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INVESTIGATION

Polymorphism Identification and Improved Genome
Annotation of Brassica rapa Through Deep
RNA Sequencing

Upendra Kumar Devisetty, Michael F. Covington, An V. Tat,1 Saradadevi Lekkala, and Julin N. Maloof 2

Department of Plant Biology, University of California, Davis, California 95616

ABSTRACT The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly

improved with the availability of physically positioned, gene-based genetic markers and accurate genome

annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken

with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection

on two varieties that are parents of a mapping population to aid in development of a marker system for this

population and subsequent development of high-resolution genetic map. An improved Brassica rapa tran-

scriptome was constructed to detect novel transcripts and to improve the current genome annotation. This

is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations.

Deep RNA-Seq of two Brassica rapa genotypes—R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid

cycling variety)—using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem,

silique, and seedling) grown across three different environments (growth chamber, greenhouse and field)

and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality

Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes

with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa

transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we

detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated

proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of

780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://

phytonetworks.ucdavis.edu/.
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High-density molecular genetic markers are a valuable resource for

assessing genetic diversity both within and between species. They are

useful for the construction of high-resolution genetic maps, for geno-

typing segregating populations, for marker-assisted breeding, and for

map-based cloning (Edwards and Batley 2004). Next-generation se-

quencing (NGS) has significantly improved discovery and genotyping

of such markers, especially single nucleotide polymorphisms (SNPs)

(Shendure and Ji 2008). NGS SNP discovery can be focused on coding

regions using RNA-Seq, reducing costs compared with whole-genome

sequencing (Trick et al. 2009; Lai et al. 2012; Koenig et al. 2013). For

the current study, we are particularly interested in detecting SNPs

between two B. rapa varieties (hereafter referred to as genotypes),

R500 (Yellow Sarson variety), and IMB211 (a rapid cycling variety)

because these are the parents of a mapping population. The R500

genotype is a seed-oil cultivar grown in India for more than 3000

years (Prakash 1980). The IMB211 genotype is derived from Wisconsin

Fast Plant population and therefore has a rapid generation time

(Dorn and Mitchell-Olds 1991; Mitchell-Olds 1996). These geno-

types have contrasting life-history strategies; compared with

IMB211, R500 flowers late, reaches a large size at flowering, and

accumulates more biomass (Edwards et al. 2009; Edwards and Weinig

2011). Previously, a B. rapa genetic linkage map was constructed
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using RFLP markers for this population (Iniguez-Luy et al. 2009).

However, this linkage map is of low density and may not provide

precise and complete information about the numbers and location

of QTL. SNP based markers located in coding regions (cSNPs), such

as those defined by RNA-Seq, can be useful for the development of

high-resolution genetic map of B. rapa.

In addition to physically positioned gene-based molecular markers,

accurate and comprehensive genome annotation (e.g., gene models) is

imperative for functional studies. Genome annotations initially relied

primarily on ab initio gene predictions and alignment of reference

transcripts of related species [GENSCAN (Burge and Karlin 1997),

GlimmerHMM (Majoros et al. 2004), and Fgenesh (Salamov and

Solovyev 2000)]. However, these strategies often have problems iden-

tifying short exons and predicting very long exons, identifying non-

translated exons, and predicting genes that encode noncoding RNAs

accurately. Genome annotation based on gene prediction programs

that rely on ESTs also have problems. For instance, it has been esti-

mated that most EST+homology–based annotations miss 20% to 40%

of transcripts that are novel transcripts or that are transcribed only

under highly specific tissue or environmental or treatment conditions

(Brent 2008). Currently, the annotation of protein-coding genes in the

Brassica rapa (Chiifu) genome mainly relied on ESTs data from databases

and in silico gene models (Wang et al. 2011). Updating and improving

the current genome annotation of B. rapa is essential for better functional

analysis studies and more accurate mRNA abundance estimates.

In this study, we describe our approaches for the generation of

coding SNPs (cSNPs) and re-annotation of B. rapa genome using

deep RNA-Seq. Using these approaches, we were able to identify

330,995 putative cSNPs between the two B. rapa genotypes. In addi-

tion, we were able to detect 3537 previously uncharacterized B. rapa

transcripts and updated 23,754 gene models of B. rapa genome.

MATERIALS AND METHODS

Plant materials and sample collection

Two Brassica rapa genotypes—R500 and IMB211—were grown in

three different locations for tissue collection for RNA-Seq library

preparation. For sample collections from the growth chamber, both

genotypes were germinated on 1/2 MS (Sigma) plates kept in dark for

3 d with 10 to 15 seeds per plate. Then, the plates were exposed to

continuous light and grown at 22� in a Conviron walk-in growth

chamber. The 10-d-old seedlings were transplanted to 3-inch pots

and were divided into two groups. One group (simulated sun group)

continued to grow under the conditions as described above [high-red

to far-red ratio (R/FR), 2.0], and the second group (simulated shade

group) was grown under a mixture of cool white and far-red fluores-

cent lights (low R/FR, 0.2) in a complete randomized design. Both

conditions had PAR ranging from 80 to 100 mE. Ambient light con-

ditions were measured using LI-COR radiospectrophotemeter (Li-Cor).

The following samples were collected from the growth chamber–

grown sun and shade plants. Whole seedlings were collected 10

d after germination. Roots were collected from 10-d-old seedlings.

Vegetative meristems were collected from plants when the third leaf

reached 1 mm. The stem between the fourth and fifth leaves was

collected for internode tissue, and inflorescence meristems were col-

lected when these meristems were fully formed. Leaf samples were

collected 28 d after germination, and siliques were collected when

they were fully mature. For greenhouse sample collection, both gen-

otypes were germinated and grown as indicated above, and 10 d after

germination the seedlings were transferred to a greenhouse, trans-

planted to soil, and subjected to nondense and dense treatments. For

the dense treatment, four plants surrounded each plant in a 6-inch

square pot; for the nondense treatment, a single plant was grown per

6-inch pot. Internode, leaf, and silique samples were collected as

indicated above. Petioles were collected from first, second, and third

mature leaves. Only leaf and silique samples were collected from

field-grown B. rapa genotypes. All the collected samples were im-

mediately frozen in liquid nitrogen before storage at 280� until

RNA extraction and library preparation. Samples used in this study

are listed in Table 1.

n Table 1 List of tissue samples collected from B. rapa genotypes
R500 and IMB211 across growth chamber, greenhouse, and field
conditions

Tissue Location Treatment Genotype
No. of

Replicates

GC pool
Apical Meristem GC Shade IMB211 2

GC Shade R500 2
GC Sun R500 1

Leaf GC Shade IMB211 3
GC Sun IMB211 3
GC Shade R500 3
GC Sun R500 3

Floral Meristem GC Shade R500 2
Internode GC Shade IMB211 2

GC Sun IMB211 3
GC Shade R500 3
GC Sun R500 3

Seedling GC Shade IMB211 3
GC Sun IMB211 3
GC Shade R500 3
GC Sun R500 3

Silique GC Shade IMB211 3
GC Sun IMB211 3
GC Shade R500 3
GC Sun R500 3

Root GC Sun IMB211 3
GC Shade IMB211 3
GC Sun R500 3
GC Shade R500 3
Total 66

GH pool
Leaf F IMB211 3

F R500 3
GH DP IMB211 3
GH NDP IMB211 3
GH DP R500 3
GH NDP R500 3

Internode GH DP IMB211 3
GH NDP IMB211 3
GH DP R500 3
GH NDP R500 3

Petiole GH DP IMB211 3
GH NDP IMB211 3
GH DP R500 3
GH NDP R500 3

Silique F IMB211 3
F R500 3
GH DP IMB211 3
GH NDP IMB211 3
GH DP R500 3
GH NDP R500 3
Total 60

GC, growth chamber; GH, greenhouse; F, field; DP, dense planting; NDP,
nondense planting.
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Total RNA extraction, RNA-Seq library preparation,
and sequencing

Total RNA was extracted from two to three biological replicates of

different samples of B. rapa genotypes (Table 1) and purified using

RNAeasy Plant Mini Kit (Qiagen). DNaseI (Qiagen) was used to

remove any contaminating DNA according to the manufacturer’s

instructions. The quality and quantity of the extracted RNA were

initially assessed by NanoDrop ND 1000 (NanoDrop technologies).

