

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la **versión de autor** del artículo publicado en: This is an **author produced version** of a paper published in:

Pharmacogenomics 19.1 (2018): 7-16

DOI: https://doi.org/10.2217/pgs-2017-0143

Copyright: © 2017 Future Medicine

El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription

Polymorphisms associated with adalimumab and infliximab response in moderateto-severe plaque psoriasis

María Carmen Ovejero-Benito¹, Rocío Prieto-Pérez¹, Mar Llamas-Velasco², Ester Muñoz-Aceituno², Alejandra Reolid², Miriam Saiz-Rodríguez¹, Carmen Belmonte¹, Manuel Román^{1,3}, Dolores Ochoa^{1,3}, María Talegón¹, Teresa Cabaleiro¹, Esteban Daudén^{2*}, Francisco Abad-Santos^{1,3,4*}

¹Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain

²Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain

³SCReN Spanish Clinical Research Network

⁴Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain

*: F Abad-Santos and E Daudén contributed equally to the manuscript

Corresponding author:

Francisco Abad-Santos

Clinical Pharmacology Department

Hospital Universitario de la Princesa

Diego de León 62, 28006 Madrid, Spain

Tel: 34 915202425; Fax: 34 915202540

E-mail:francisco.abad@salud.madrid.org

Polymorphisms associated with adalimumab and infliximab response in moderate-

to-severe plaque psoriasis

Aims-. This study evaluated the influence of pharmacogenetics in psoriatic patients treated with adalimumab and/or infliximab. **Materials and methods-.** Prospective observational study evaluating the association of 124 polymorphisms with the response to adalimumab or infliximab (PASI75) in patients with moderate-to-severe plaque psoriasis at 3 months (N=95) and 6 months of treatment (N=90). Significant SNPs for univariate analysis were subjected to multivariate analysis. **Results/Conclusions-.** Five SNPs were associated with PASI75 at 3 months: rs6661932 (*IVL*), rs2546890 (*IL12B*), rs2145623 (*NFKBIA*), rs9304742 (*ZNF816A*) and rs645544 (*SLC9A8*). Furthermore, rs1061624 (*TNFR1B*) was associated with PASI75 at 6 months. Nevertheless, these biomarkers should be validated in large-scale studies before implementation in clinical practice.

1. Introduction

Psoriasis is a chronic and inflammatory disease that affects 2-3% of the world population [1,2]. Apart from affecting the skin, where it generates scaly erythematous papules and plaques [3], it may course with a wide range of comorbidities such as psoriatic arthritis, inflammatory bowel disease, cardiovascular and psychosocial conditions that impair quality of life [1,4,5]. Although the etiology of psoriasis remains unknown, family and twins studies have demonstrated that genetic factors play an important role in the onset and development of this disease [6–8]. In fact, the presence of the *HLA-C*:06:02* allele [9,10] and polymorphisms in different genes such as tumor necrosis factor α (TNF α), interleukins 12, 17 and 23 (IL-17, IL-12, IL-23), are potential risk factors in psoriasis [11,12]. Approved biologic drugs that target TNF (adalimumab,

etanercept and infliximab) are currently used as first line biological treatment for moderate-to-severe psoriasis resistant to other systemic treatments [13].

Adalimumab and infliximab are both TNF blocking antibodies. While adalimumab is a fully human monoclonal antibody, infliximab is a chimeric mouse monoclonal antibody against TNF α [14,15]. TNF α blocking antibodies are safe and effective drugs for psoriasis [16–18]. Nevertheless, they are expensive and, although rarely, they might cause serious adverse effects [18,19]. Moreover, around 30% of the patients do not respond to these treatments [18,19]. Both molecules share structure and can bind and fix complement. Therefore they can lyse cells that express TNF α on their surface [20]. However, etanercept, a soluble form of p75 TNF α receptor, cannot accomplish that function [14,20]. Structural differences between etanercept and TNF α blocking antibodies may be the cause of the dissimilarities found in the efficacy of the TNF α blocking agents. Thus, the main objective of this paper is to identify pharmacogenetic biomarkers that could identify non-responder patients to TNF α blocking antibodies (adalimumab and infliximab).

2. Material and methods

2.1. Experimental design

This study included 95 patients treated with monoclonal antibodies targeting TNFα from the Dermatology Unit of the Hospital Universitario de La Princesa in Madrid, Spain. When a patient was treated with both antibodies, only the first drug was considered. Inclusion criteria of this study were the following: Caucasian patients older than 18 years that were diagnosed for moderate-to-severe psoriasis according to the Spanish Academy of Dermatology and Venereology Psoriasis Working Group

consensus document criteria [21]. They received adalimumab or infliximab treatment according to the Summary of Product Characteristics. Psoriasis Area and Severity Index (PASI) was used as effectiveness criteria to evaluate TNF α blocking antibodies response at 3 and 6 months of treatment. Patients that reduced at least 75% over their baseline PASI (PASI75) were considered responders to TNF α blocking antibodies. All the subjects included in this study signed a written informed consent that allowed SNPs genotyping. The protocol and informed consent document fulfilled Spanish law on biomedical research and both were approved by the Ethics Committee for Clinical Research of Hospital Universitario de La Princesa.

2.2. Sample processing and genotyping

A sample of 3 ml peripheral blood was extracted from each patient. DNA extraction was performed using the MagNa Pure® System (Roche Applied Science, USA) and quantified with a NanoDrop® ND-1000 Spectrophotometer (Wilmington, USA). Samples were stored at -80 °C in the Clinical Pharmacology Department of the Hospital Universitario de La Princesa. We selected 124 polymorphisms based on an extensive review of articles describing the association between polymorphisms and multiple inflammatory diseases related to psoriasis (rheumatoid arthritis, psoriatic arthritis, Crohn's disease) and response to biological drugs [22]. A list of all evaluated SNPs is shown in Supplementary Table 1. Three *IL-17* polymorphisms were evaluated using human TaqMan® SNP Genotyping Assays (StepOne, Applied Biosystems, USA) as described previously [23] while one hundred and twenty one SNPs were evaluated using the Illumina Veracode genotyping platform (Human Genotyping Unit-CeGen, Madrid, Spain) [24].

2.3. Statistical analysis

Linkage disequilibrium, Hardy-Weinberg equilibrium (HWE), allele and genotype frequencies and the association between the SNPs and adalimumab and infliximab response were performed using the SNPStats program (Catalan Institute of Oncology, Barcelona, Spain) [25]. Only the SNPs which allele frequencies were in HWE were included in the multivariate analysis [26]. Every SNP was tested to determine which logistic regression model had the best adjustment according to the type of inheritance (dominant, recessive, codominant or additive). The optimal model was selected using the lower p value and the lower Akaike Information Criterion (AIC) [24]. Results were expressed as the odds ratio (OR), the 95% confidence interval (CI), and the p value. SNPs with p<0.05 in the univariate analysis were included in a multivariate logistic regression model using the SPSS programme (IBM SPSS v19 Inc Chicago, IL, USA). Moreover, when several SNPs were in linkage disequilibrium and were significant in the univariate analysis, we analyzed the association between haplotype and response using SNPstats. Statistical significance was set at $p \le 0.05$.

