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Dopaminergic system dysfunction is involved in schizophrenia (SCZ) pathogenesis and

can mediate SCZ-related motor disorders. Recent studies have gradually revealed

that SCZ susceptibility and the associated motor symptoms can be mediated by

genetic factors, including dopaminergic genes. More importantly, polymorphisms in these

genes are associated with both antipsychotic drug sensitivity and adverse effects. The

study of genetic polymorphisms in the dopaminergic system may help to optimize

individualized drug strategies for SCZ patients. This review summarizes the current

progress about the involvement of the dopamine system in SCZ-associated motor

disorders and the motor-related adverse effects after antipsychotic treatment, with

a special focus on polymorphisms in dopaminergic genes. We hypothesize that the

genetic profile of the dopaminergic systemmediates both SCZ-associated motor deficits

associated and antipsychotic drug-related adverse effects. The study of dopaminergic

gene polymorphisms may help to predict drug efficacy and decrease adverse effects,

thereby optimizing treatment strategies.

Keywords: schizophrenia, dopaminergic transmission, gene polymorphism, pharmacogenetics, antipsychotic

drugs

INTRODUCTION

Schizophrenia (SCZ), characterized as a combination of hallucinations, delusions, disorganization,
and other cognitive or emotional deficits, shows an average prevalence of ∼1% (Kahn et al., 2015).
Patients with SCZ typically present clinical symptoms in late adolescence (Gogtay et al., 2011),
but the disease pathogenesis can be attributed to neurodevelopmental differences occurring at an
earlier age (Kahn and Sommer, 2015). These neurodevelopmental disorders and SCZ susceptibility
may be attributed to several heterogeneous genetic factors (Birnbaum and Weinberger, 2017).
Recently, genome-wide association studies (GWAS) enabled the large-scale identification of novel
disease-risk genes. Currently, only the Schizophrenia Working Group of the Psychiatric Genomics
Consortium performed and published a GWAS (2014), reporting 108 SCZ-associated loci, which
cover both glutamatergic and dopaminergic systems. This strengthened the established view of a
neurotransmitter-based explanation for SCZ onset.
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Neurotransmitter involvement in SCZ was substantiated
by both postmortem pathological examination and in vivo
molecular imaging. Notably, abnormal regulation of the
dopamine system in SCZ was repeatedly reported, supporting
the dopamine hypothesis of SCZ pathogenesis (Howes and
Kapur, 2009). Dopamine system hyperactivation in SCZ
patients (Grace, 2016) and the degree of dopamine release
is correlated with symptom severity (Abi-Dargham, 2014).
Moreover, various studies have revealed the functional roles
of the dopamine system in SCZ. Dopamine transporter
knockout (DAT KO) rodents showed SCZ-like behavior
(Ralph et al., 2001). Furthermore, dopamine D2 receptor
(D2R) upregulation in the striatum is a prominent defect
in SCZ (Li et al., 2011; Simpson and Kellendonk, 2017),
and dopaminergic striatal-cortical connectivity is disrupted
in unmedicated SCZ patients (Horga et al., 2016). Notably,
most antipsychotics mainly function via blocking D2R (van
Rossum, 1966), and D2R genetic polymorphisms confer SCZ
susceptibility (2014). Though studies on human genetics are
frequently compromised by the population selection bias,
further investigation of the dopaminergic system would benefit
elucidation of pathophysiological mechanisms and development
pharmaceutical interventions for SCZ.