RNA-Seq libraries were prepared using Illumina’s TruSeq v1 RNA

sample Preparation kit (RS-930-2002) with a Low-Throughput pro-

tocol following manufacturer’s instructions with the following mod-

ifications. All the reaction volumes were reduced to half to reduce

costs. Custom paired-end barcoded adapters (Kumar et al. 2012) were

used instead of Illumina’s RNA indexed adapters to multiplex the

samples, 10 cycles of PCR enrichment was performed instead of 15

cycles to reduce amplification bias, and, finally, the libraries were

constructed with an insert size of 300 to 350bp. The enriched libraries

were then quantified on an Analyst Plate Reader (LJL Biosystems)

using SYBR Green I reagent (Invitrogen). Once the concentration of

libraries was determined, two pools were made to a final concentra-

tion of 20 nM, with one pool consisting of 66 samples collected from

growth chamber and another pool consisting of 60 samples collected

from greenhouse and field (Table 1). Each pool was sequenced on

eight lanes (total 16 lanes) of an Illumina Genome Analyzer (GAIIx)

as 100-bp paired end reads. The libraries that failed from both the

pools were further sequenced on one extra lane (Table 2).

Pre-processing of Illumina RNA-Seq raw reads

The FastX-tool kit software (http://hannonlab.cshl.edu/fastx_toolkit/)

and custom perl scripts were used to perform pre-processing of Illu-

mina raw reads to ensure the good quality of sequencing reads for

downstream analysis. The raw reads were either quality-filtered with

fastq_quality_filter with parameters [q 20, p 85] or, in some cases,

trimmed first using fastx_trimmer with parameters [f 1,3; l 78] and

then quality-filtered with the same parameters as indicated above.

Next, reads containing custom adapters were removed using a custom

script. The reads were then sorted (de-multiplexed) by their custom

barcode sequences using fastx_barcode_splitter with default parame-

ters. The quality control of paired end reads resulted in some reads

losing their partner reads. Further processing to extract properly

paired reads and unpaired reads (orphan reads) was performed using

a custom script. Only paired reads were kept for downstream analyses.

Reads were checked for quality before and after quality control with

FastQC quality assessment software (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/).

SNP detection

SNPs were obtained from the alignments of all available reads of

each genotype separately (NCBI SRA accessions are listed in

Supporting Information, Table S3) to B. rapa genome reference v1.2

data of Chiifu available from BRAD (http://brassicadb.org/brad/) using

BWA v0.6.1-r104 (Li and Durbin 2009) with parameters [k 1, l 25, n

0.02, e 15, i 10]. All unmapped reads from BWA were mapped to

putative splice junctions using TopHat v1.4.1 (Trapnell et al. 2009)

with the following parameters [–segment-mismatches 1–max-multi-

hits 1–segment-length 22–butterfly-search–max-intron-length 5000].

The resulting alignment files from Tophat and BWA were merged,

and SAMtools v0.1.18 (Li et al. 2009) followed by Picard (http://

picard.sourceforge.net/) were used to filter uniquely mapped reads

and remove duplicated reads, respectively. Sequence polymorphisms

between R500 and IMB211 were identified using a variant-detection,

genotype-scoring, and visualization tool that we developed, SNPtools

v0.1.5 (https://github.com/mfcovington/SNPtools/). R500 compared

with IMB211 variants were deduced by comparing the lists of

Chiifu-related variants. For example, an R500:Chiifu SNP would also

be an R500:IMB211 SNP if, at the position in question, the IMB211

alignment to Chiifu has sufficient coverage and IMB211 matches the

Chiifu reference. To refine the R500:IMB211 polymorphism list, we

used the SNPtools noise-reduction feature. The initial set of R500:

IMB211 polymorphisms was used by SNPtools to interrogate the

R500 and IMB211 alignments at the position of each putative poly-

morphism. For each of these positions, the resulting genotype files

n Table 2 Summary of RNA-Seq data obtained from B. rapa deep transcriptome using Illumina GAIIx sequencing

Pool
Name/Run Pool Number No. of Tissues Total No. of Reads

Fastq File
Size (in GB)

Total No. of Reads
After Quality Control

Average Read
Length (bp)

s_6_1 1 66 218,642,024 58 162,403,886 100
s_7_1 2 60 193,176,106 50 148,346,164 100
GH_s_1 1 60 184,259,308 48 162,260,599 89
GH_s_2 1 60 181,519,358 48 160,143,988 89
GH_s_3 1 60 180,575,544 48 159,927,822 100
GC_s_1 2 66 218,352,856 56 183,452,891 100
GC_s_2 2 66 213,474,480 56 172,832,712 100
GC_s_3 2 66 96,917,806 26 75,331,287 100
GC_s_4 2 66 212,749,370 56 180,334,866 100
GC_s_5 2 66 223,341,414 60 144,237,478 100
GC_s_6 2 66 201,966,154 54 135,778,620 100
GC_s_7 2 66 201,305,348 54 142,418,270 100
GH_s_4 1 60 166,999,240 44 117,413,176 100
GH_s_5 1 60 213,801,168 58 136,508,912 100
GH_s_6 1 60 216,036,902 58 142,306,342 100
GH_s_7 1 60 203,973,230 54 136,831,614 100
GCGH_s_1 R 8 226,938,148 60 189,740,545 100
Total 3,354,028,456 888 2,550,269,172 98.7

Pool 1 includes all 66 different tissues collected from growth chamber. Pool 2 includes all 60 different tissues collected from greenhouse and field. Pool R includes all
eight tissues that failed in pool 1 and pool 2.
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indicate the number of reads matching each allele. For a true R500:

IMB211 polymorphism, the majority of reads should match the

appropriate allele for both alignments. Putative polymorphisms that

went against this expectation were filtered out from the final list. The

code that was used to perform each of these steps is available at

https://github.com/MaloofLab/devisetty-g3-2014/.

SNP annotation

The categorization of SNP effects was performed using SnpEff v3.0

(Cingolani et al. 2012). First, B. rapa genome annotation information

in GFF3 format was retrieved from BRAD (Brapa_gene_v1.2.gff). This

genome annotation provided predicted exon–intron gene structure.

The default parameters of snpEff were used to perform the variant

effect analysis. Both HTML and text output files were generated from

snpEff and were used to perform the SNP annotation on the basis of

their structural occurrence in the intergenic, intronic, and exonic

regions. SNPs located in the exonic region were further categorized

as CDS, 59-region, and 39-region. Depending on whether SNPs caused

changes in the coding of an amino acid, SNPs in the CDS region of

the protein-coding genes were annotated according to functional rel-

evance as synonymous or nonsynonymous mutations.

Experimental validation of SNPs

For validation of identified SNPs, 300-base-long sequence fragments

(100 of them) containing a predicted SNP were excised from B. rapa

genome using a custom script, and the Primer3Plus primer design tool

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/)

(Untergasser et al. 2007) was used to design primers. The designed

primers are listed in Table S1. For verification of SNPs, genomic

DNA was extracted from 7-d-old seedlings of the two B. rapa gen-

otypes using a modified Dellaporta plant DNA extraction method

(Dellaporta et al. 1983). Genomic DNA was diluted to 20 ng/ml and

used as a template in a PCR final volume of 20 ml containing 1·

Standard buffer (homemade), 200 mM of each dNTP (Promega),

0.25 mM of each primer, 0.1 ml of Taq DNA polymerase (home-

made), and 2 ml of template DNA (20 ng/ul). The PCR amplification

conditions include a 2-min denaturation step at 94� followed by 35

cycles of PCR (94� for 30 sec; 60� for 30 sec; 72� for 30 sec), with

a final extension time of 7 min at 72�. The PCR products were

purified using Axygen AxyPrep Mag PCR clean-up kit (MAG-

PCR-CL-250) according to manufacturer’s protocol. The purified

PCR products were then sequenced by Sanger DNA sequencing

method with an ABI 3730 Capillary Electrophoresis Genetic Ana-

lyzer at UC Davis. Each of the sequences from both genotypes along

with the Chiifu reference genome sequences were aligned and visu-

ally inspected by ebioX software (http://www.ebioinformatics.org/)

to verify sequence polymorphisms. In addition to the estimation of

true-positive and false-positive SNP rates, we also used these frag-

ments to estimate the false-negative rate. To do this we identified all

SNPs present in the Sanger reads in a 150-bp window surrounding

the focal SNP (we only used 150 bp out of 300 bp because this region

had the most consistently good sequence). For each SNP found in

the Sanger reads, we then asked if there was coverage of this position

in the RNA-Seq data, and if there was coverage whether we had

detected the SNP. To further investigate apparent false-positive

SNPs, we chose primer sets to amplify four apparent false-positive

SNPs from recombinant inbred lines (RILs) predicted to be segre-

gating for the SNPs in question. RNA-Seq libraries and genomic

DNA were as used as template for RILs and parental genotypes,

respectively. The amplification conditions and sequencing procedure

are the same as above.

Ka/Ks ratio computation

For a given transcribed region of the genome, Ka denotes the average

number of nonsynonymous substitutions per nonsynonymous site.

Likewise, Ks denotes the average number of synonymous substitutions

per synonymous site. To estimate Ka/Ks ratio for the B. rapa genome,

all the SNPs were first substituted into the Chiifu reference genome

sequence using vcf2diploid v0.2.6 tool of AlleleSeq pipeline (http://

info.gersteinlab.org/AlleleSeq). This generated separate genomes for

R500 and IMB211. The corresponding CDS were then extracted using

the gffread tool from Cufflinks package. The Ka/Ks ratio was com-

puted using KaKs calculator (https://code.google.com/p/kaks-calculator/

downloads/list). Tests were conducted to estimate the evolution of each

codon using the “MLWL” method of codon substitution. To look for

differences in KaKs ratios among chromosomes, we calculated the dif-

ference in median KaKs for each chromosome compared with the rest

of the genome. We repeated this for 1000 permuted chromosomes. A

chromosome was considered to have a significantly different KaKs ratio

if the absolute value of the difference in its KaKs ratio (compared with

the rest of the genome) exceeded the absolute value of the differences in

95% of the permuted datasets. In the first version of this test (to asses

overall differences in KaKs), genes were randomly assigned to the per-

muted chromosomes (keeping the number of genes the same as in the

original data set). To test for the contribution of differential sub-genome

composition per chromosome, we assigned genes to chromosomes in

a way that preserved the proportion of LF, MF1, and MF2 genes on

each chromosome.

De novo transcriptome assembly methods

Post-processed paired end reads of Brassica rapa R500 genotype

from 10 Illumina GAIIx lanes (NCBI SRA accessions SRR1227842,

SRR1228204, SRR1228205, SRR1228206, SRR1228207, SRR1228208,

SRR1228209, SRR1228210, SRR1228211, SRR1228212) (Table S3)

were pooled together and assembled de novo using Velvet v1.2.07

(Zerbino and Birney 2008) followed by Oases v0.2.08 (Schulz et al.

2012) on XSEDE Lonestar computer cluster (https://www.xsede.org/

tacc-lonestar) and Trinity r2012-06-08 (Garber et al. 2011) on

XSEDE Blacklight computer clusters (http://www.psc.edu/index.php/

computing-resources/blacklight). Because of the highly variable nature

of transcriptome coverage (Surget-Groba and Montoya-Burgos 2010),

we chose seven different k-mer sizes (31, 35, 41, 45, 51, 55, and 61) to

increase the chances of transcript assembly using Velvet-Oases. In addi-

tion, we also tested two merged assemblies with k-mer sizes 27 and 55

using Oases merge. We analyzed various assembly parameters such as

total number of transcripts, N50 (N50 is a weighted median statistic

indicating that 50% of the entire assembly is contained in contigs equal

to or larger than this value), longest transcript length, and average

transcript length as a function of k-mer length. To produce a non-

redundant set of Oases mRNA sequences rather than include alterna-

tive splicing, we used a custom python script (https://code.google.

com/p/oases-to-csv/downloads/list) to choose a single representative

transcript based on coverage and sequence length. Next, to assess the

quality and completeness of the assembly, we then compared the cur-

rent Velvet-Oases assembly with B. rapa genome (Brapa_sequence_v1.2.

fa), B. rapa CDS (Brassica_rapa_v1.2.cds), and NCBI nr database.

Finally, the blast output was fed into custom Perl script to remove

any transcripts that hit multiple chromosomes at different locations

(chimeras) to generate novel Velvet-Oases transcripts. Trinity was
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run on the paired-end reads with one k-mer size of 25 using the

following parameters: minimum contig length = 200; paired fragment

length = 500; CPUs = 16; and a butterfly HeapSpace = 10G. For each of

the assemblies, first the splicing transcripts were removed by blasting

them to the publically available plant refseq database (ftp://ftp.ncbi.nlm.

nih.gov/refseq/release/plant/plant.1.protein.faa.gz) (Pruitt et al. 2007)

and NCBI nr database, followed by chimera removal to generate novel

Trinity transcripts.