3. Results

3.1. Study population

Sixty-eight patients were treated with adalimumab: 42 patients as the first biologic treatment option, 21 as the second therapeutic option and 5 as the third option. Thirty-four patients were subjected to treatment with infliximab: 28 patients as the first biologic option, 5 as the second treatment and 1 as the third therapeutic option. When both treatments were administered to the same patient, only the first biologic drug of these two possible options was considered (N=95): 32 with infliximab and 63 with

adalimumab. Seven patients received adalimumab and infliximab: 3 were both responders to infliximab and adalimumab and 4 failed to respond to both. Sixty-seven patients achieved a PASI75 response at 3 months of treatment (70.5%: 64.7% with adalimumab and 73.5% with infliximab). There were no differences between responders and non-responders in the clinical and demographic variables analyzed (Table 1). Ninety patients completed adalimumab or infliximab treatment for 6 months and 72 of these patients achieved a PASI75 (80.0 %: 82.5% with adalimumab and 86.2% with infliximab).

3.2. Effectiveness

There was no association between the response to treatment (PASI75 at 3 months) and the following clinical or demographic characteristics: therapeutic option (p=0.360), gender (p=0.880), weight (p=0.290), age of the first biologic agent (p=0.680), age of onset of psoriasis (p=0.670), type of psoriasis (p=0.660), or presence of psoriatic arthritis (p=0.730).

From the 124 SNPs analyzed, only 9 were not in HWE: rs10494292 (*LELP1*; p=0.037), rs187238 (*IL-18*; p=0.042), rs3812888 (*COG6*; p=0.041), rs11126740 (*CTNNA2*; p=0.047), rs2787094 (*ADAM33*; p=0.022), rs658971 (*SLC12A8*; p=0.037), rs12191877 (*HLA-C*; p=0.034), rs3027898 (*IRAK1;* p<0.001), rs3761548 (*FOXP3*; p<0.001). These SNPs were not included in the analysis.

At 3 months of treatment, univariate analysis showed significant differences in PASI75 for 19 SNPs (Table 2). However, when they were tested for multivariate analysis, significant results were only obtained for five polymorphisms: rs6661932 (*IVL*),

rs2546890 (*IL12B*), rs2145623 (*NFKBIA*), rs9304742 (*ZNF816A*) and rs645544 (*SLC9A8*). Polymorphisms in the *IVL*, *NF\kappaB* and *SLC9A8* genes increased the risk of no response to adalimumab or infliximab whereas SNPs in the *IL-12B* and the *ZNF816A* genes reduced the risk of no response to these biologic drugs.

There was no association of the response to treatment (PASI75 at 6 months) and the following clinical or demographic characteristics: therapeutic option (p=0.520), gender (p=0.830), weight (p=0.920), age of the first biologic agent (p=0.440), age of onset of psoriasis (p=0.210), type of psoriasis (p=0.093), or presence of psoriatic arthritis (p=0.690).

Moreover, we analyzed the association of the 124 SNPs with the response at 6 months in the 90 patients that continued with the treatment of adalimumab or infliximab. Only 8 SNPs were not in HWE: rs2485558 (*RYR2*; p=0.049), rs187238 (*IL-18*; p=0.019), rs10494292 (*LELP1*; p=0.035), rs3812888 (*COG6*; p=0.034), rs2787094 (*ADAM33*; p=0.020), rs658971 (*SLC12A8*; p=0.035), rs3027898 (*IRAK1*; p<0.001), rs3761548 (*FOXP3*; p<0.001). These SNPs were not included in the analysis.

At 6 months of treatment, univariate analysis showed significant differences in PASI75 for 12 SNPs (Table 3). However, when we performed multivariate analysis only one SNP reduced the risk of no response to adalimumab or infliximab: rs1061624 (*TNFR1B*).

4. Discussion

Several pharmacogenetic studies have been performed to detect genetic biomarkers that could predict TNF α blocking antibodies in psoriasis (Table 4) [24,27–40]. Our study is the first to analyze the association of a high number of candidate SNPs (N=124) with TNF α blocking antibodies treatment in psoriasis patients. We have made a comparison of the previous publications that studied SNPs which could affect anti-TNF drug response (Table 4) [24,27–40]. However, only few of these publications have focused on the specific markers that could predict adalimumab and infliximab response. We have found 5 SNPs associated with TNF α blocking antibodies response. The SNPs are the following: rs6661932 (*IVL*), rs2546890 (*IL-12B*), rs2145623 (*NFKBIA*), rs9304742 (*ZNF816A*) and rs645544 (*SLC9A8*), were associated with PASI75 at 3 months. Furthermore, rs1061624 (*TNFR1B*) was associated with PASI75 at 6 months.

IVL is a product of the *PSORS4* locus, located on chromosome 1q21 in the epidermal differentiation complex region and widely associated with psoriasis susceptibility that encodes involucrin [41]. Involucrin is a protein involved in keratinocytes and epidermal differentiation that plays an important role in psoriasis [42]. rs6661932 (*IVL*) has been associated with early onset of psoriasis in a Chinese population [43]. However, it has not been previously associated with anti-TNF drug response. Our study shows that carriers of the T allele of rs6661932 (*IVL*) were less likely to respond to infliximab or adalimumab.

IL-12B is a proinflammatory cytokine that induces T helper 1 (Th1) pathway. Previous publications have suggested that IL-12B plays an important role in psoriasis

development [12,44,45]. Furthermore, rs2546890 (*IL-12B*) is associated with the susceptibility to develop psoriasis [46] and to develop psoriatic arthritis in psoriasis patients [47]. Although the polymorphisms in *IL-12B* (rs6887695 and rs3212227) do not influence the response globally to anti-TNF drugs [28], we found that carriers of the A allele in rs2546890 are more likely to respond to adalimumab or infliximab. These results agree with a previous publication from our laboratory that demonstrated that carriers of the G allele in this polymorphisms were more likely not to respond globally to anti-TNF drugs [24].

Furthermore, *NFKBIA* encodes a member of the NF-κB inhibitor family; a negative inhibitor of the immune response that plays an important role in psoriasis [48]. rs2145623 (*NFKBIA*) was associated with psoriasis susceptibility in a previous publication [46]. We have shown that carriers of the G allele in this SNP are less likely to respond to infliximab or adalimumab. This SNP has previously been associated with ustekinumab (a different drug used to treat moderate-to-severe psoriasis) response [49]. Nevertheless, previous publications failed to find an association between rs2145623 (*NFKBIA*) and etanercept response [50,51].

ZNF816A gene encodes a zinc-finger transcription factor involved in different regulatory functions such as the recognition of RNA and proteins [52]. rs9304742 (ZNF816A) has previously been associated with psoriasis susceptibility [8,53]. Our results showed that the presence of the C allele of this SNP is associated with a better response to TNF α blocking antibodies. However, a previous publication from our laboratory has demonstrated that carriers of the C allele for rs9304742 (ZNF816A) were less prone to respond globally to TNF α blockers (adalimumab, etanercept and

infliximab) [24]. Nevertheless, further studies with a higher number of patients should be done to confirm these results. Carriers of the C allele for rs9304742 (*ZNF816A*) were more likely to respond to ustekinumab in psoriasis patients [49].

SLC9A8 encodes a sodium-hydrogen exchanger which is in the group of integral transmembrane proteins that exchange extracellular Na⁺ for intracellular H⁺ [54]. These channels have multiple functions, which include regulation of cell volume, intracellular pH homeostasis and electroneutral NaCl absorption in epithelia [54]. rs645544 (*SLC9A8*) has been previously associated with psoriasis susceptibility [55]. Nevertheless, it has not been associated with anti-TNF drugs' response so far. The present study shows that carriers of the G allele for the rs645544 SNP are less likely to respond to TNF α blocking antibodies.

TNFR1B encodes the receptor of tumor necrosis factor. Polymorphisms in this gene have been previously associated with psoriasis susceptibility [56]. Our results show that carriers of the G allele in rs1061624 (*TNFR1B*) have more probability to respond to infliximab or adalimumab at 6 months. Although *TNFR1B* rs1061624 and rs3397 did not independently associate with infliximab efficacy, the AT haplotype (rs1061624A – rs3397 T) had a significant difference in distribution in responders and non-responders to infliximab in Crohn's disease [56]. To our knowledge, no publications have analyzed the prediction value of the AT haplotype in adalimumab response. Moreover, the GT haplotype (rs2230926 T – rs610604 G) was associated with a good response to all TNF α blocking agents [37]. Two studies have shown that carriers of the G allele for the

rs1061622 (*TNFR1B*) SNP were more likely not to respond globally to anti-TNF drugs [32,57].

Table 4 summarizes previous pharmacogenetic studies that searched for biomarkers which could predict anti-TNF drugs response in psoriasis. From the 21 SNPs that have been previously associated to anti-TNF drugs response, we have analyzed 10 in the present paper. We have only confirmed one of them [rs2546890 (*IL12B*)] in the multivariate analysis. However, five more SNPs [rs1801274 (*FCGR2A*), rs6311 (*HTR2A*), rs96844 (*MAP3K1*), rs1061622 (*TNFRSF1B*) and rs2230926/rs610604 (*TNFAIP3*)] were confirmed in the univariate analysis but not in the multivariate analysis. These discrepancies may be explained by the diverse SNPs and covariates included in the analysis. Our study analyzes simultaneously 124 SNPs while most of the pharmacogenetic studies focus on a maximum of 6 SNPs. Thus, these results may be influenced by the diverse number of SNPs and factors included in the multivariate analysis of the different publications. Besides, we have to consider that most of the previous studies have been performed in patients treated with any of the approved anti-TNF agents (adalimumab, etanercept and infliximab) whereas this present publication focuses in the response to adalimumab or infliximab.

A previous study showed that patients presenting the C allele in rs763780 (*IL-17F*) were more likely not to respond to infliximab [23]. However, no differences were observed between responders and non-responders to adalimumab and infliximab in the present publication. These results suggest that rs763780 (*IL-17F*) may be a specific marker of infliximab response. Furthermore, a previous publication showed that patients carrying the A allele in the rs11209026 (*IL-23R*) polymorphism were more likely not to respond to a 6 months treatment with infliximab [28]. However, this result was not confirmed in the present study that analyzed simultaneously adalimumab and infliximab response. Therefore, these results suggest that rs11209026 (*IL-23R*) may be a specific biomarker of infliximab response at 6 months of treatment.

In the present study we show that rs12191877 (*HLA-C*) is not associated with adalimumab response. This SNP has also been associated with psoriasis and is in linkage disequilibrium with *HLA-C*0602* [58,59]. These results agree with those of a recent article published by Talamonti *et al.* 2017 [60]. They showed that the presence of the *HLA-C:06:02* allele could not predict long –term adalimumab response in moderate-to-severe Italian patients (n=122). Taken together, these two studies suggest that the presence of the *HLA-C*0602* allele cannot predict short- term nor long-term response to adalimumab.

The main limitation of this study is the small sample size. Nevertheless, this is an observational study that does not interfere with routine clinical practice so the study population was limited by the number of patients subjected to treatment with adalimumab or infliximab. This reduced sample size [adalimumab (N=68) and infliximab (N=34)] did not allow us to perform an individual analysis with any of these drugs. Nevertheless, the reduced sample size was compensated by an exhaustive follow-up of patients and a deep analysis of their data. Few studies have evaluated the effect of polymorphisms on the response to TNF α blocking antibodies in moderate-to-severe psoriasis [24,27–33]. Consequently, our findings are an addition to current knowledge on the pharmacogenetics of moderate-to-severe plaque psoriasis. This type of studies could help optimizing the effectiveness of psoriasis therapy, thereby increasing its cost-

effectiveness and decreasing the risk of adverse events. Nevertheless, further studies would be necessary to implement these genetic tests to the clinical practice.

5. Conclusions

A few studies have been performed about the pharmacogenetics of adalimumab and infliximab treatment in psoriatic patients. Polymorphisms in *IVL*, *IL-12B*, *NFKBIA*, *ZNF816A* and *SLC9A8* genes were associated with PASI75 at 3 months of adalimumab or infliximab treatment. Moreover, a SNP located in *TNFR1B* was associated with PASI75 at 6 months of treatment with adalimumab or infliximab.

6. Executive summary

Background

Adalimumab and infliximab are antibodies against TNFα. Although they are effective drugs to treat moderate-to-severe psoriasis, not all patients get an adequate response and some patients may develop adverse effects. A few studies have evaluated the influence of pharmacogenetic in patients with psoriasis treated with anti-TNF agents (Table 1).

Patients & methods

• We evaluated the association between 124 polymorphisms and the response to adalimumab or infliximab (PASI75) at 3 and 6 months of treatment in 95 and 90 patients respectively. We tested different logistic regression models and adjusted our results using multivariate analysis.

Results & conclusion

- We found an association between SNPs in *IL-12B*, *IVL*, *SLC9A8*, *NFKBIA*, *ZNF816A* genes and adalimumab or infliximab response at 3 months of treatment.
- We found that a SNP in *TNFR1B* could predict adalimumab or infliximab response at 6 months of treatment.
- Further studies would be necessary to confirm the role of these genes in the response to adalimumab and infliximab.