DOPAMINE HYPOTHESIS IN SCZ AND
MOTOR DISORDERS

Dopamine is the central modulatory system for affective and
cognitive function (Grace, 2016). Aberrant dopaminergic
function occurred even before puberty in mouse SCZ models
(Chen et al., 2014), indicating that the dopaminergic system is
involved in early disease onset. Dysfunction of dopaminergic
transmission explains several SCZ symptoms. In D2R-
overexpressing SCZ mice, reduced low-frequency synchrony
between dopamine neurons in the ventral tegmental area and
prefrontal cortex was associated with working memory deficits
(Duvarci et al., 2018), and D2R overexpression in the striatum
led to cognitive deficits (Kellendonk et al., 2006). Alterations
in the extra-striatal dopamine receptors affected sensory input
from the thalamus to the cortex (Takahashi et al., 2006). In
addition to cognitive disorders, SCZ patients exhibit various
motor dysfunctions, including sensorimotor deficits, dyskinesia,
bradykinesia, catatonia, and psychomotor retardation (Walther
and Strik, 2012). Most of those SCZ-related motor symptoms
were accompanied by structural changes in premotor and motor
regions, including the cerebellum, thalamus (Walther, 2015),
and motor cortex (Du et al., 2019). The dopamine system is
known to modulate motor behavior (Grace, 2016), and its
involvement in SCZ-associated motor deficits can thus be
expected. DAT KO mice show hyperlocomotion (Giros et al.,
1996) and engage in stereotypic activities (Pogorelov et al.,

Abbreviations: COMT, catechol-O-methyltransferase; D1R, dopamine D1

receptor; D2R, dopamine D2 receptor; D3R, dopamine 3 receptor; DAT, dopamine

transporter; EPS, extrapyramidal side effects; GWAS, genome-wide association

studies; KO, knockout; SCZ, schizophrenia; SNP, single nucleotide polymorphism;

VNTR, variable number of tandem repeats

2005). Structural evidence for locomotor dysfunction stems
from altered dopaminergic circuits of basal ganglia in SCZ
pathology (Perez-Costas et al., 2010). Moreover, dopamine
biosynthesis disruption causes hyperactivity (Ramshaw et al.,
2013). Collectively, these findings implicate the dopaminergic
system in SCZ-associated motor deficits.

Behavioral studies suggest that although D2R is more likely
to be involved in cognitive dysfunctions of SCZ (Papaleo et al.,
2012; Jia et al., 2013), the dopamine D1 receptor (D1R) is more
closely related to motor disorders (Ralph et al., 2001). However,
the dopaminergic modulation of voluntary movement cannot
be fully explained by this oversimplified model. Basal ganglia
output is tightly controlled by direct and indirect pathways
via cortical excitation on striatal neurons (Freeze et al., 2013).
Briefly, dopamine synthesized in the substantia nigra is released
in the striatum to activate a D1R-modulated direct pathway
(Abboud et al., 2017). An indirect pathway also exists involving
GABAergic neurons in the striatum and can be suppressed via
D2R (Sano et al., 2013). Dopamine is essential for the homeostatic
balance between these two pathways to mediate striatal input
to basal ganglion nuclei and ensure normal motor function.
Furthermore, activation of the D1R-mediated direct pathway
initiates locomotor behavior, whereas D2R-mediated suppression
of the indirect pathway can help movement maintenance
(Freeze et al., 2013). SCZ patients frequently present suppressed
connectivity in the substantia nigra-striatal pathway (Yoon et al.,
2013), indicating aberrant motor regulation. Owing to elevated
dopamine release in the striatum in SCZ (Thompson et al.,
2013), motor deficits can be explained by altered dopaminergic
transmission in the basal ganglia-striatum loop. Moreover,
differential regulation of dendritic spine plasticity by D1Rs
and D2Rs in mice was recently reported (Guo et al., 2015).
These findings necessitate further comprehensive studies on the
genetics and molecular mechanisms underlying the involvement
of dopamine system in SCZ-related motor disorders.

ANTIPSYCHOTIC DRUG-RELATED
MOTOR DISORDERS

Antipsychotics cause adverse effects, including motor disorders
such as dystonia, akathisia, parkinsonism, bradykinesia,
tremors, and tardive dyskinesia; these are collectively termed
extrapyramidal side effects (EPS) (Leucht et al., 2009). EPS
incidence varies from 7 to 32%, depending on the drug type,
dosage, and demographic characteristics of patient cohorts
(Novick et al., 2010). Different hypotheses have been offered for
EPS, and the dopamine system has been repeatedly included
in these discussions. Most of the currently used antipsychotics
block dopamine receptors (Williams, 2003) based on the
hyperactivity of the dopaminergic mesolimbic pathway in SCZ
patients (Davis et al., 1991). Antipsychotics alter the dopamine
system anatomically and functionally. Long-term antipsychotic
treatment accelerated the loss of dopaminergic terminals in
human basal ganglia, which has been associated with tardive
dyskinesia (Seeman and Tinazzi, 2013). Therefore, the dopamine
system may explain both drug sensitivity and adverse effects.
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Although atypical antipsychotics decrease affinity toward
D2R and enhance serotonin receptor 2A binding affinity to
reduce EPS incidence (Kapur and Seeman, 2001; Leucht et al.,
2009), a meta-analysis revealed variable odds ratios for motor
dysfunctions associated with these drugs (Leucht et al., 2013).
Moreover, individual clinical trials for the same antipsychotic
medication, such as clozapine, reported inconsistent EPS risk
ratios (Rummel-Kluge et al., 2012). These observations further
raise the possibility of individualized factors such as genetic
polymorphisms that influence the adverse effects of drugs.