Reference-based transcriptome assembly methods

For reference-based transcriptome assembly, high-quality reads from

three Illumina GAIIx lanes (NCBI SRA accessions SRR1227842,

SRR1228204 and SRR1238058) (Table S3) were first aligned to B. rapa

genome data using TopHat v1.4.1 with default parameters. The

aligned reads from TopHat were then processed by Cufflinks v2.0.2

to assemble into transcripts. Cufflinks may or may not use existing

gene annotation during assembly of transcripts, but rather it con-

structs a minimum set of transcripts that best describe the reads in

the data. The current assembly was performed both with and with-

out the help of reference annotation to capture both novel and

native transcripts. We used default parameters for Cufflinks. Once

all the transcripts were assembled with Cufflinks, the output GTF

file (transcripts.gtf) was then fed to Cuffcompare v2.0.2 (Trapnell

et al. 2010) along with the reference GTF annotation file (Brapa_

gene_v1.2.gff) downloaded from BRAD. This classified each

transcript into different class codes. The classification basically

describes the nature of the match to the reference gene annotation

(http://cufflinks.cbcb.umd.edu/manual.html#tmap). For current

assembly purposes, only class code “u” transcripts (unknown inter-

genic transcripts according to Cufflinks) were considered to gen-

erate novel TopHat transcripts using gffread utility in Cufflinks

package.

n Table 3 Summary of total number of SNPs detected and annotated to different regions of the genome between Chiifu and two
genotypes of B. rapa

Total No. of
Annotated SNPs

SNP
Rate

Total Number
of Exonic SNPs

Total No. of
Intronic SNPs

Total No. of
Intergenic SNPs

Total No. of Nonsynonymous
Coding SNPs

R500 vs. IMB211 330,995 0.50 202,295 48,210 80,833 66,327
R500 vs. Chiifu 639,788 0.83 358,391 124,429 157,726 119,222
IMB211 vs. Chiifu 595,619 0.81 338,749 110,437 147,212 111,719

Figure 1 SNP annotation of B. rapa using snpeff. (A) SNP rate (total number of SNPs/100 bp of gene) across 10 chromosomes. Blue line indicates
rolling mean across 25 genes. (B) The distribution of SNPs at different codon positions. (C) KaKs box plot of all chromosomes. Asterisks indicate
significance at P # 0.05 (permutation testing).
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Annotation of novel transcripts

To lower the redundancy among novel transcripts resulting from

Velvet-Oases, Trinity, and TopHat-Cufflink pipelines, they were first

pooled and CAP3 (Huang and Madan 1999) was used with default

parameters. The resulting contigs and singletons from CAP3 were con-

catenated and used for downstream analysis. For all transcripts, the

open reading frames most likely to encode proteins were identified using

the transdecoder package (http://transdecoder.sourceforge.net/) with de-

fault parameters except for minimum protein length [(m) = 50]. For

multiple ORFs from the same transcript, we defined the primary tran-

script as the one with the maximum number of significant hits to NCBI

nr database. To generate annotation, the ORF filtered transcripts were

first mapped against B. rapa genome sequence with default parameters

using Burrows-Wheeler Aligner (BWASW) (Li and Durbin 2009). To

select only those unmapped transcripts that are likely to be real, they

were queried against the NCBI nr database using BLASTX with an

e-value threshold of 1e206. Functional annotation of the unmapped

transcripts was performed using Blast2GO annotation tool. The mapped

transcripts from BWASW output were next converted to a bed file using

bamtobed utility of BED Tools (http://bedtools.readthedocs.org/en/

latest/). A custom script was next used to join the exons for each

transcript in the bed file. A further filtering step was included to elim-

inate transcripts that are more than 10 kb because these most likely

represent problems with B. rapa assembly. In cases when there were

more than one isoform per transcript, the selection of the best isoform

was based on maximum length of the transcript. Finally, a fasta file

Figure 2 Pipeline illustrating the overall transcriptome assembly and annotation of Brassica rapa genotype R500.
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corresponding to the annotation file was generated using the getfasta

utility from BED Tools.

PASA annotation

The use of PASA (http://pasa.sourceforge.net/) (Haas et al. 2003) to

assemble full-length transcripts based on RNA-Seq data has previously

been described (Rhind et al. 2011). For the current analysis, PASA was

used to update the existing genome annotation using evidence from de

novo RNA-Seq assembly and reference-based RNA-Seq assembly.

PASA updates pre-existing protein-coding gene annotations to incor-

porate the PASA alignment evidence, correcting exon boundaries, add-

ing UTRs, and models for alternative splicing based on the PASA

alignment assemblies generated. Default parameters were used and a to-

tal of three rounds of PASA annotation were performed. RSEM (http://

trinityrnaseq.sourceforge.net/analysis/abundance_estimation.html) was

used to further filter out lowly expressed alternatively spliced transcripts.

Finally, a fasta file corresponding to PASA updated annotation was

generated using getfasta utility from BED Tools.

Semi-quantitative RT-PCR validation

For RT-PCR, total RNA from leaves, internodes, siliques, seedlings,

and roots was extracted from B. rapa parental genotype R500 and

treated with DNase I. Approximately 1 ug of purified total RNA from

each sample was used for first-strand cDNA using oligo-dT(18) primer

(Sigma) and SuperScriptIII reverse-transcriptase (Invitrogen) accord-

ing to manufacturer’s instructions. The cDNA was diluted 1 to 50 and

equal quantities of first-strand cDNA were used as a template. A total

of 70 transcripts (20 for each of Velvet-Oases, Trinity, TopHat-Cufflinks

“u” transcripts and 10 for TopHat-Cufflinks “o” transcripts) were

randomly selected and primer sets were designed to amplify 300-bp

to 400-bp fragment using Primer3Plus tool. For TopHat-Cufflinks “o”

transcripts, primers were designed in such a way that one of the primers

from each set would anneal to the predicted novel exon. The actin gene

(JN120480) was used as internal control. Primers used for RT-PCR

validation are given in Table S2. RT-PCR amplification of template

RNA from different samples was performed using ExTaq kit (TaKaRa)

using manufacturer’s protocol. The PCR amplification conditions in-

clude a 98� hold for 2 min, followed by a 30 cycles at 98� for 30 sec, 60�

for 30 sec, 72� for 30 sec, and a final extension at 72� for 7 min. Semi-

quantitative analysis of the RT-PCR amplified products was performed

by agarose gel electrophoresis.

In silico RNA-Seq coverage and genome
annotation validation

For in silico RNA-Seq coverage and genome annotation validation,

Chiifu public RNA-Seq reads (SRR643621-SRR643628) were first

mapped to B. rapa genome reference v1.2 using BWA v0.6.1-r104 with

default parameters. All unmapped reads from BWA were next mapped

to putative splice junctions using TopHat v1.4.1 with the following

parameters (–segment-mismatches 1 –max-multihits 1 –segment-length

22 –butterfly-search–max-intron-length 5000). The resulting alignment

files from BWA and Tophat were merged into a single alignment file.

Finally, the merged bam files of R500 and Chiifu were loaded onto IGV

(Thorvaldsdottir et al. 2013) along with original and updated genome

annotation.

Gene ontology (GO) annotation and
functional classification

BLAST (Altschul et al. 1990) searches of the gene models were per-

formed against the nonredundant (Nr) protein database at NCBI

using a blast cut-off of 1e203. All BLAST results were saved as

XML. Blast2GO v2.5.0 (http://www.blast2go.org/) (Conesa et al.

2005) was used to assign gene ontology (GO) IDs to the gene models

based on the BLASTX output. After blast, GO annotation was per-

formed using an e-value cut-off of 1e203, an annotation score cut-off

of 45, and a GO weight of 5. After obtaining GO annotation for every

unigene, WEGO software (http://wego.genomics.org.cn/cgi-bin/wego/

index.pl/) (Ye et al. 2006) was then used to simplify the output for

producing combined graphs for molecular function, cellular process,

and biological process.

Pathway mapping using KEGG

To determine gene ortholog assignment and pathway mapping of

transcripts, Kyoto Encyclopedia Genes and Genomes (KEGG) mapping

was used. The transcripts were initially mapped to KEGG metabolic

pathway database by submitting the sequences to the Kyoto Encyclo-

pedia of Genes and Genomes automatic annotation server (KAAS)

(http://www.genome.jp/tools/kaas/) and the single-directional best hit

(SBH) method was selected. KAAS annotates every submitted sequence

with KEGG ontology (KO) identifiers, which represents an orthology

group of genes directly linked to an object in the KEGG pathway and

thus incorporates different types of relationships that exist in biological

systems.

Brassica rapa UCSC genome browser

A customized UCSC Genome Browser of Brassica rapa (http://

phytonetworks.ucdavis.edu/) has been set-up as a community re-

source that provides an integrated display of annotation data

(B. rapa novel transcripts annotation track, B. rapa existing anno-

tation track, B. rapa updated annotation track), data containing

our alignment results of B. rapa genotypes R500 and IMB211 with

respect to B. rapa genome data v1.2 (R500 vs. IMB211, R500 vs.

n Table 4 Summary statistics for individual and merged Velvet-Oases assemblies

k-mers
No. of

Transcripts
Total Bases

(bp)
Average Transcript

Length (bp)
Maximum Transcript

Length (bp)
Minimum Transcript

Length (bp) N50 N90
No. of Transcripts

in N50

31 227,834 233,436,468 1024 23,632 100 1959 489 36,982
35 210,673 231,120,029 1097 25,926 100 1987 551 36,312
41 182,288 222,326,942 1219 22,553 100 2022 640 34,524
45 169,361 213,517,894 1260 22,480 100 1989 665 33,885
51 151,970 196,156,152 1290 23,619 100 1898 672 32,425
55 140,093 191,427,390 1366 23,673 100 1976 751 30,947
61 123,880 167,489,435 1352 16,491 100 1908 734 28,093
Merged_27 577,900 895,807,087 1550 26,098 100 2214 833 128,986
Merged_55 601,915 935,108,204 1553 26,060 100 2218 855 134,411
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Chiifu, and IMB211 vs. Chiifu SNP tracks). The VCF files (File S1,

File S2, File S3) for the SNP tracks were generated using a Perl

script (parental-vcf-writer.pl) from https://github.com/mfcoving-

ton/vcf-generator. This script depends on the Vcf.pm Perl module

from VCFtools (Danecek et al. 2011).

Data deposition

The reads were submitted to the NCBI sequence read archive (SRA)

(http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi/) with accession

numbers listed in Table S3 and all the transcript-derived contigs have

been submitted to the NCBI Transcriptome Shotgun Assembly (TSA)

(https://submit.ncbi.nlm.nih.gov/subs/tsa/). This TSA project has been

deposited at DDBJ/EMBL/GenBank under the accession number

GBDX00000000. The version described in this article is the first ver-

sion, GBDX01000000. Because TSA allows submission of fasta sequen-

ces only greater than 200 bp, the DNAof all annotated transcripts

of B. rapa were saved in File S4.

RESULTS AND DISCUSSION

Overview of deep RNA-Seq data

To identify a large number of SNPs and to re-annotate the B. rapa

genome, we performed deep RNA sequencing of two Brassica rapa

genotypes using several tissues, environmental conditions, and treat-

ments on multiple sequencing lanes (seeMaterials and Methods). Using

Illumina sequencing, we generated 3.35 billion reads with an average

read length of 98 bp encompassing approximately 880 GB of data in

fastq format. From these 3.35 billion reads, we obtained 2.54 billion

quality-filtered and trimmed reads after removal of low-quality reads,

adapter reads, and primer reads (see Materials and Methods). The final

sequencing results are summarized in Table 2. It is expected that the

current data would have enough coverage to detect SNPs in expressed

regions between the two genotypes, to detect rare novel transcripts, and

to allow re-annotation of the Brassica rapa genome coding genes.

SNP detection in Brassica rapa using deep RNA-Seq

For expressed genes, the use of RNA-Seq data for SNP detection can

be advantageous because it enriches for expressed regions of the

genome. Thus, in addition to providing genotyping SNPs, RNA-Seq–

based SNP discovery enriches detection of functionally important

SNPs. In the current study, all the reads corresponding to each geno-

type were pooled separately and used for SNP detection. The final

number of reads for B. rapa genotypes (R500 and IMB211) are 1.26

and 1.08 billion reads, respectively. A total of 330,995 putative SNPs

(in 18,143 BRAD gene models) were identified from B. rapa tran-

scribed regions. Of these, 639,788 (in 24,966 BRAD gene models) and

595,619 (in 24,704 BRAD gene models) were between R500 and

Chiifu and IMB211 and Chiifu, respectively (Table 3).

Characterization of detected SNPs

The distribution and frequency are important considerations of using

SNPs as genetic markers. The current study found the SNP rate of

uniquely mapped gene models showed a nonuniform distribution

across the genome (Figure 1A). This observation could reflect low

sequence coverage or segments more closely related because of the

breeding history of these two genotypes or the presence of detected

and undetected ancestral centromeres in the B. rapa genome (Cheng

et al. 2013). Among regions with sufficient coverage for SNP detec-

tions (coverage of four or more reads, 66 to 77 million bp), the SNP

rate was 1 SNP per 200 bp for R500 compared with IMB211, 1 SNP/

120 bp for R500 compared with Chiifu, and 1 SNP/123 bp for IMB211

compared with Chiifu. In plants, SNP frequencies vary widely; for

example, 1 SNP/124 bp in coding regions among 36 inbred lines of

maize (Ching et al. 2002), 1 SNP/72 bp in expressed genes among 13

lines of sugar beet (Schneider et al. 2007), and 1 SNP/2.1 kb to 1 SNP/

1.2 kb between two cultivars of B. napus, Tapidor, and Ningyou 7

(Trick et al. 2009). The SNP frequency observed in Brassica rapa

coding regions is therefore within the range of those reported for

other plant species. Out of 330,995 putative SNPs that were detected

between R500 and IMB211, 202,295 (61%) were annotated in coding

regions of B. rapa genome. Of these, 66,327 were nonsynonymous and

135,305 were synonymous changes. As expected, most SNPs occurred

in the third nucleotide position of the codon unit (Figure 1B), suggest-

ing that our SNP calling procedures are working correctly. A com-

parison of the ratio of Ka to Ks for all 10 chromosomes indicated that

chromosomes two and four had significantly higher KaKs ratios than

the rest of the genome, whereas chromosomes five and 10 had signif-

icantly lower ratios (Figure 1C). We hypothesized that this may be

because of different proportions of the three sub-genomes of B. rapa

because the nonsynonymous substitution rates are known to vary among

n Table 5 Downstream processing of Velvet-Oases and Trinity
transcripts after initial assembly

Velvet-Oases Trinity

a) Initial assembly transcripts 43,816 39,084
b) No. of novel transcripts
remained after removing
blast hits to B. rapa CDS

14,540 5464

c) No. of novel transcripts from
(b) that have B. rapa genome
blast hits

11,182 3789

d) Number of novel transcripts
from (c) remaining after
chimera removal

9448 2377

e) Number of novel transcripts
from (b) that do not have a
B. rapa genome blast hit

3358 1675

f) Number of novel transcripts
from (e) remaining after
blasting to NCBI nr database

1218

Final number of novel transcripts
(d) and (f) combined

10,706 4052

n Table 6 The number of transcripts assembled with Cufflinks and
the percentage they represent in the assembly after Cuffcompare
analysis

Class Code No. of Transcripts %

= 38,126 49.75
C 14 0.018
E 3149 4.11
I 527 0.69
J 23,008 30.02
O 2596 3.39
P 1515 1.98
S 229 0.30
U 6708 8.75
X 768 1.00
Total 76,640 100.00

Class codes described by Cuffcompare: =, exactly equal to the reference
annotation; c, contained in the reference annotation; e, possible pre-mRNA
molecules; I, an exon falling into a intron of the reference; j, new isoforms; o,
unknown generic overlap with reference; p, possible polymerase run-on
fragment; u, unknown intergenic transcript.
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the sub-genomes (Cheng et al. 2012). To test this, we calculated the KaKs

for the three sub-genomes (see Materials and Methods) and found that

the ratio of KaKs of LF (least fragmented) is significantly lower than

MF1 and MF2 (more fragmented), similar to previous observations

(Cheng et al. 2012). We next used a permutation-based approach to

determine if the KaKs differences among chromosomes could be

explained by sub-genome composition of each chromosome. We gen-

erated 1000 permuted genomes where, for each permutation, the pro-

portion of LF, MF1, and MF2 genes on each chromosome matched the

original dataset. We then asked how often the KaKs differences of the

original chromosomes exceed those in the permuted dataset. The ob-

served increased KaKs for chromosome two exceeded that in the 91% of

the permuted datasets, suggesting that sub-genome composition may

not entirely explain the high KaKs for this chromosome. In contrast,

chromosome four exceeded the permuted KaKs differences only 46% of

the time, indicating that its high KaKs rate can be explained by its sub-

genome composition. Chromosome five had an unusually low KaKs rate

that was lower than 99% of the permuted datasets, strongly suggesting

that its low KaKs rate is driven by something other than sub-genome

fractionation. Finally, the low KaKs of chromosome 10 was lower than

84% of the permuted datasets. In summary, sub-genome distribution can

explain some, but not all, of the chromosomal variance in KaKs.

Validation of putative SNPs

Sources of errors within NGS technologies could propagate to SNP

detection and can ultimately result in poorly resolved genotypes

(Depristo et al. 2011). To evaluate the performance of our SNP de-

tection pipeline, primers were designed to validate putative SNPs

detected between R500 and IMB211 (see Materials and Methods).

We found that there were, in total, 202 SNPs (including the 100 SNPs

we originally chose to validate) detected by RNA-Seq across these

regions. Of these 202, there was no Sanger data available for 32 (failed

PCR or sequencing), leaving 170 where we had both RNA-Seq and

Sanger data. Among these 170, 158 were confirmed by Sanger sequenc-

ing. Considering only those positions with RNA-Seq and Sanger data,

our validation rate was 93% (false-positive rate of 7%). Considering all

202 SNPs detected by RNA-Seq the validation rate was 78%, the false-

positive rate was 6%, and 16% are unknown due to no Sanger data.

To investigate the basis of the 12 false positives, we re-examined the

RNA-Seq data. At these apparent false-positive positions, the RNA-Seq

data overwhelmingly support the presence of the SNPs: an average of

99.2% of the reads matched the SNP called with an average coverage of

368 and 263 reads for R500 and IMB211, respectively. We hypothesized

that the difference between Sanger and RNA-Seq could be due to

polymorphisms still segregating in the parental stocks. To test this idea,

we used Sanger sequencing to assay four apparent false positives in RILs

derived from these parents (see Materials and Methods). All four of the

apparent false positive SNPs were detected in the RILs. Based on this

result, we conclude that the apparent false-positive SNPs are generally

not due to errors in our SNP detection pipeline but because the parental

strains are not fully homogeneous (i.e., there are some polymor-

phisms between the IMB211 used for our RNA-Seq and for Sanger

validation).

n Table 7 Comparison of assembly statistics from de novo (Velvet-Oases and Trinity) and reference (TopHat-
Cufflinks) assemblers

Velvet-Oases Trinity TopHat-Cufflinks

Total no. of reads 182,386,000 182,386,000 157,164,008
No. of initial transcripts 601,915 158,863 75,237
No. of transcripts after removing
isoforms

43,816 39,084 53,632

Average size of transcript 1554 1112 1310
Maximum transcript length 26,060 22,887 16,681
Minimum transcript length 100 201 94
N50 2218 1863 1677
No. of transcripts in N50 134,411 28,901 18,762
% of transcripts annotated 67 84 87
No. of novel transcripts detected 14,540 5464 6700

Figure 3 Venn diagrams showing unique and shared novel transcripts
detected between (A) Velvet-Oases, Trinity, and TopHat-Cufflinks
assemblers, (B) de novo (Velvet-Oases and Trinity), and reference-
based (TopHat-Cufflinks) pipelines.
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To determine the false-negative rate, we identified all SNPs present

in a 150-bp window surrounding the focal SNP in each Sanger

reaction (193 SNPs total); 158 of these were called as SNPs from our

RNA-Seq data. Of the remaining 35 where no SNP was detected by

RNA-Seq, 29 were in regions with RNA-Seq coverage below the

threshold required by our SNP detection pipeline (four reads in each

genotype). This is probably because the Sanger sequencing was

performed on genomic DNA and includes intronic and intergenic

regions. The remaining six were not called as SNPs by our pipeline

and represent false negatives (false-negative rate of 4% in regions with

good RNA-Seq coverage).

One of the objectives of this study is the development of a marker

system involving the genotyping of B. rapa genotypes by deep RNA-

Seq for use in construction of recombination maps. Because of high

validation rate of this dataset, the detected SNPs can now be used as

markers to genotype the RIL mapping population generated from

these two parents (Iniguez-Luy et al. 2009).

R500 transcriptome assembly and re-annotation of
B. rapa genome

The pipeline for R500 transcriptome assembly and re-annotation of B.

rapa genome involved three steps. First, transcriptome sequence li-

braries were assembled and novel transcripts were detected and an-

notated. Second, the current genome annotation of B. rapa was

updated and annotated. Third, both the novel annotated transcripts

and updated annotated transcripts were combined to generate a final

improved transcriptome assembly and genome annotation of B. rapa

(Figure 2). For assembling and re-annotation purposes, we used reads

from one genotype only (R500) to avoid mis-assemblies that could be

caused by the approximately 330,000 SNPs existing between the two

genotypes. In addition, we only used a subset of total reads for R500 to

reduce computational requirements.

Transcriptome assembly and annotation of
novel transcripts

Currently, there are two basic approaches for transcriptome assembly

using RNA-Seq technologies: de novo, which are sequenced reads that

are directly assembled into transcripts without the need of reference,

and reference-based, which are transcripts that are assembled by first

mapping to a reference genome (Haas and Zody 2010). Both methods

have advantages and disadvantages. For example, reference-based

methods are computationally less demanding, tolerate sequencing

errors, and detect repeats through alignment; however, these methods

are dependent on a reference genome, assume that transcripts are

collinear with the genome, and mismatched genome alignment or

genome assembly errors lead to errors in transcriptome prediction.

In contrast, de novomethods are not dependent on a reference genome

and therefore can define transcripts not present in the reference as well

as defining noncollinear transcripts and trans-spliced transcripts that

result from chromosomal rearrangements. However, they will perform

poorly on low-expressed genes and can produce chimeras and mis-

assemblies due to repeats. In this study we used a hybrid approach that

combines the novel transcripts from both de novo–based and

reference-based strategies to ultimately incorporate these data into

an updated annotation of B. rapa.

Overview of assemblers used in this study

Velvet-Oases and Trinity were selected to de novo assemble the se-

quence reads. Although both these assemblers use similar de Bruijin

graph algorithms, they differ in how they handle sequencing errors,

resolve ambiguities, and utilize read pair information. For reference-

based transcriptome assembly, we chose TopHat-Cufflinks assembly

method.

de novo assembly pipeline to detect novel transcripts

Because all de novo assemblers are computationally intensive, we used

396,946,216 high-quality reads from 10 lanes for de novo assembly

using Velvet-Oases and Trinity (see Materials and Methods). The re-

sult from the Velvet-Oases pipeline indicated that in comparison with

individual k-mer assemblies, the merged assembly with k-mer size of

55 yielded the best assembly because it had the maximum number of

transcripts (601,915), largest average transcript size (1553 bp), largest

transcript length (26,060 bp), and highest N50 length (2218 bp) (Table

4). A custom python script was then used to choose a single repre-

sentative transcript for each gene based on coverage and sequence

length (see Materials and Methods). This procedure yielded 43,816

best Velvet-Oases transcripts from 601,915 initial transcripts.

To supplement the Velvet-Oases assembly, we used another de

novo assembler, Trinity, which was shown to recover more full-length

transcripts across a range of sensitivity levels similar to genome align-

ment methods (Grabherr et al. 2011). For Trinity, we used the same

input reads as for Velvet-Oases. A total of 158,863 transcripts were

assembled from Trinity; 61,438 (38.6%) of the assembled transcripts

were more than 1000 bp long and 5107 (32.1%) were more than 4000

bp long. The mean transcript length, maximum transcript length, and

N50 size of Trinity transcripts were 1112, 22,887, and 1863, respec-

tively. To assess the Trinity assembly, bowtie was used to map the

reads back to the Trinity assembly and 97% of the reads mapped to

the assembly. To identify a core/reference set of transcripts from the

158,863 Trinity transcripts, we performed BLASTX of the Trinity

transcripts against Plant RefSeq database and retained the 98,883 with

homology to known plant proteins. The transcripts were then sub-

jected to duplicate removal using a custom awk script, yielding 39,084

transcripts (see Materials and Methods).

After initial assembly with Velvet-Oases and Trinity, to extract

novel transcripts not present in the existing B. rapa genome annota-

tion, the transcripts were first blasted against the B. rapa CDS, down-

loaded from BRAD, using megablast (percent identity of $95 and

n Table 8 Comparison of de novo–based and reference-based
assembly methods on the final output (novel transcripts detected)

De novo–Based Reference-Based

No. of novel transcripts
detected

14,758 6700

Maximum size of the
transcript (bp)

7827 6897

N50 (bp) 640 1084

n Table 9 Comparison of original and updated B. rapa annotations
using PASA

First
Update

Second
Update

Third
Update Total

No. of gene
models updated

23,132 597 25 23,754

No. of alternative
splice isoforms

15,733 205 833 16,771

No. of annotated
proteins changed

3505 132 18 3655
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e-value filter of 1e206). To further determine if the extracted novel

transcripts were bona fide B. rapa transcripts, these were blasted

against the B. rapa genome using megablast (with the same parame-

ters as above). Those transcripts that had genome matches were then

subjected to chimera removal using a custom script. The Velvet-Oases

transcripts that did not have a B. rapa genome match (due to either

gaps or inaccuracies in the genome assembly or due to contamination)

were blasted against the nr database of NCBI (e-value cut-off of

1e206) and only those that have at least one hit on the nr database

were kept. Because Trinity transcripts were already derived from blast-

ing to NCBI Plant RefSeq, no further blasting was performed. Finally,

the genome-matched novel transcripts (after removing chimeras) and

nongenome-matched novel transcripts (after blasting to nr database)

were merged separately for Velvet-Oases and Trinity to obtain assem-

bly specific novel transcripts. The full results for each of the above

steps are given in Table 5.

Reference-based assembly pipeline to detect
novel transcripts

Because reference-based methods are highly sensitive for transcrip-

tome reconstruction, for the current study we used a total of

157,164,008 reads from three lanes only (see Materials and Methods)

to align to B. rapa genome using TopHat. Transcripts were then

assembled from the mapped fragments using the Cufflinks assembler,

producing a total of 76,640 transcripts. We next used Cuffcompare

and found that 49.7% of all the transcripts matched exactly to the

annotated exons downloaded from BRAD. The remaining 50.3% tran-

scripts were classified into different classes as shown in Table 6. These

results reflect the potential incompleteness or gaps of the current

annotation of the B. rapa as well as the complex nature of transcrip-

tion and RNA processing. We extracted a total of 6700 unknown

intergenic transcripts (Class Code = “u”) as putatively novel tran-

scripts because they occur in intergenic regions without any B. rapa

annotation. To find out which of these transcripts corresponded to

known genes from other organisms, we ran BLASTP against the nr

database. Here, almost half of 6700 transcripts had some nr annota-

tion (3275) while the rest did not (3425).

Meta-assembly

Finally, the novel transcripts identified from de novo–based assembly

pipeline (14,758) and reference-based assembly pipeline (6700) were

assembled together using CAP3 assembler. Further filtering to remove

ambiguous ORF transcripts, very long transcripts and short isoforms

resulted in final number of 3537 transcripts (see Materials and Meth-

ods). We also found that a total of 1197 transcripts remained un-

mapped to the genome and, among them, 780 transcripts have

plant hits to the NCBI nr database. The remaining 417 transcripts

have no hits in the NCBI database. These transcripts along with their

gene descriptions have been saved to File S5 and File S6, respectively.

Comparison of different assemblers

A comparison of the Velvet-Oases, Trinity, and TopHat-Cufflinks

assemblers was performed using standard assembly statistics. The result

showed that Velvet-Oases outperformed Trinity and TopHat-Cufflinks for

all assembly parameters except for the percentage of annotated transcripts

(Table 7). A higher percentage of annotated transcripts are generated by

TopHat-Cufflinks even though fewer reads were used, consistent with the

benefits of using the reference genome to anchor assemblies. We com-

pared the novel transcripts of the three assemblers and found that there is

only a marginal overlap, indicating that each transcriptome assembler has

their own strengths (Figure 3A). The possible reasons for the marginal

overlap are differences in the specifics of the assembly graphs, determina-

tion and weighting of graph edges, approaches to handle sequence errors,

and approaches to handle diverse expression level.

The final output (novel transcripts) from the combined de novo

assemblies (Velvet-Oases and Trinity) were next compared to the novel

transcripts from reference-based assembly (TopHat-Cufflinks) and, as

expected, the reference-based novel transcripts have a higher N50 than

the de novo–based novel transcripts (Table 8). Interestingly, we found

more unique novel transcripts in de novo–based assemblies compared

with the reference-based assembly, probably due to the number of input

reads (Figure 3B). Together, our assembly results show the importance

of combining results from several different algorithms.

Generating an updated annotation of the B.
rapa genome

The PASA pipeline was used for updating the gene structure annotation

of B. rapa genome (seeMaterials and Methods). A total of 23,754 genes

were updated by this approach (Table 9), of which 293 genes were

identified as "fused" (where two or more neighboring genes were fused

as one gene).

Comprehensive B. rapa transcriptome and annotation

The 3537 novel transcripts along with their gene annotations were

concatenated with 40,727 B. rapa transcripts (which includes both PASA

updated and original transcripts) and their gene annotations. The final

annotation set contained a total of 44,264 genes. We found that the final

n Table 10 RT-PCR validations of assembled transcripts from
different assembly methods

Assembly Type
Total No. of
Genes Tested

No. of Genes
Validated

Percentage
of Validation

Velvet-Oases 20 13 65
Trinity 20 13 65
TopHat-Cufflinks
“u” transcripts

20 14 70

TopHat-Cufflinks
“o” transcripts

10 6 60

n Table 11 Summary of in silico validation of novel transcripts

R500 and Chiifu Transcript Structure

R500 = Chiifu R500 Different from Chiifu Uncertain

Comparison of
RNA-Seq with de

novo annotation

Matches both 38
Matches R500 3
Matches Chiifu 1
Matches neither 11
Uncertain 1 2 4

Transcripts were classified as uncertain when alternative splicing or low coverage precluded definitive assignment.
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annotated B. rapa gene models were notably improved compared with

older annotation based on visual inspection on IGV (File S7) and also in

terms of mapping, for example, the percentage of RNA-Seq reads map-

ped was 2.5% higher in the updated annotation compared with older

annotation. The updated gene annotation file (bed) and updated gene

description file have been saved in File S8 and File S9, respectively.

Validation of assembled novel transcripts

To test the authenticity of de novo and reference assembled novel tran-

scripts, semi-quantitative RT-PCR was performed on 70 different novel

transcripts. Agarose gel electrophoresis showed that 46 of the 70 primer

pairs obtained a band of the expected size in at least one tissue type (Table

10). Out of the remaining 24 primer pairs that did not have bands, 14 of

them had very low expression counts (0–5 mapped reads) in the tissues

that were tested by RT-PCR, so they may be authentic but not expressed

in the tissue available for testing. The remaining 10 with no bands may be

due to failed PCR, bad primers, or poor assemblies because all of them

have higher expression counts. Overall, deep RNA-Seq analysis was able

to find novel transcripts and novel exons outside the current B. rapa

annotation, with the majority being validated by RT-PCR.

Validation of novel and PASA updated transcript
RNA-Seq structure and annotation

Our updated B. rapa transcriptome was generated from strain R500. It

is important to ask if the differences between our R500 updated tran-

scriptome and the original Chiifu annotation from BRAD are due to

structural differences in the R500 and Chiifu transcriptomes, or if our

updated R500 transcriptome represents a valid improvement for

Chiifu. To do this, we used an in silico validation procedure, taking

advantage of publicly available Chiifu RNA-Seq reads. We randomly

chose 60 novel transcripts and 60 PASA updated transcripts and

visualized the RNA-Seq coverage for R500 and Chiifu reads, along

with the original and updated genome annotation in IGV (see Mate-

rials and Methods). There were a total of 12 transcripts where alter-

native splicing or low coverage precluded full classification; of the 108

transcripts that we could classify, the transcript structure of R500 and

Chiifu was the same for 94% of them (Tables 11 and 12). The de novo

transcripts matched the RNA-Seq data for both genotypes 70% of the

time (Table 11). There were only three transcripts (6%) where the de

novo annotation matched R500 but not Chiifu (Table 11). Focusing on

the PASA updated annotations, 50 updated annotations (91%) matched

both genotypes (Table 12). In contrast there were only two transcripts

(4%) where the original annotation was better than the update for

Chiifu (Table 12). In summary, the de novo and PASA updated tran-

scripts represent a significant improvement for both the R500 and

Chiifu genotypes. The genes used for in silico validation are given in

Table S4 and Table S5, and IGV screen shots for both PASA and novel

transcript annotations have been saved in File S7 and File S10.

Functional annotation of revised B. rapa transcriptome

Functional annotation based on BLASTX and gene ontology allowed

the classification of re-annotated transcripts into functional groups.

n Table 12 Summary of in silico validation of PASA updated transcript annotations

R500 and Chiifu Transcript Structure

R500 = Chiifu R500 Different from Chiifu

Comparison of RNAseq with original
and updated annotation

Updated annotation correct for both 50
Annotation matches genotype 2
Both annotations wrong 2 1
Uncertain 4 1

Transcripts were classified as uncertain when alternative splicing or low coverage precluded definitive assignment.

Figure 4 Histogram of level 2 GO term assignment of B. rapa re-annotated gene models. Results are summarized for three main GO categories:
biological process (P), molecular function (F), and cellular component (C).
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The categorization of all BLASTX results indicate that Arabidopsis

thaliana, Vitis vinifera, Populus trichocarpa, Oryza sativa, and Ricinus

communis were the top five plant species in terms of number of hits to

the revised transcriptome. The annotation step of Blast2GO assigned

functions to 32,317 (73%) gene models. A total of 155,618 GO terms

were obtained for a total of 44,239 re-annotated gene models. The

distribution of the gene models in different GO categories is shown in

Figure 4. Blast2GO can also be used to integrate other information

such as metabolic pathways using KEGG annotation (Kanehisa and

Goto 2000). We mapped all the predicted proteins to the reference

canonical pathways in KEGG for functional categorization and anno-

tation (see Materials and Methods). Of the 44,264 gene models, 13,203

had one or more KEGG annotations belonging to 321 different KEGG

pathways. These GO and KEGG annotations will be helpful to research-

ers using the updated transcripts, for example, enabling categorization

of transcriptional responses by the types of enriched GO or KEGG

terms. The GO annotated table for B. rapa is saved in File S11.

CONCLUSIONS
In this study, we have demonstrated that deep RNA-Seq of two

genotypes using different tissues, growth conditions, and environ-

ments provides enough coverage for the detection of a large number

of polymorphisms, discovery of unknown transcripts, and an update

of existing annotation. Our results showed that no transcriptome

assembler in either de novo assembly category or reference-based

category is the best choice for transcriptome assembly and integrating

assemblers from both the categories can offer more accurate assembly.

We found that the sub-genome distribution can explain some, but not

all, of the chromosomal variance in KaKs. Finally, even though there is

divergence between R500 and Chiifu in terms of SNPs, we found that

this divergence is not high enough to cause significant structural di-

vergence of the transcriptome, as the updated annotation (both novel

and PASA) provided a significant improvement to the existing anno-

tation for both genotypes. The development of functional gene-based

markers using RNA-Seq between contrasting genotypes in this study

will help researchers using the parental strains and derived RILs for

QTL and eQTL mapping. Ultimately, they could serve as excellent

markers for marker-assisted selection in crop breeding.
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