REFERENCES

- 1. Boehncke W-H, Schön MP. Psoriasis. The Lancet. 386(9997), 983–994 (2015).
- 2. Eberle FC, Brück J, Holstein J, Hirahara K, Ghoreschi K. Recent advances in understanding psoriasis. *F1000Research*. 5, 770 (2016).
- 3. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of Psoriasis. *Annu. Rev. Immunol.* 32(1), 227–255 (2014).
- 4. Dauden E, Herrera E, Puig L, *et al.* Validation of a new tool to assess healthrelated quality of life in psoriasis: the PSO-LIFE questionnaire. *Health Qual. Life Outcomes.* 10(1), 56 (2012).
- 5. Egeberg. Psoriasis and comorbidities. Epidemiological studies. *Dan Med J.* 63, pii: B5201 (2016).
- 6. Prieto-Pérez R, Solano-López G, Cabaleiro T, *et al.* New immune system genetic polymorphisms associated with moderate-to-severe plaque psoriasis: a case-control study. *Br. J. Dermatol.* 172(5), 1432–1435 (2015).
- Prieto-Pérez R, Solano-López G, Cabaleiro T, *et al.* Polymorphisms Associated with Age at Onset in Patients with Moderate-to-Severe Plaque Psoriasis. *J. Immunol. Res.* 2015, 1–8 (2015).
- 8. Tang H, Jin X, Li Y, *et al.* A large-scale screen for coding variants predisposing to psoriasis. *Nat. Genet.* 46(1), 45–50 (2013).
- Gudjonsson JE, Karason A, Runarsdottir EH, *et al.* Distinct clinical differences between HLA-Cw* 0602 positive and negative psoriasis patients–an analysis of 1019 HLA-C-and HLA-B-typed patients. *J. Invest. Dermatol.* 126(4), 740–745 (2006).
- 10. Nair RP, Stuart PE, Nistor I, *et al.* Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. *Am. J. Hum. Genet.* 78(5), 827–851 (2006).
- Prieto-Pérez R, Cabaleiro T, Daudén E, Ochoa D, Roman M, Abad-Santos F. Genetics of Psoriasis and Pharmacogenetics of Biological Drugs. *Autoimmune Dis*. 2013, 1–13 (2013).
- 12. Lee YH, Song GG. Associations between interleukin-23R and interleukin-12B polymorphisms and psoriasis susceptibility: a meta-analysis. *Immunol. Invest.* 42(8), 726–736 (2013).
- Wcisło-Dziadecka D, Zbiciak-Nylec M, Brzezińska-Wcisło L, Mazurek U. TNF-α in a molecularly targeted therapy of psoriasis and psoriatic arthritis. *Postgrad. Med. J.* 92(1085), 172–178 (2016).
- 14. Horiuchi T, Mitoma H, Harashima S -i., Tsukamoto H, Shimoda T. Transmembrane TNF- : structure, function and interaction with anti-TNF agents. *Rheumatology*. 49(7), 1215–1228 (2010).

- Knight D, Trinh H, Le J, *et al.* Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. - PubMed - NCBI. *Mol Immunol.* 30, 1443–53 (1993).
- 16. Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG, Gottlieb AB. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. *Lancet Lond. Engl.* 357(9271), 1842–1847 (2001).
- Papp KA, Armstrong AW, Reich K, Karunaratne M, Valdecantos W. Adalimumab Efficacy in Patients with Psoriasis Who Received or Did Not Respond to Prior Systemic Therapy: A Pooled Post Hoc Analysis of Results from Three Double-Blind, Placebo-Controlled Clinical Trials. *Am. J. Clin. Dermatol.* 17(1), 79–86 (2016).
- 18. Reich K, Nestle FO, Papp K, *et al.* Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. *The Lancet.* 366(9494), 1367–1374 (2005).
- 19. Burmester GR, Panaccione R, Gordon KB, McIlraith MJ, Lacerda APM. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn's disease. *Ann. Rheum. Dis.* 72(4), 517–524 (2013).
- 20. Scallon B. Chimeric anti-TNF- α monoclonal antibody cA2 binds recombinant transmembrane TNF- α and activates immune effector functions. *Cytokine*. 7(3), 251–259 (1995).
- 21. Daudén E, Puig L, Ferrándiz C, Sánchez-Carazo JL, Hernanz-Hermosa JM, the Spanish Psoriasis Group of the Spanish Academy of Dermatology and Venereology. Consensus document on the evaluation and treatment of moderate-to-severe psoriasis: Psoriasis Group of the Spanish Academy of Dermatology and Venereology. *J. Eur. Acad. Dermatol. Venereol.* 30, 1–18 (2016).
- 22. Prieto-Pérez R, Cabaleiro T, Daudén E, Abad-Santos F. Gene polymorphisms that can predict response to anti-TNF therapy in patients with psoriasis and related autoimmune diseases. *Pharmacogenomics J.* 13(4), 297–305 (2013).
- 23. Prieto-Pérez R, Solano-López G, Cabaleiro T, *et al.* The polymorphism rs763780 in the *IL-17F* gene is associated with response to biological drugs in patients with psoriasis. *Pharmacogenomics.* 16(15), 1723–1731 (2015).
- 24. Prieto-Pérez R, Solano-López G, Cabaleiro T, *et al.* New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. *Pharmacogenomics J.* [Epub ahead of print] (2016).
- 25. Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. *Bioinformatics*. 22(15), 1928–1929 (2006).
- 26. Iniesta R, Guinó E, Moreno V. [Statistical analysis of genetic polymorphisms in epidemiological studies]. *Gac. Sanit.* 19(4), 333–341 (2005).

- 27. Batalla A, Coto E, Gómez J, *et al.* IL17RA gene variants and anti-TNF response among psoriasis patients. *Pharmacogenomics J.* [Epub ahead of print] (2016).
- Gallo E, Cabaleiro T, Román M, *et al.* The relationship between tumour necrosis factor (TNF)-α promoter and *IL12B / IL-23R* genes polymorphisms and the efficacy of anti-TNF-α therapy in psoriasis: a case-control study. *Br. J. Dermatol.* 169(4), 819–829 (2013).
- 29. Linares-Pineda TM, Cañadas-Garre M, Sánchez-Pozo A, Calleja-Hernández MÁ. Gene polymorphisms as predictors of response to biological therapies in psoriasis patients. *Pharmacol. Res.* 113, 71–80 (2016).
- 30. Julià A, Ferrándiz C, Dauden E, *et al.* Association of the PDE3A-SLCO1C1 locus with the response to anti-TNF agents in psoriasis. *Pharmacogenomics J.* 15(4), 322–325 (2015).
- Ryan C, Kelleher J, Fagan MF, *et al.* Genetic markers of treatment response to tumour necrosis factor-α inhibitors in the treatment of psoriasis. *Clin. Exp. Dermatol.* 39(4), 519–524 (2014).
- 32. Vasilopoulos V, Manolika M, Zafiriou E, *et al.* Pharmacogenetic analysis of TNF, TNFRSF1A, and TNFRSF1B gene polymorphisms and prediction of response to anti-TNF therapy in psoriasis patients in the Greek population. *Mol Diagn Ther.* 16, 29–34 (2012).
- Coto-Segura P, Batalla A, González-Fernández D, *et al.* CDKAL1 gene variants affect the anti-TNF response among Psoriasis patients. *Int. Immunopharmacol.* 29(2), 947–949 (2015).
- Tutuncu Z, Kavanaugh A, Zvaifler N, Corr M, Deutsch R, Boyle D. Fcγ receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor α-blocking agents. *Arthritis Rheum.* 52(9), 2693–2696 (2005).
- 35. Masouri S, Stefanaki I, Ntritsos G, *et al.* A Pharmacogenetic Study of Psoriasis Risk Variants in a Greek Population and Prediction of Responses to Anti-TNF-α and Anti-IL-12/23 Agents. *Mol. Diagn. Ther.* 20(3), 221–225 (2016).
- Julià M, Guilabert A, Lozano F, *et al.* The Role of Fcγ Receptor Polymorphisms in the Response to Anti–Tumor Necrosis Factor Therapy in Psoriasis: A Pharmacogenetic Study. *JAMA Dermatol.* 149(9), 1033 (2013).
- 37. Tejasvi T, Stuart PE, Chandran V, *et al.* TNFAIP3 Gene Polymorphisms Are Associated with Response to TNF Blockade in Psoriasis. *J. Invest. Dermatol.* 132(3), 593–600 (2012).
- 38. Seitz M, Wirthmuller U, Moller B, Villiger PM. The -308 tumour necrosis factorgene polymorphism predicts therapeutic response to TNF -blockers in rheumatoid arthritis and spondyloarthritis patients. *Rheumatology*. 46(1), 93–96 (2007).
- Song GG, Seo YH, Kim J-H, Choi SJ, Ji JD, Lee YH. Association between *TNF-α* (-308 A/G, -238 A/G, -857 C/T) polymorphisms and responsiveness to TNF-α

blockers in spondyloarthropathy, psoriasis and Crohn's disease: a meta-analysis. *Pharmacogenomics*. 16(12), 1427–1437 (2015).

- 40. Chen W, Xu H, Wang X, Gu J, Xiong H, Shi Y. The tumor necrosis factor receptor superfamily member 1B polymorphisms predict response to anti-TNF therapy in patients with autoimmune disease: A meta-analysis. *Int. Immunopharmacol.* 28(1), 146–153 (2015).
- 41. Capon F, Novelli G, Semprini S, *et al.* Searching for Psoriasis Susceptibility Genes in Italy: Genome Scan and Evidence for a New Locus on Chromosome 1. *J. Invest. Dermatol.* 112(1), 32–35 (1999).
- 42. Bergboer JGM, Zeeuwen PLJM, Schalkwijk J. Genetics of Psoriasis: Evidence for Epistatic Interaction between Skin Barrier Abnormalities and Immune Deviation. *J. Invest. Dermatol.* 132(10), 2320–2331 (2012).
- 43. Chen H, Toh TKL, Szeverenyi I, *et al.* Association of Skin Barrier Genes within the PSORS4 Locus Is Enriched in Singaporean Chinese with Early-Onset Psoriasis. *J. Invest. Dermatol.* 129(3), 606–614 (2009).
- 44. Cargill M, Schrodi SJ, Chang M, *et al.* A Large-Scale Genetic Association Study Confirms IL12B and Leads to the Identification of IL23R as Psoriasis-Risk Genes. *Am. J. Hum. Genet.* 80(2), 273–290 (2007).
- 45. Zhu K-J, Zhu C-Y, Shi G, Fan Y-M. Meta-analysis of IL12B polymorphisms (rs3212227, rs6887695) with psoriasis and psoriatic arthritis. *Rheumatol. Int.* 33(7), 1785–1790 (2013).
- 46. Ellinghaus E, Ellinghaus D, Stuart PE, *et al.* Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. *Nat. Genet.* 42(11), 991–995 (2010).
- 47. Stuart PE, Nair RP, Tsoi LC, *et al.* Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture. *Am. J. Hum. Genet.* 97(6), 816–836 (2015).
- 48. Harden JL, Krueger JG, Bowcock AM. The immunogenetics of Psoriasis: A comprehensive review. *J. Autoimmun.* 64, 66–73 (2015).
- 49. Prieto-Pérez R, Llamas-Velasco M, Cabaleiro T, *et al.* Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis. *Pharmacogenomics.* 18(2), 157–164 (2017).
- 50. Caldarola G, Sgambato A, Fanali C, *et al.* HLA-Cw6 allele, NFkB1 and NFkBIA polymorphisms play no role in predicting response to etanercept in psoriatic patients: *Pharmacogenet. Genomics.* 26(9), 423–427 (2016).
- 51. Ovejero-Benito MC, Prieto-Pérez R, Llamas-Velasco M, *et al.* Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. *Pharmacogenomics.* 18(7), 631–638 (2017).

- 52. Gamsjaeger R, Liew C, Loughlin F, Crossley M, Mackay J. Sticky fingers: zincfingers as protein-recognition motifs. *Trends Biochem. Sci.* 32(2), 63–70 (2007).
- 53. Sun L-D, Cheng H, Wang Z-X, *et al.* Association analyses identify six new psoriasis susceptibility loci in the Chinese population. *Nat. Genet.* 42(11), 1005–1009 (2010).
- 54. Xu H, Chen H, Dong J, Lynch R, Ghishan FK. Gastrointestinal Distribution and Kinetic Characterization of the Sodium-Hydrogen Exchanger Isoform 8 (NHE8). *Cell. Physiol. Biochem.* 21(1–3), 109–116 (2008).
- 55. Capon F, Bijlmakers M-J, Wolf N, *et al.* Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. *Hum. Mol. Genet.* 17(13), 1938–1945 (2008).
- 56. Matsukura H, Ikeda S, Yoshimura N, Takazoe M, Muramatsu M. Genetic polymorphisms of tumour necrosis factor receptor superfamily 1A and 1B affect responses to infliximab in Japanese patients with Crohn's disease: GENETIC POLYMORPHISMS OF TNFRSF1A AND TNFRSF1B AND INFLIXIMAB RESPONSE. *Aliment. Pharmacol. Ther.* 27(9), 765–770 (2008).
- 57. González-Lara L, Batalla A, Coto E, *et al.* The TNFRSF1B rs1061622 polymorphism (p.M196R) is associated with biological drug outcome in Psoriasis patients. *Arch. Dermatol. Res.* 307(5), 405–412 (2015).
- Feng B-J, Sun L-D, Soltani-Arabshahi R, *et al.* Multiple Loci within the Major Histocompatibility Complex Confer Risk of Psoriasis. *PLoS Genet.* 5(8), e1000606 (2009).
- 59. Ellinghaus E, Ellinghaus D, Stuart PE, *et al.* Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. *Nat. Genet.* 42(11), 991–995 (2010).
- 60. Talamonti M, Galluzzo M, Zangrilli A, *et al.* HLA-C*06:02 Does Not Predispose to Clinical Response Following Long-Term Adalimumab Treatment in Psoriatic Patients: A Retrospective Cohort Study. *Mol. Diagn. Ther.* 21(3), 295–301 (2017).
- 61. Murdaca G, Spanò F, Contatore M, Guastalla A, Magnani O, Puppo F. Pharmacogenetics of etanercept: role of TNF-α gene polymorphisms in improving its efficacy. *Expert Opin. Drug Metab. Toxicol.* 10(12), 1703–1710 (2014).
- Talamonti M, Botti E, Galluzzo M, *et al.* Pharmacogenetics of psoriasis: *HLA-Cw6* but not *LCE3B/3C* deletion nor *TNFAIP3* polymorphism predisposes to clinical response to interleukin 12/23 blocker ustekinumab. *Br. J. Dermatol.* 169(2), 458–463 (2013).

Table 1. Phenotypic characteristics of psoriatic patients treated with adalimumab and infliximab.

	Patients (N=95)	Responders (N=67)	Non-responders (N=28)	Statistical significance			
Age at onset of psoriasis (years)	27.8±12.8	27.5 ± 13.1	28.7 ± 12.2	p=0.400			
Men (%)	60 (63.2)	42 (62.7)	18 (64.3)	p=0.833			
Weight (Kg)	76.4 ± 13.3	75.5 ± 13.3	78.7±13.1	p=0.972			
Adalimumab (%)	63 (66.3)	43 (64.2)	20 (71.4)	p=0.495			
Infliximab (%)	32 (33.7)	24 (35.8)	8 (28.6)	p=0.495			
Psoriasis Type I (%) ¹	79 (83.2)	55 (82.1)	24 (85.7)	n - 0.667			
Psoriasis Type II (%) ²	16 (16.8)	12 (17.9)	4 (14.3)	p=0.667			
Patients with PsA (%)	19 (20.0)	14 (20.9)	5 (17.9)	p=0.736			
Age at first biological agent (years)	42.8 ± 14.2	42.4 ± 14.8	43.7±12.8	p=0.513			
Baseline PASI	22.1 ± 11.6	22.6 ± 11.9	20.8 ± 11.0	p=0.529			
Clinical response at 3 months of treatment							
PASI at 3 months	3.9 ± 5.6	1.2 ± 1.7	10.3 ± 6.3	p=0.000			
PASI75 (%)	67 (70.5)	67 (100)	0 (0)				

Abbreviations: Data are shown as mean and standard deviation or number (%); PsA: psoriatic arthritis; PASI: psoriasis area severity index; ¹early-onset psoriasis (<40 years); ² late-onset (>40 years); Statistical differences were performed between responders and non-responder patients. T-test and χ^2 were performed for continuous and categorical variables respectively.

				UNIVARIA' ANALYSI		E MULTIVARIATE ANALYSIS			
SNP	Gene	Gene Model	Risk Genotype (% Responders /% Non-responders)	OR (95% CI)	p value	OR (95% CI)	p value		
rs1800896	IL-10	А	AG-GG (64.2-81.5)	2.19 (1.07-4.47)	0.028	2.46 (0.53-11.37)	0.249		
rs2243188	IL-19	R	AA (10.4-0.0)	0.00 (0.00-ND)	0.024	0.00 (0.00-ND)	0.999		
rs6661932	IVL	A	CT-TT (65.7-85.2)	2.15 (1.09-4.21)	0.022	13.08 (1.11-154.37)	0.041		
rs821421	PGLYRP3	D	AC-AA (23.9-53.6)	3.68 (1.45-9.33)	0.006	3.17 (0.33-30.86)	0.321		
rs1500941	SPRR2F	D	AG-GG (74.6-53.6)	0.39 (0.16-0.99)	0.048	0.41 (0.02-8.94)	0.567		
rs191190	TNFR1	С	CT (46.3-75.0)	2.71 (0.88-8.35)	0.024	0.02 (0.00-4.31)	0.148		
rs7744	MyD88	А	AG-GG (16.4-35.7)	2.49 (1.07-5.82)	0.003	0.72 (0.06-8.47)	0.796		
rs2546890	IL-12B	A	AG-AA (80.6-60.7)	0.42 (0.20-0.87)	0.015	0.12 (0.01-0.95)	0.044		
rs2431697	PTTG1	R	CC (13.4-33.3)	3.22 (1.11-9.34)	0.032	10.85 (0.69-171.36)	0.090		
rs1050152	SLC22A4	А	CT-TT (74.6-57.1)	0.51(0.28-0.95)	0.028	0.47 (0.09-2.45)	0.366		
rs6908425	CDKAL1	А	CT-TT (34.3-17.9)	0.41 (0.15-1.09)	0.050	0.64 (0.00-1.12)	0.060		
rs610604	TNFAIP3	R	CC (19.4-3.6)	0.15 (0.02-1.24)	0.027	0.02 (0.00-5.97)	0.173		
rs774359	C9orf72	R	CC (9.1-0.0)	0.00 (0.00-ND)	0.038	0.00 (0.00-ND)	0.999		
rs2145623	NFKBIA	A	CG-GG (50.0-67.9)	1.98 (1.04-3.75)	0.034	6.64 (1.13-39.23)	0.037		
rs4775912	USP8- TNFAIP8L3	А	CT-CC (34.3-14.3)	0.33 (0.11-0.99)	0.027	0.09 (0.00-1.45)	0.089		
rs4792847	MAP3K14	D	AG-AA (57.6-78.6)	2.70 (0.97-7.54)	0.047	5.09 (0.35-73.35)	0.232		
rs4788850	NAT9	D	CG (11.9-0.0)	0.00 (0.00-ND)	0.015	0.00 (0.00-ND)	0.999		
rs9304742	ZNF816A	D	CT-CC (70.2-42.9)	0.32 (0.13-0.80)	0.013	0.01 (0.00-0.30)	0.008		
rs645544	SLC9A8	R	GG (6.0-21.4)	4.30 (1.11-16.65)	0.033	73.54 (1.33-4,075.18)	0.036		

Table 2. Summary of the results of univariate and multivariate logistic regression analyses for PASI75 at 3 months of treatment (N=95). Only polymorphisms significant for the univariate analysis (p<0.05) are shown and were included in the multivariate analysis.

Abbreviations: *IL-10*: Interleukin 10; *IL-19*: Interleukin 19; *IVL*: Involucrin; *PGLYRP3*; Peptidoglycan Recognition Protein 3; *SPRR2F*: Small Proline Rich Protein 2F; *TNFR1*: Tumor Necrosis Factor Receptor 1; *MyD88*: Myeloid Differentiation Primary Response 88; *IL12B*: Interleukin 12B; *PTTG1*: Pituitary Tumor-Transforming 1; *SLC22A4*: Soluble Carrier Family 22 member 4; *CDKAL1*: CDK5 Regulatory Subunit Associated Protein 1 Like 1; *TNFAIP3*: TNF Alpha Induced Protein 3; *C9orf72*: Chromosome 9 open reading frame 72; *NFKBIA*: NFκB Inhibitor Alpha; *USP8-TNFAIP8L3*: Ubiquitin Specific Peptidase 8 - TNFα Alpha Induced Protein 8 Like 3; *MAP3K14*: Mitogen-Activated Protein Kinase Kinase Kinase 14; *NAT9*: N-acetyltransferase 9; *ZNF816A*: Zinc Finger Protein 816; *SLC9A8*: Soluble Carrier Family 9 member A8; SNP: Single Nucleotide Polymorphism; OR: Odds Ratio of non-response; CI: Confidence Interval; C: Codominant; D: Dominant; A: Additive; R: Recessive; ND: No Data. Bold characters emphasize significant results for multivariate analysis.

Table 3. Results of univariate and multivariate logistic regression analyses for PASI75 at 6 months of treatment (N=90). Only polymorphisms significant for the univariate analysis (p<0.05) are shown and were included in the multivariate analysis.

				UNIVARIATE AN	ALYSIS	MULTIVARIATE ANALYSIS	
SNP	Gene	Mod el	Risk Genotype (% Responders/ % Non-responders)	OR (95% CI)	p value	OR (95% CI)	p value
rs1800896	IL-10	Α	AC-AA(49.3-27.8)	0.39 (0.14-1.08)	0.048	0.69 (0.26-1.85)	0.457
rs1500941	SPRR2F	D	AG-GG (75.0-50.0)	0.33 (0.11-0.97)	0.045	0.43 (0.12-1.54)	0.194
rs1061622	TNFR1B	D	GT-GG (34.7-66.7)	3.76 (1.26-11.22)	0.014	2.01 (0.56-7.21)	0.286
rs1061624	TNFR1B	Α	AG-GG (73.5-93.3)	2.94 (1.15-7.53)	0.018	0.32 (0.12-0.86)	0.025
rs397211	IL-1RN	R	CC (15.5-0.0)	0.00 (0.00-ND)	0.021	2.04 (0.36-11.5)	0.419
rs96844	MAP3K1	D	CT-CC (52.8-16.7)	0.18 (0.05-0.67)	0.004	0.40 (0.11-1.37)	0.143
rs2431697	PTTG1	А	CT-CC (63.4-83.3)	2.53 (1.15-5.54)	0.016	2.00 (0.85-4.74)	0.115
rs13437088	HLA-B/MICA	R	TT (13.9-0)	0.00 (0.00-ND)	0.029	0.92 (0.13-6.71)	0.930
rs2395029	HPC5	D	GT (12.5-0)	0.00 (0.00-ND)	0.039	0.50 (0.03-8.34)	0.630
rs6311	5-HTR2A	D	CC -CT (67.6-93.8)	7.19 (0.89-57.76)	0.018	0.62 (0.16-2.38)	0.485
rs12459358	PSORS6	D	CT-TT (64.8-33.3)	0.27 (0.09-0.81)	0.016	1.52 (0.45-5.16)	0.503

Abbreviations: *IL-10*: Interleukin 10; *SPRR2F*: Small Proline Rich Protein 2F; *TNFR1B*: Tumor Necrosis Factor Receptor 1B; *IL-1RN*: Interleukin 1 Receptor Antagonist; *MAP3K1*: Mitogen-Activated Protein Kinase Kinase Kinase 1; *PTTG1*: Pituitary Tumor-Transforming 1; *HLA-B/MICA*: Human Leukocyte Antigen B/Mayor Histocompatibility Complex Class I Polypeptide-Related Sequence A; *HLA-B/MICA*: HPC5: HLA Complex P5; *5-HTR2A*: 5 Hydroxytryptamine Receptors 2A; *PSOR6*: Psoriasis 6; SNP: Single Nucleotide Polymorphism; OR: Odds Ratio of non-response; CI: Confidence Interval; D: Dominant; A: Additive; R: Recessive; ND: No Data. Bold characters represent significant results.

Gene	SNP	RG	N	Drugs	Period	Response Criteria	Reference	С	
CTNNA2	rs11126740	AA	144	Anti-TNF	3	PASI75	Prieto-Pérez et al. [24]	NA	
FCGR2A	rs1801274	Т	144	Anti-TNF	6	PASI75	Prieto-Pérez et al. [24]	CU	
HLA-C	rs12191877	С	144	Anti-TNF	3	PASI75	Prieto-Pérez et al. [24]	NC	
HTR2A	rs6311	Т	144	Anti-TNF	6	PASI75	Prieto-Pérez et al. [24]	CU	
IL-12B	rs2546890	А	144	Anti-TNF	3&6&12	PASI75	Prieto-Pérez et al. [24]	С	
IL-17A	rs4819554	AA	205	Anti-TNF	3	PASI75	Batalla et al. [27]	NA	
IL-17F	rs763780	TT	35/ 62	IFX/ ADA	3&6/ 6	PASI75	Prieto-Pérez et al. [23]	NC	
IL-23R	rs11209026	GG	33	IFX	6	PASI90	Gallo et al. [28]	NC	
MAP3K1	rs96844	Т	144	Anti-TNF	3&6	PASI75	Prieto-Pérez et al. [24]	CU	
TNFa (-238)	rs361525	G	109/27 270 57/ 270/ 80	Anti-TNF/IFX Anti-TNF	6 3/ 2	PASI75/ %ImPASI/ PASI75	Gallo et al. [28]/ Murdaca et al. [61]/ Song et al. [39]/ Vasilopoulos et al.[32]	NA	
TNFa (-308)	rs1800629	G	270	Anti-TNF		PASI75	Song et al.[39]	NA	
TNFa (-857)	rs1799724	CC	109/ 27/ 80/ 270	Anti-TNF/ IFX Anti-TNF	6	%ImPASI / PASI50&PASI7 5 PASI75	Gallo et al. [28]/ Vasilopoulos et al.[32]/ Song et al. [39]	NA	
TNFa (-1031)	rs1799964	TT	109/27	Anti-TNF / IFX	3&6	PASI75/ PASI50 & PASI75& PASI90	Gallo et al. [28]	NA	
TNFRSF1B	rs1061622	TT	80/ 90	Anti-TNF	6	PASI75 / PASI50	Vasilopoulos et al. [32]/González-Lara et al. [57]	CU	
	rs2230926 /rs610604	А	250	ADA	6	PASI75	Masouri et al. [42]		
	rs2230926 /rs610604	Т	55	Anti-TNF		PASI50	Chen et al. [40]		
TNFAIP3	rs2230926 /rs610604	GG	433/51	Anti-TNF	3/ 6	PASI50	Talamonti et al. [62]/ Tejasvi et al. [37]	CU	
	rs2230926/ rs610604	TG	433	Anti-TNF	6	PASI50	Tejasvi et al. [37]		
	rs2230926/ rs610604	TG	632	Anti-TNF	6	PASI50	Tejasvi et al. [37]		
	rs2230926	TG	51	Anti-TNF	3	PASI75	Talamonti et al.[62]		
PDF24	rs379471	G	103	Anti-TNF	3	%ImPASI	Julià et al. [30]		
PDE3A- SLCO1C1	rs1048554	С	250	Anti-TNF	6	PASI75	Masouri et al. [35]	NA	
	rs9260313	TT	250	ADA	6	PASI75	Masouri et al. [35]		
PGLYRP4-24	rs2916205	AA	144	Anti-TNF	3	PASI75	Prieto-Pérez et al. [24]	NA	
TRAF3IP2	rs13190932	GG	250	IFX	6	PASI75	Masouri et al. [35]	NA	
ZNF816A	rs9304742	Т	144	Anti-TNF	3	PASI75	Prieto-Pérez et al. [24]	NC	

Table 4. SNPs associated with response to biological therapies in psoriasis patients in previous studies and correlation with the present study. Only significant results p<0.05 appear in this table.

Abbreviations: RG: Allele or genotype of response. N: number of patients; C: Confirmation of the genetic biomarkers in the present study; NA: not analyzed; NC: not confirmed in our study population; CU: Confirmed only in the univariate analysis; PASI: Psoriasis Area and Severity Index; PASI50: 50% of improvement respect basal PASI; PASI75: 75% of improvement respect basal PASI; PASI90: 90% of improvement respect basal PASI; ImPASI: Improvement of PASI; Anti- TNF: Anti- Tumor Necrosis Factor; ADA: Adalimumab; IFX: Infliximab.

Nº	SNP	CHROMOSOME	REGION	GENE	MINOR ALLELE	AMINOACID CHANGE
1	rs699	1	Coding	AGT	С	Pro>Leu
2	rs928655	1	Intronic	GBP6	G	No
3	rs1800896	1	Intergenic	IL10	G	No
4	rs1800872	1	Intergenic	IL10	G	No
5	rs2243188	1	Intronic	IL19	А	No
6	rs2243158	1	Intronic	IL19	С	No
7	rs11209026	1	Coding	IL23R	А	Lys>Glu
8	rs4649203	1	Intergenic	IL28RA	G	No
9	rs6661932	1	Intergenic	IVL	Т	No
10	rs6701216	1	Intronic	LCE	Т	No
11	rs1886734	1	Intronic	LCE	А	No
12	rs4112788	1	Intergenic	LCE	Т	No
13	rs983332	1	Intergenic	LMO4	А	No
14	rs10494292	1	Intergenic	LELP1	G	No
15	rs6684865	1	Intronic	MMEL- TNFRSF14	А	No
16	rs1801133	1	Coding	MTHFR	Т	Ala>Val
17	rs10754555	1	Intronic	NLRP3	G	No
18	rs2240340	1	Intronic	PADI4	А	No
19	rs821421	1	Intergenic	PGLYRP3- 19	А	No
20	rs2206593	1	UTR	PTGS2	А	No
21	rs2476601	1	Coding	PTPN22	A	Arg>Trp
22	rs10919563	1	Intronic	PTPRC	А	No
23	rs2485558	1	Intronic	RYR2	G	No
24	rs1500941	1	Intergenic	SPRR2F	G	No
25	rs191190	1	Intronic	TNFR1	С	No
26	rs1061622	1	Coding	TNFR1B	G	Gly>Trp
27	rs1061624	1	UTR	TNFR1B	А	No
28	rs3087243	2	Intergenic	CTLA4	G	No
29	rs11126740	2	Intronic	CTNNA2	А	No
30	rs842636	2	Intergenic	LINC01185	А	No
31	rs2164807	2	Intergenic	GNLY- ATOH8	G	No
32	rs17716942	2	Intronic	IFIH1	С	No
33	rs17561	2	Coding	IL1A	Т	Val>Leu
34	rs397211	2	Intergenic	IL1RN	С	No
35	rs13393173	2	Intronic	LASS6	А	No

Supplementary Table 1. Information of the 124 SNPs studied in the present study.

Nº	SNP	CHROMOSOME	REGION	GENE	MINOR ALLELE	AMINOACID CHANGE
36	rs7574865	2	Intronic	STAT4	Т	No
37	rs7744	3	UTR	MyD88	G	No
38	rs1801282	3	Coding	PPAR-y	G	Pro>Ala
39	rs658971	3	Intronic	SLC12A8	А	No
40	rs651630	3	Intronic	SLC12A8	Т	No
41	rs437943	4	Intergenic	EPS15	G	No
42	rs6822844	4	Intergenic	IL21	Т	No
43	rs11096957	4	Coding	TLR10/1/6	С	Tyr>Ser
44	rs2289318	4	Intronic	TLR2	G	No
45	rs1232027	5	Intergenic	DHFR	А	No
46	rs3213094	5	Intronic	IL12B	А	No
47	rs2546890	5	Intergenic	IL12B	А	No
48	rs1800925	5	Intergenic	IL13	Т	No
49	rs848	5	UTR	IL13	Т	No
50	rs96844	5	Intergenic	MAP3K1	С	No
51	rs2431697	5	Intergenic	PTTG1	С	No
52	rs1050152	5	Coding	SLC22A4	Т	No
53	rs17728338	5	Intergenic	TNIP1	А	No
54	rs2073048	6	Intronic	C6orf10	Т	No
55	rs879882	6	Intergenic	HLA-C	Т	No
56	rs13437088	6	Intergenic	HLA- B/MICA	Т	No
57	rs12191877	6	Intergenic	HLA-C	Т	No
58	rs2395029	6	Coding	HPC5	G	Gly>Trp
59	rs2275913	6	Intronic	IL17A	С	His>Arg
60	rs10484879	6	Intronic	IL17A	А	No
61	rs763780	6	Intergenic	IL17F	Т	No
62	rs1342642	6	Coding	IL20RA	Т	Thr>Ile
63	rs1167846	6	Intronic	IL20RA	Т	No
64	rs2010963	6	UTR	VEGF	С	No
65	rs241447	6	Coding	TAP2	G	Asp>Gly
66	rs17587	6	Coding	LMP	А	Thr>Ala
67	rs6920220	6	Intergenic	TNFAIP3	А	No
68	rs610604	6	Intronic	TNFAIP3	С	No
69	rs909253	6	Intronic	LTA	С	No
70	rs240993	6	Intronic	TRAF3IP2	Т	No
71	rs33980500	6	Coding	TRAF3IP2	Т	Gln>Stop
72	rs13210247	6	Intronic	TRAF3IP2	G	No
73	rs6908425	6	Intronic	CDKAL1	Т	No
74	rs916514	7	Intronic	DPP6	С	No
75	rs1799983	7	Coding	eNOS	Т	Ser>Ile

Nº	SNP	CHROMOSOME	REGION	GENE	MINOR ALLELE	AMINOACID CHANGE
76	rs1800795	7	Intergenic	IL6	С	No
77	rs854548	7	Intergenic	PON1	А	No
78	rs10088247	8	Intronic	CSMD1	С	No
79	rs11986055	8	Intronic	IKBKB	С	No
80	rs1799929	8	Coding	NAT2	Т	No
81	rs774359	9	UTR	C9orf72	С	No
82	rs1076160	9	Intronic	TSC1	А	No
83	rs4962153	9	Intronic	TTP	А	No
84	rs11591741	10	Intronic	СНИК	С	No
85	rs187238	11	Intergenic	IL18	С	No
86	rs2430561	12	Intronic	IFN-γ	А	No
87	rs11541076	12	UTR	IRAK3	А	No
88	rs12580100	12	Intergenic	RPS26	G	No
89	rs767455	12	Coding	TNFR1	С	No
90	rs4516035	12	Intergenic	VDR	С	No
91	rs6311	13	Intergenic	5-HTR2A	Т	No
92	rs3812888	13	Intronic	COG6	С	No
93	rs7993214	13	Intronic	COG6	Т	No
94	rs3751385	13	UTR	GJB2	Т	No
95	rs2282276	14	Intronic	CLMN	С	No
96	rs2145623	14	Intergenic	NFKBIA	С	No
97	rs2254441	15	Intronic	PSTP1P1	А	No
98	rs4775912	15	Intronic	USP8- TNFAIP8L3	С	No
99	rs4785452	16	Intergenic	CYLD	Т	No
100	rs10782001	16	Intronic	FBXL19	G	No
101	rs8056611	16	Intergenic	CYLD	А	No
102	rs1975974	17	Intergenic	C17orf51	G	No
103	rs1634517	17	Intronic	CCL4L	А	No
104	rs4792847	17	Intronic	MAP3K14	А	No
105	rs1024611	17	Intergenic	MCP1	С	No
106	rs4788850	17	Coding	NAT9	G	Ala>Gly
107	rs4795067	17	Intronic	NOS2	G	No
108	rs763361	18	Coding	CD226	Т	Pro>Leu
109	rs514315	18	Intergenic	SERPINB8	С	No
110	rs3136645	19	Coding	NFKBIB	С	No
111	rs9403	19	UTR	NFKBIB	С	No
112	rs12459358	19	Intergenic	PSORS6	Т	No
113	rs12983316	19	Intronic	SMARCA4	G	No
114	rs12720356	19	Coding	ТҮК2	G	Gly>Val
115	rs9304742	19	Intergenic	ZNF816A	C	No

N°	SNP	CHROMOSOME	REGION	GENE	MINOR ALLELE	AMINOACID CHANGE
116	rs597980	20	Intronic	ADAM33	Т	No
117	rs2787094	20	UTR	ADAM33	С	No
118	rs6138150	20	Intergenic	CST5	С	No
119	rs6071980	20	Intergenic	MAFB	С	No
120	rs2769982	20	Coding	RNF114	С	No
121	rs1008953	20	Intergenic	SDC4	А	No
122	rs645544	20	Intronic	SLC9A8	G	No
123	rs3761548	Х	Intronic	FOXP3	С	No
124	rs3027898	Х	Intergenic	IRAK1	С	No