the use of our type and e�ect system to perform sophisti�
cated code optimizations such as stack allocation and parallelization of global operations
on vectors� which have recently been implemented into a prototype of the related FX com�
piler �Talpin II�� generating �Lisp ��Lisp� code and targeted towards the Connection Machine
architecture �Hillis��

Contrarily to other work related to the topic of compile	time garbage collection or reference
escape analysis ��Hudak�� �Hughes� and �Neirynck�	� type and e�ect inference e�ectively deals
with higher�order functions� reference values and imperative constructs� The use of other
methods such as abstract interpretation or interprocedural analysis may give more precise
information than regions� but they are generally limited to simpler languages�

Regions denote abstractions of sets of memory locations� E�ects are expressed in terms
of these regions and approximate the observational imperative behavior of the evaluation of
expressions� Nonetheless� if these e�ects are related to values that are locally allocated� the
e�ects do not need to be reported� This can be detected by looking at the typing environment
and the free variables of every expression �Gi�ord�� If a region appears in some e�ect but not
in the type of the free variables or the return type of the expression� then such an e�ect is
not observable from the outside� Any data structure allocated in such a region can be safely
stack allocated� thus avoiding a super�uous and costly heap allocation�

In the following program�

�let �v �identity ��		
�let �f �lambda �x	 �� a �� b x				

�vector map f v			

�identity ��� initializes a vector to the integers of � to ��� which is then bound to v� We
de
ne an a�ne function f which is then mapped over every element of v� Provided that we
give to v and f the following types�

v � vector��integer	 and f � integer
�
� integer

the type and e�ect of this program are�

vector���int	 � init��	� read��	� init���	

Note that the region �� in which the vector v was allocated� is absent both from the context
of the program and its value type� As a result� the vector v is isolated once the execution of
this program terminates� and it can thus be stack allocated�

As far as parallel code generation is concerned� we can easily detect that the function f

only handles basic data types �integer	 and does not produce any side e�ect� its mapping on
v can thus be performed in parallel�

��let ��v ��with vp set �vp set of size ��	 �enumerate��				
�labels ��f�� x�	 ���� ��� a	 ���� ��� b	 x�			

��with vp set �pvar vp set v	
�f�� v				

The �Lisp code that is generated for this example program can be analyzed as follows� The
construct �let performs stack allocation of the vector v as a speci
c �Lisp data structure�

�

a pvar� Each element of v is distributed over the processing elements of the Connection
Machine� We de
ne a parallel version f�� of the function f� it is then applied to the pvar v
to perform the parallel mapping of f on v�

� Conclusion

We have presented a type� region and e�ect inference algorithm for an implicitly typed func�
tional language extended with imperative constructs� We have shown that this algorithm is
consistent with its static semantics� It computes the maximal type and e�ect of expressions
with respect to substitution on variables and the minimal e�ect with respect to the rule of
subsumption on e�ects�

A number of standard program optimizations can take advantage of the program prop�
erties that type and e�ect inference computes� Stack allocation and parallel code generation
have been discussed in this paper� This framework provides the basis for sophisticated pro�
gram veri
cation and transformation techniques in the presence of side�e�ects and higher�
order functions� In order to assess the practicality of our approach� our inference algorithm
has been implemented into a prototype of the FX compiler targeted towards the Connection
Machine architecture �Hillis� at the Ecole des Mines de Paris �Talpin II��

Instead of resorting to a syntactic criterion for managing let polymorphism� we are work�
ing on extending this framework to handle more gracefully type generalization by using type
schemes in a way reminiscent of Standard ML �Talpin I�� E�ects are used to control type
generalization in the presence of imperative constructs while regions delimit observable side�
e�ects� The observable e�ects of an expression range over the regions that are free in its type
environment and its type� e�ects related to local data structures can be discarded during
type reconstruction� The type of an expression can be generalized with respect to the type
variables that are not free in the type environment or in the observable e�ect�

References

��Lisp� �Lisp Reference Manual� Thinking Machines Corporation� �����

�Appel� Appel� A� W�� and Mac Queen� D� B� Standard ML Reference Manual �Prelimi�
nary	� AT�T Bell Laboratories and Princeton University� October �����

�Cousot� Cousot� P�� and Cousot� R� Abstract Interpretation� a uni
ed lattice model for
static analysis of programs by construction of approximation of
xpoints� In Pro	
ceedings of the
��� ACM Conference on Principles of Programming Languages�
ACM� New�York� �����

�Deutsch� Deutsch A� On Determining Lifetime and Aliasing of Dynamically Allocated Data
in Higher�Order Functional Speci
cations� In Proceedings of the
�� ACM Con	
ference on Principles of Programming Languages� ACM� New�York� �����

�Gi�ord� Gi�ord� D� K�� Jouvelot� P�� Lucassen� J� M�� and Sheldon� M� A� FX��� Reference
Manual� MIT�LCS�TR	��� MIT Laboratory for Computer Science� September
�����

�

�Gordon� Gordon� M� C� J�� and Milner� R� Edinburgh LCF� In Lecture Notes in Computer
Science� vol� ��� Springer Verlag� �����

�Hammel� Hammel� R� T�� and Gi�ord� D� K� FX��� Performance Measurements� Data�ow
Implementation� MIT�LCS�TR	��
� MIT Laboratory for Computer Science�
November �����

�Harper� Harper� R�� Milner� R�� and Tofte� M� The de
nition of Standard ML� Edinburgh
LFCS Report ��	��� University of Edinburgh� �����

�Harrison� Harrison� W� L� The Interprocedural Analysis and Automatic Parallelization of
Scheme Programs� In Lisp and Symbolic Computation� an Internal Journal�
��	� �����

�Hillis� Hillis� W� D� The Connection Machine� The MIT Press� Cambridge� �����

�Hudak� Hudak� P� A semantic model of reference counting and its abstraction� In Pro	
ceedings of the
��� ACM Conference on Programming Language Design and
Implementation� ACM� New�York� August �����

�Hughes� Hughes J� Backward Analysis of Functional Programs� In Proceedings of the
Workshop on Partial Evaluation and Mixed Computation� North Holland� Oc�
tober �����

�Jouvelot� Jouvelot� P�� and Gi�ord� D� K� Algebraic reconstruction of types and e�ects�
In Proceedings of the
��
 ACM Conference on Principles of Programming Lan	
guages� ACM� New�York� �����

�Larus� Larus� J� R�� and Hil
nger� P� N� Detecting con�icts between structure accesses�
In Proceedings of the
��� ACM Conference on Programming Language Design
and Implementation� ACM� New�York� �����

�Leroy� Leroy� X�� and Weis� P� Polymorphic type inference and assignment� In Pro	
ceedings of the
��
 ACM Conference on Principles of Programming Languages�
ACM� New�York� �����

�Lucassen� Lucassen� J� M� Types and E�ects� towards the integration of functional and
imperative programming� MIT�LCS�TR	�� �Ph� D� Thesis	� MIT Laboratory
for Computer Science� August �����

�Milner� Milner� R� A Theory for type polymorphism in programming� In Journal of Com	
puter and Systems Sciences� Vol� ��� pages �������� �����

�Mitchell� Mitchell� J� C�� and Harper� R� The Essence of ML� In Proceedings of the
���
ACM Conference on Principles of Programming Languages� ACM� New�York�
�����

�Morris� Morris� J� H� Lambda Calculus Models of Programming Languages�MAC	TR	���
Massachusetts Institute of Technology� �����

�Neirynck� Neirynck� A�� Panangaden� P�� and Demers� A� E�ect analysis of higher order
languages� In International Journal of Parallel Programming� Vol� ��� No� ����
�����

�

�Plotkin� Plotkin� G� A structural approach to operational semantics� Technical report
DAIMI	FN	
�� Aarhus University� �����

�Robinson� Robinson� J� A� A machine oriented logic based on the resolution principle� In
Journal of the ACM� Vol� ���	� pages ����� ACM� New�York� �����

�Rosen� Rosen� B� Data Flow Analysis for Procedural Languages� In Journal of the ACM�
Vol� ��	� pages ������ ACM� New�York� April �����

�Scheme� Rees� J�� and Clinger W�� Editors� Fourth Report on the Algorithmic Language
Scheme� September �����

�Sheldon� Sheldon� A� M�� and Gi�ord� D� K� Static Dependent Types for First Class Mod�
ules� In Proceedings of the
�� ACM Conference on Lisp and Functional Pro	
gramming� ACM� New�York� �����

�Talpin I� Talpin� J� P�� and Jouvelot� P� The Type and E�ect Discipline� Research Report
EMP	CRI	A�� �revised version	� Ecole Nationale Sup�erieure des Mines de Paris�
November �����

�Talpin II� Talpin� J� P�� and Jouvelot� P� The FX CM Compiler Backend� or Taming Mas�
sive Parallelism with an E�ect System� Research Report EMP	CRI	A��� Ecole
Nationale Sup�erieure des Mines de Paris� November �����

�Tofte� Tofte� M� Operational semantics and polymorphic type inference� PhD Thesis�
University of Edinburgh� �����

�

