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Abstract
The pathology of humans, in contrast to that of inbred laboratory animals faces the challenge of
diversity addressed in genetic terms as polymorphism. Thus, unsurprisingly, treatment modalities
that successfully can be applied to carefully-selected pre-clinical models only sporadically succeed
in the clinical arena. Indeed, pre-fabricated experimental models purposefully avoid the basic
essence of human pathology: the uncontrollable complexity of disease heterogeneity and the
intrinsic diversity of human beings. Far from pontificating on this obvious point, this review presents
emerging evidence that the study of complex system such as the cytokine network is further
complicated by inter-individual differences dictated by increasingly recognized polymorphisms.
Polymorphism appears widespread among genes of the immune system possibly resulting from an
evolutionary adaptation of the organism facing an ever evolving environment. We will refer to this
high variability of immune-related genes as immune polymorphism. In this review we will briefly
highlight the possible clinical relevance of immune polymorphism and suggest a change in the
approach to the study of human pathology, from the targeted study of individual systems to a
broader view of the organism as a whole through immunogenetic profiling.

Introduction
Genetic polymorphism is the hallmark of human biology.
Scientists who address the pathophysiology of disease are
well aware of this and often resort to the simplification of
human pathology through the development of animal
models that eliminate this confounding dimension
through generations of inbreeding. The immune system is
clearly most profoundly affected by the genetic variation
of the human species. This is why Jean Dausset observed
in 1952 that individuals who had received several transfu-
sions from strangers developed antibodies against the
donor's leukocytes. This observation eventually led to the
identification of the Human Leukocyte Antigen (HLA)
system [1], a nomenclature that refers to the human Major

Histocompatibility Complex (MHC) [2]. It turned out
that the MHC complex includes the most polymorphic
genes in the human and wild animals' genomes and the
implications of this polymorphism in relation to trans-
plantation, immune response and autoimmune disease
had stirred an ongoing debate [3–6]. Conservation is gen-
erally considered in biology a structural requirement for
function: protein domains that are most conserved are
also most likely to be those that are most critical to the
function of that protein. Conversely, polymorphism is
regarded as a dispensable component of the human
genome where random mutations are not erased by evo-
lutionary pressure. This concept may very well apply to
functions that do not require extensive adaptability of the
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specie to environmental pressure. Molecules like insulin
which responds to a well defined and invariable stimulus
(blood glucose) by reducing its circulating levels with
almost mathematical predictability do not need much
adaptation and are affected by minimal genetic variation
across mammalian species.

HLA polymorphism
The immune system, on the other hand, has the more
complex task of responding to ever evolving environmen-
tal components that enter the organism through different
routes in the form of pathogens. This adaptation can
occur through genetic recombination throughout life as in
the case of antibody formation. HLA molecules, which
have the task of presenting intra-cellular antigens on the
surface of cells to cytotoxic and helper T cells, have
adopted another strategy to increase their antigen present-
ing repertoire. This strategy included extensive duplica-
tion of genes with redundant function but subtle
differences in the way such function is implemented. All
classical HLA molecules present small portions of anti-
genic proteins (epitopes) to T cells; however the selection
of these epitopic determinants markedly varies across the
HLA genes and their alleles. Thus HLA molecules are gen-
erally conserved in domains of the protein responsible for
interactions with conserved components of the T cell
receptors and their co-receptors (like CD8 molecules)
while displaying extensive polymorphism in domains
responsible for antigen binding and interactions in varia-
ble regions of the T cell receptors [1]. Therefore, a first les-
son that the HLA system has taught us is that
polymorphism can occur preferentially in functional
domains of a given molecule with dramatic effects on
epitope selection and presentation [4,7]. A more practical

question learned from HLA is that the extent of recog-
nized polymorphisms of a given gene is directly propor-
tional to the efforts spent for their identification. Not
coincidentally, HLA, being for practical reasons one of
most intensely screened genes for polymorphisms, has
experienced an exponential increase in the number of var-
iant alleles during the last decade. For instance, with the
introduction of high-resolution molecular typing by
polymerase chain reaction (PCR) [8–10] and subse-
quently routine, high-throughput sequence-based typing
(SBT) [11] the serological HLA-A2 family has rapidly
grown to include more than 60 members (Figure 1) and
we have a new one in our hands while preparing this arti-
cle. The same exponential growth, of course has affected
all HLA loci to reach for instance for HLA class I approxi-
mately 300 HLA-A, 600 HLA-B and more than 100 HLA-
C alleles http://www.anthonynolan.com/HIG/index.html
(Figure 2).

It is believed that the major benefit provided by the exten-
sive MHC polymorphism is an increased likelihood that
individuals of a given species will be heterozygous and
consequently carry two different MHC alleles for each
HLA locus. Since MHC polymorphism(s) occur in
domains responsible for epitope binding, heterozygosity
may double the antigen presenting potential of each indi-
vidual within an ethnic group. Most importantly, since
individuals within the same ethnic group are likely to
express different HLA phenotypes, the overall repertoire
of the group is exponentially broadened by the presence
of extensive polymorphism enhancing the likelihood of
the species of surviving a wide variety of pathogens [3].
The evolutionarily success of the human specie in broad-
ening the HLA repertoire might explain why it has been

Increase in HLA-A*02 alleles during the last few yearsFigure 1
Increase in HLA-A*02 alleles during the last few years.
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difficult to pinpoint associations between a particular
HLA phenotype and susceptibility to infectious processes.
Indeed, only few examples of such associations have been
reported [12] and even in such cases antigen presenting
efficiency does not seem to be the explanation. Interest-
ingly, the functional repercussions that polymorphism(s)
carries on antigen presentation could be more easily
observed in animal species like chicken that bear a lower
number of MHC loci and consequently a restricted anti-
gen presenting repertoire [13]. In spite of the difficulty to
demonstrate a clear association between HLA phenotype
and disease susceptibility, it has been clearly demon-
strated at the molecular levels that even one amino acid
change in the sequence of HLA genes can cause dramatic
alterations in antigen binding affinity and consequently
efficiency of induction of T cell reactivity in vitro and in
vivo [7,14]. This can in turn modulate the immune domi-
nance of individual antigens according to the HLA haplo-
type bore by different individuals [15]. In addition, it
should not be ignored that associations have been
observed between HLA phenotype and diseases that may
or may not be caused by pathogens [16,17,17–23]. Inter-
estingly, in such cases the importance of the structural
changes caused by the polymorphic site on the etiology
and pathogenesis remains uncharacterized [22–29]. Thus,
we can conclude that HLA has taught us that polymor-
phisms can occur in functional regions of molecules, they
have functional significance and they may have clinical
relevance.

Polymorphisms throughout the genome
The completion of the human genome project has pro-
vided a reference sequence of all human chromosomes.
However, the challenge remains of characterizing the fre-
quency of deviations from this reference among individu-
als of similar or divergent ethnic background [30]. It is
estimated that 1.42 million single nucleotide polymor-
phisms (SNP) are distributed throughout the human
genome and about 60,000 SNP fall within coding regions
[31]. Possibly, approximately 25 % of the non-synony-
mous SNP could affect the function of the correspondent
gene product [32–35].

It remains unclear whether the prevalence of common dis-
eases can be truly attributed to genetic variation due in
part to the incomplete information available and in part
to the likely overlap in function of several genes regulating
the organism. Indeed, most studies testing putative asso-
ciations between genetic variation and disease have
focused on one are few genes at the time. However, it is
likely that the analysis of individual loci is too restrictive
in complex diseases resulting from the involvement of
multiple genes. Information from the human genome
project cannot provide comprehensive knowledge of
sequence variations because sequences are based on data

compiled from few randomly chosen individuals [30,31]
and only few examples of systematic searches for genetic
variants within a specific genomic region are available
[36]. However, in the context of clinical research a large
number of individuals may need to be screened when
investigating associations between genetic variation and
disease susceptibility or responsiveness to treatment. In
such an endeavor, a tool capable of efficiently identifying
known and flagging unknown SNP could dramatically
increase the efficiency of the study of human pathology
through direct application of genome-derived informa-
tion [37]. This may apply particularly to investigations in
which immune function plays a primary role. It has
become clear that immune biology is characterized by
extensive polymorphism.

Immune polymorphism: beyond classical HLA
Although extensive genetic studies have been done pre-
dominantly on HLA molecules [3], it is becoming increas-
ingly clear that other molecules related to immune
function may be quite polymorphic. Non classical MHC
loci have demonstrated various degrees of polymorphism
[38]. Like for classical HLA genes, their polymorphism
may bear significant effects on their function.

Besides the ubiquitously expressed highly polymorphic
"classical" HLA class I molecules, humans encode three
relatively conserved "non-classical", selectively expressed
(HLA-E, F and G) MHC class I genes (also known as MHC-
Ib) that evolved at different rates in primates reflecting dif-
ferential involvement in the modulation of immune
responses [6,38,39]. These molecules are characterized by
unique patterns of transcription, protein structure and
immunological function [40]. In addition, MHC class I
related chain genes (MIC-A and MIC-B) are located within
the MHC region and are characterized by high polymor-
phism (more than 50 alleles so far identified) [41]. The
molecules encoded by these genes do not appear to bind
peptides, nor associate with β2-microglobulin. Their poly-
morphic variants are not concentrated around the peptide
binding groove, yet they seem to have functional signifi-
cance since most of the mutations are non-synonymous
suggesting selective pressure as driving force. Their tissue
distribution is restricted to epithelial and endothelial cells
and fibroblasts. It appears that MIC genes modulate the
function of NK and CD8+ T cells by binding the NKG2D
stimulating receptor [42]. MIC has also been implicated
in transplant rejection as allo-antibodies against them are
often found in transplant recipients that may exert com-
plement mediated cytotoxicity against endothelial cells
from the graft.

Other "unusual" MHC-like molecules are present in the
genome and have disparate functions including presenta-
tion of lipid antigens (CD1), transport of immunoglobu-
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lins (Fc receptor) and regulation of iron metabolism
(hemochromatosis gene product) [43]. The extent of pol-
ymorphism of these molecules is unknown although it is
likely to be minimal. HLA-G also is characterized by low
polymorphism. Because of the minimal polymorphism
the repertoire of peptides presented is likely to be limited
suggesting that peptide binding is necessary to stabilize
the molecule rather than being involved in antigen
presentation. Also HLA-E is minimally polymorphic [38].
This molecule binds hydrophobic peptides from other
HLA class I leader sequences and interacts with CD94/
NKG2 lectin-like receptors present predominately on Nat-
ural Killer and partially on CD8+ T cells which are also
minimally polymorphic [44–48]. The peptide binding is
highly specific and stabilizes the HLA-E protein allowing
its migration to the cell surface. Thus, surface density of
HLA-E is an indirect reflection of the number of HLA class
I alleles expressed by a cell [49]. The interaction of HLA-E
with CD94/NKG2 protects HLA-E expressing cells from
killing. Cells damaged by viral infection or neoplastic
degeneration may loose HLA class I expression. Since
CD94/NKG2 is expressed by most NK cells of most indi-
viduals it is likely that this "conserved" HLA/inhibitory
receptor relationship assures that a constant protection of
normal cells is present in most people.

Another group of genes associated with immune func-
tions that are demonstrating increasing evidence of poly-
morphism(s) are killer cell immunoglobulin-like
receptors (KIR) [48]. These molecules are expressed on the
surface of natural killer (NK) and CD8+ T cells and have
strong regulatory hold on their function [50–53]. Ligands
for inhibitory KIR are HLA class I molecules almost ubiq-
uitously present on the surface of normal cells. Although
KIR coded by individual genes can either inhibit or acti-
vate NK cell function, humans have evolved to collect a
large number of such genes within a genomic region rich
in immune related genes called the leukocyte receptor
cluster on chromosome 19 [48,54]. This collection of
genes is in strong linkage disequilibrium that results in
several haplotypes incorporating a sequence of inhibitory
and stimulatory KIR. Inhibitory KIR interact with HLA
class I molecules. Since most individuals have several
inhibitory KIR genes it is likely that each person has at
least one KIR capable of recognizing at least one autolo-
gous HLA class I allele. Besides this duplication of genes
with redundant function but different ligand specificity,
KIR genes evolved by including several polymorphic sites
that could affect the function of intra-cellular signaling
domains or ligand (HLA) recognition [53,55,56].
Although KIR/HLA mismatches have been reported to
condition the outcome of allogeneic transplantation [57],
at present it is unclear whether KIR polymorphism per se
has any bearing on disease outcome [48].

Leukocyte Fcγ receptors (FcγR) have also been recognized
to be relatively polymorphic [58]. These polymorphisms
in turn have been associated with response to infection
and autoimmune diseases. In addition, since FcγR are
mediator of antibody-dependent cytotoxicity it is possible
that response to antibody-based therapy could be associ-
ated to distinct variants. Three subclasses of FcγR have
been shown to be polymorphic and included FcγRIIa,
FcγRIIIa and FcγRIIIb. As this receptors have different
effects on leukocyte function including antibody-depend-
ent cellular cytotoxicity, phagocytosis, superoxide genera-
tion, degranulation and cytokine production, it is possible
that several aspects of the immune system might be
strongly affected. A recent review on the subject is availa-
ble that comprehensively describes the relevance of FcγR
polymorphisms as prognostic markers for inflammatory
diseases and antibody-based immunotherapy [58].

A recent study analyzed the degree of polymorphism in a
set of genes associated with innate immune response and
found abundant variation in several of them [59]. This
study introduces a new dimension of immune polymor-
phism by adding variation in a system originally thought
to be highly conserved capable of recognizing pathogen
associated molecular patterns in turn shared by a large
group of infectious agents [60–63].

Cytokine polymorphism
Cytokine polymorphism(s) is becoming a major focus of
attention for the understanding of several diseases [64–
71]. Cytokines, are largely secreted molecules that act on
the surrounding microenvironment by providing cell to
cell signaling. Because of the signaling function, their
expression is tightly regulated and most of them are not
constitutively expressed. Interestingly, as later discussed,
most of the polymorphic sites so far identified in cytokine
genes have been in non-coding regions containing regula-
tory sequences. The perturbation of the balance among
different cytokines could have implications for the clinical
course of many immune diseases as well as organ trans-
plantation [64]. What is the role that cytokine and
cytokine receptor polymorphisms play in human disease?
It is possible that balanced polymorphism of immune reg-
ulatory genes could have been selected evolutionarily for
the beneficial effect of conferring selective advantage in
the course of infectious outbreaks [72]. While the rele-
vance of the question is increasingly becoming apparent,
with few exceptions, no conclusive information is actually
available about the significance of cytokine polymor-
phism and its practical effects on disease treatment.

Polymorphisms occur in three main forms, single nucle-
otide polymorphisms (SNPs), variable number of tandem
repeats and micro-satellites. While some polymorphisms
may have direct functional significance by altering directly
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or indirectly the level of genes expression and/or its func-
tion, others may only be useful for the determination of
genetic linkage to a particular haplotype associated in turn
with a given clinical condition. Indeed, a relatively small
proportion of polymorphisms that lead to amino acid
substitutions fall within the exonic regions (Figure 3). The
vast majority of polymorphisms found in cytokine genes
and their receptors are located in the promoter, intronic
and 3' untranslated regions. SNP occurring in 3' untrans-
lated regions can still affect gene expression and function
by altering the stability of RNA molecules [73]. In addi-
tion, promoter polymorphism may disrupt the binding of
transcription factors such as NF-κB, Jak, STAT, IRF to reg-
ulatory regions. Interestingly several signaling and tran-
scription factors central to the regulation of cytokine
expression are also polymorphic (Figure 3).

Although some polymorphic loci appear to consistently
alter cytokine production most studies suggest that the
majority of cytokine polymorphism(s) have little or no
influence on cytokine production and expression [73]. Yet
polymorphisms in some of these loci have been associ-
ated with disease. As an increasing number of studies are
being conducted to test whether associations exist
between cytokine gene polymorphism and susceptibility

to immunologically mediated diseases, cytokine geno-
types have been increasingly associated with various dis-
eases of immune or autoimmune nature [64,71]. Often
these are complex multi-genic disorders that can be
affected by the function of more than one cytokine and/or
other genes regulating immune function [64,74,75].
Therefore, it is not always easy to definitively link the
effects of individual cytokine polymorphisms to the etiol-
ogy, natural history or response to treatment of a disease.
With few exceptions such as the mutations in the TNF-RII
receptor associated with periodic fevers [76] and the IL-2
type cytokine-receptor γ-chain family variants associated
with severe combined immunodeficiency diseases
[77,78], no cytokine or cytokine receptor polymorphisms
have been directly linked to causation of illness. Well doc-
umented disease associations are beginning to emerge
although the relationship between possession of the
genetic trait and prevalence of disease occurs with variable
strength [64,65]. A good example is the association of the
polymorphism of interleukin (IL)-1α with Alzheimer's
disease [79,80]. and of IL-10 with lupus [81] or cancer
predisposition [66,67]. Indeed, a list of associations
between cytokine, cytokine receptors and disease predis-
position, outcome or treatment is ever growing and
beyond the purpose of this review. We refer the reader to
several recent reviews on the topic that span associations
with autoimmune and inflammatory disease [82–84],
occupational disease [83,85] cancer [84,86], allergy [87],
degenerative disease [88,89] and transplant outcome
[90,91]. In particular, we refer the reader to an updated on
line database accessible at http://bris.ac.uk/pathandmi
cro/services/GAI/cytokine4.htm that contains informa-
tion about individual cytokine polymorphisms and
relevant disease associations [92].

Interestingly, several authors advocate tailored immune
therapy based on individual genetic variation of cytokine
genes [71,93]. Although this concept may be premature in
routine clinical practice, it should be publicized among
clinicians and encouraged in the context of clinical trials
as genome-wide association studies are becoming feasible
with the implementation of high-throughput, cost-effec-
tive technologies capable of spanning relevant genomic
regions for the detection of known and unknown SNP
[94].

Polymorphisms associated with cytokine 
signaling
In general, cytokines are not constitutively produced and
stored in the intra-cellular compartment ready for release
in response to stimulation. Most cytokines expression is
triggered by stimulation and their secretion depends on
new protein synthesis. This has the advantage of provid-
ing a fine regulation of their availability in the extra-cellu-
lar space. As a consequence, elaboration of cytokines in

Number of known polymorphism(s) of cytokines that occur in known regulatory regions, untranslated gene regions and coding regionsFigure 3
Number of known polymorphism(s) of cytokines that occur 
in known regulatory regions, untranslated gene regions and 
coding regions. In coding regions only those polymorphisms 
that result in a chance in protein sequence are counted. The 
information was compiled to searches based on the following 
web-sites: http://nciarray.nci.nih.gov/cards/index.html; http://
www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=7124http://
www.ensembl.org/Homo_sapiens/
snpview?snp=1799769http://bris.ac.uk/pathandmicro/serv 
ices/GAI/cytokine4.htm
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response to an inflammatory stimulus is predominantly
regulated by the transcriptional rates of their genes. Since
transcriptional regulation is critical for the production of
many cytokines, transcription factors may play key a role
in regulating cytokine-mediated inflammation. Genomic
analysis has shown that several of these factors are poly-
morphic in regions that might regulate their function.

The Toll/interleukin-1 receptor (TIR) family comprises
two groups of transmembrane proteins, which share func-
tional and structural properties [95]. The members of the
IL-1 receptor (IL-1R) subfamily are characterized by three
extra-cellular immunoglobulin (Ig)-like domains. They
form hetero-dimeric signaling receptor complexes consist-
ing of receptor and accessory proteins. The members of
the Toll-like receptor (TLR) subfamily recognize alarm sig-
nals that can be derived either from pathogens or the host
itself [96]. TLR-4 is very important among the TLRs
because its ligand is lipopolysaccharide (LPS) which is a
common pathogen component believed to be responsible
for the initiation of the immune response during infection
[97]. The TLR-4 receptor complex requires supportive
molecules for optimal response. Subsequently, several
central signaling pathways are activated in parallel, the
activation of NF-κB being the most prominent event of
the inflammatory response [98,99].

Nuclear factor-κB (NF-κB) is a transcription factor that
modulates the transcription of a variety of genes, includ-
ing cytokines and growth factors, adhesion molecules,
immune receptors, and acute-phase proteins. NF-κB is
required for maximal transcription of cytokines including
tumor necrosis factor-a (TNF-a), interleukin-1 (IL-1), IL-6,
and IL-8, which are thought to be important in the gener-
ation of acute inflammatory responses [100]. In turn,
excessive cytokine-mediated inflammation is likely to
play a fundamental role in the pathogenesis of a variety of
disease states [101–103].

The TNF-receptor-associated factor (TRAF) family is a phy-
logenetically conserved group of scaffold proteins that
link receptors of the IL-1R/Toll and TNF receptor family to
signaling cascades, leading to the activation of NF-κB and
mitogen-activated protein kinases. Furthermore, TRAF
proteins serve as a docking platform for a variety of regu-
lators of these signaling pathways and are themselves
often regulated at the transcriptional and posttransla-
tional level [104–108]. Several of these genes, although
predominantly conserved across a wide range of species,
are characterized by substantial individual variability in
the form of SNP (Figure 4). This variation may play a role
in determining individual susceptibility to disease and
further complicating the interpretation of data related to
cytokine polymorphism analysis [59].

Methods for immunogenetic profiling in clinical 
immunology
The detection of genetic variation in a given population is
important for the understanding of its role in physiologi-
cal or pathological conditions [37]. Allelic discrimination
has been predominantly conducted by polymerase chain
reaction (PCR). However, PCR-based methods can detect
only known polymorphisms since the primers for PCR are
designed based on known sites of sequence variation.
Only unknown polymorphisms that accidentally occur in
the region spanned by the primer can be discovered.
Known SNP can be also readily detected using oligo-array-
based techniques [109–112] or comparable high-
throughput systems [113–115]. Oligonucleotide arrays
are most commonly based on the principle of competitive
hybridization of DNA to oligos containing the polymor-
phism at the centermost position. Single base mismatches
at a central position of the probe reduce the affinity of the
hybridization of the test samples compared to the hybrid-
ization of reference samples designed to perfectly match
the oligo. Gain of signal indicates the presence of a perfect
match. When two differentially labeled targets, one repre-
senting the test sample and the other representing the ref-
erence sample are used for hybridization, competition
occurs between the two targets for binding to the two oli-
gonucleotides specific either for the wild type (reference)
sequence or the SNP. A SNP-specific hybridization of the
test sample will be proportionally higher than the poor
hybridization of the reference sample containing the wild
type sequence resulting in reduced fluorescence of the ref-
erence sample (signal loss). Equal signal intensity in test
and reference channels indicates no differences for that
specific oligo. Signal loss improves the experimental and

Number of polymorphism(s) occurring in selected genes associated with control of the innate immune responseFigure 4
Number of polymorphism(s) occurring in selected genes 
associated with control of the innate immune response.
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analytical effectiveness [116]. This technology is depend-
ent upon the design of oligos containing known
polymorphic sites and, therefore, it is limited in number
of SNP that can be identified and cannot resolve
unknown SNPs unless all possible permutations are
empirically added.

Detection of unknown SNP is not as readily achievable
[65,117]. Yet, as occurred during the last decade for HLA,
it is likely that the number of polymorphic sites will rap-
idly expand as the investigation of new genomic regions
will be broadened to individuals of diverse ethnic back-
ground. Presently, identification of unknown SNP relies
on high-throughput sequencing which is burdened by
high cost and demanding requirements for sample prepa-
ration and interpretation. To improve the efficiency of
SNP detection, high-density oligonucleotide arrays have
been proposed that cover all possible sequence permuta-
tions of the genomic region investigated
[36,109,111,118,119]. High-density oligonucleotide
arrays adopt in situ oligonucleotide synthesis combined
with a computerized photolithographic mask system that
allows the addition of one nucleotide at the time in a spe-
cific region of the array [112,120]. The extension of indi-
vidual oligonucleotide chains is directed by a
computerized de-protection of the mask in a defined
region of the array. Sequence-specific oligonucleotides
can be built directly on a solid surface according to a pre-
programmed order to cover any sequence combination.
In this fashion, any known genomic sequence could
potentially be represented on a single oligo array slide.
Other fabrication techniques utilize pre-synthesized oli-
gonucleotides covalently bound to a solid surface such as
glass or micro spheres [121]. These arrays are character-
ized by extreme accuracy not only for detecting but also in
providing definitive sequence information about SNP
[109]. However, for each genomic region a complex array
needs to be assembled as for the 4L (length of nucleotide)
oligomer probes that query sequential positions in the
genome with probes overlapping the previous one of one
base [109]. For each position a set of four oligos is pre-
pared identical except at a single position systematically
substituted with each of the four nucleotides. Thus for a
given genomic region a number of oligos equal to the
number of bp investigated times 4 is spotted to the array
[109,110,119]. For instance, to query a 16,569-base pairs
(bp) sequence 66,276 probes were necessary [109].
Although this approach could potentially cover the full
genome, it might not be justified for genomic areas with
no polymorphism [109]. In addition, preparation of these
arrays would be disproportionate for genomic areas with
very low density of SNP. In those cases it would be prefer-
able to obtain more information about the location of
highly polymorphic sites prior to the design of high-den-
sity arrays. Finally, this approach would not be justifiable

in situation where SNP occur extremely rarely in a given
population. Overall, the extraordinary cost of this
approach does not justify its use in the context of clinical
trials where large patient populations and multi-factorial
diseases are studied.

A simplified screening tool that could discriminate con-
served from polymorphic genomic regions or identify rare
individuals carrying unusual SNP could dramatically
restrict the use of high-throughput sequencing or guide
the production of high-density arrays. We recently
described a simplified strategy for fluorimetric detection
of known and unknown SNP by proportional hybridiza-
tion to oligonucleotide arrays based on optimization of
the established principle of signal loss or gain that
requires a drastically reduced number of matched or mis-
matched probes [94]. The array consists of two sets of
probes. One set includes overlapping oligos representing
an arbitrarily selected "consensus" sequence (consensus-
oligos), the other includes oligos specific for known SNP
(variant-oligos). Fluorescence-labeled DNA amplified
from a homozygous source identical to the consensus rep-
resents the reference target and is co-hybridized with a dif-
ferentially-labeled test sample. Lack of hybridization of
the test sample to consensus- with simultaneous hybridi-
zation to variant-oligos designates a known allele. Lack of
hybridization to consensus- and variant-oligos indicates a
new allele. Detection of unknown variants in hetero-
zygous samples depends upon fluorimetric analysis of sig-
nal intensity based on the principle that homozygous
samples generate twice the amount of signal. This method
can identify unknown SNP in heterozygous conditions
with a sensitivity of 82% and specificity of 90%. Although
the principle was tested using a library of lymphoid cell
lines of know HLA phenotype, this strategy is most likely
to prove useful for the identification of new SNP in yet
unexplored regions of the human genome. We believe
that, for future clinical trials the design of oligo-array
chips based on this principle may allow the coverage of
relatively large genomic regions of relevance to the disease
investigated and its treatment.

High throughput SNP detection methods have rapidly
confirmed most of the already known polymorphisms
identified by conventional techniques and recognized a
large number of new SNPs [110,122–124]. However,
most of these studies have been applied to the identifica-
tion of molecular markers in oncogenesis or to otherwise
targeted biological entities. To our knowledge, no system-
atic searches for multi-genic polymorphisms have been
applied to the study of immune pathologies or the inter-
pretation of immune responses during immune therapies.
With increasing evidence that immune polymorphism
may be a key modulator of immune responses clinical tri-
als should be complemented by this type of information.
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For instance, the effect of cytokine gene polymorphism on
disease susceptibility has been researched at two levels:
studies have relied upon in vitro gene expression induc-
tion by stimulation with model immune stimulators such
as LPS or Concavalin A. Other studies have simply looked
for disease association with individual polymorphism
sites or extended haplotypes. Only a few studies have inte-
grated both approaches. Very few studies have gone far-
ther than studying more that a few cytokines [92].
Obviously, the major limitation of the study of immune
polymorphism is the extent of the genomic areas that
need to be investigated that encompass coding and non-
coding regions and the complexity of immune pathology
involving an extraordinary number of molecular commu-
nications within this extremely adaptable system. How-
ever, a systematic multi-genic approach might be
extremely important for the determination of disease sus-
ceptibility and responsiveness to treatment.

We propose that stepwise clinical investigations should be
considered in the future that may simply start with the
collection of DNA from individuals accrued in various
experimental protocols. With this valuable source of
material it will be possible to answer basic question: 1)
Are genes relevant to particular diseases different among
different ethnic groups? 2) Are there different sub-groups
of patients? 3) Is there any correlation between polymor-
phisms and the natural history of a given disease or its
responsiveness to treatment? 4) Is there an association
between toxicity of therapy and genetic make up? As an
example, patients with cancer undergoing immuno-
therapy with systemic IL-2, experience a broad and unpre-
dictable range of side effects independent from a linear
dose-effect relationship [125–128]. At the same time, IL-2
has been shown to induce cancer regression in approxi-
mately 20% of such patients in a similarly capricious and
inexplicable way [129–131]. Indeed, the mechanisms
responsible for the therapeutic and toxic effects of
systemic administration remain largely unexplained
[132]. We have noted that in vitro stimulation with IL-2 of
peripheral monocytes from patients with metastatic
melanoma segregates individuals into two subgroups
characterized by high or low production of secondary
cytokines [133]. It is possible that such different response
stems from polymorphisms in the IL-2 receptor and/or
down-stream signaling molecules that determine the
secretion of cytokine from IL-2-induced monocytes. This
hypothesis could be easily tested by analyzing such poly-
morphisms in the context of clinical trials through the
preparation of custom made oligo array chips enriched for
genes related to the clinical question investigated.

Obviously, immunogenetic profiling will have to face the
controversial regulatory issue of have to deal with genetic
information. A fine balance between the benefit to indi-

vidual patients and to the scientific community on one
side and the possible psychological, financial and ethical
repercussions on the other will need to be established.
Possibly, well controlled and regulated data accrual and
dissemination should be implemented. However, this
problem is germane to all forms of genetic testing and is
beyond the purposes of this limited review.

In summary, polymorphism is widespread throughout
the human genome and most likely to increase in preva-
lence as the analysis of individuals from different ethnic
back grounds will expand. Because of its evolving
relationship with environmental pathogens, it is likely
that the immune system includes a relatively larger
number of genes characterized by polymorphisms of
functional significance. As a consequence, immune poly-
morphism may play an important role in disease suscep-
tibility and responsiveness to therapy. It is likely, that
most polymorphism relevant to immune pathology are
still unknown as suggested by the rapidly increasing data-
bases [92]. The analysis of the impact of individual loci
diversity on disease and treatment may be too restrictive.
This may be particularly true in complex disease resulting
from the involvement of multiple genes having variable
effects, which moreover, can vary according to ethnic
groups. High throughput technologies of moderate cost
should be considered in the future as part of the tools uti-
lized for the interpretation of clinical trials especially in
experimental settings. "HLA" laboratories should, there-
fore, broaden their scope to the immunogenetic profiling
of genomic regions that might influence not only on
transplant outcome but also on autoimmune, infections
and neoplastic pathology.
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