D2R dysfunction was reported in a rodent SCZ model
(Perez and Lodge, 2012) and has become the primary target
for atypical antipsychotics. The dissociation rate from the
D2R determined the efficacy and adversity of antipsychotics,
and accelerated dissociation permitted enhanced antipsychotic
effects with less adverse effects (Kapur and Seeman, 2001).
This hypothesis was supported by single-photon emission
computed tomography-based human studies showing EPS
correlation with D2R binding potential in the substantia nigra
(Tuppurainen et al., 2010). Similarly, >80% occupancy for
D2R was reported to increase EPS risk remarkably (Remington
and Kapur, 1999), thus explaining the clinical correlation
between lower EPS risk of clozapine and quetiapine and
lower D2R occupancy (Farde et al., 1992; Kapur et al., 2000).
Furthermore, another study proposed that antipsychotic effects
were dependent on D2R-mediated glycogen synthase kinase−3
signaling and that EPS could be attributed to the alternative G-
protein–dependent protein kinase A pathway (Su et al., 2014).
Thus, both receptor binding kinetics and selective downstream
signaling activation may be considered for drug development.
However, an imaging study showed significant variations in
D2R occupancy among patients exposed to identical dosages of
antipsychotics (Miyamoto et al., 2012). This may be attributed
to the effect of D2R genetic polymorphisms on binding
kinetics and downstream pathway activation after antipsychotic
administration. Therefore, genotype-based customized drug
treatments may help to minimize side effects, including EPS,
while preserving antipsychotic efficiency.

Recently, novel antipsychotics functioning as D2R agonists
or antagonists, depending on dopamine levels, have been
developed (Lieberman, 2004), and are expected to reduce the
associated side effects. However, a recent meta-analysis showed
that the EPS incidence of aripiprazole was ∼17.1%, with no
significant difference when compared to other atypical drugs
such as clozapine, quetiapine, and olanzapine (Khanna et al.,
2014; Bernagie et al., 2016). These data indicate that genetic
polymorphisms, especially single nucleotide polymorphisms
(SNPs) may influence the action of antipsychotics. Although
a relation between genetic polymorphisms of the dopamine
system and the EPS associated with D2R agonists has not yet
been revealed, such an interplay may affect the binding affinity
and/or downstream signaling pathway of antipsychotics, thus
contributing to the observed adverse effects.

Although D1R has been strongly associated with effects of
antipsychotics (Farde et al., 1992), its role in motor deficits due
to antipsychotic administration cannot be neglected. Although
D1R involvement in EPS development remains debatable (Coffin

et al., 1989; Gerlach et al., 1996), D1R occupancy is indeed
associated with EPS. For example, the classical antipsychotics
haloperidol and sulpiride exhibit no apparent D1R occupancy
(Farde et al., 1992), whereas clozapine shows D1R-mediated
antagonist effects and low D2R occupancy, resulting in low EPS
potential (Gerlach and Hansen, 1992; Gerlach et al., 1996). As
D1R agonist infusion aggravates hyperactivity in SCZ rat models
(Bubenikova-Valesova et al., 2009), moderate D1R blockade
may reduce the EPS liability of antipsychotics. Therefore, to
achieve better antipsychotic efficacy with less adverse effects,
development of antipsychotics with moderate D1R blockade and
partial D2R agonist activity is recommended.

GENETIC POLYMORPHISMS IN THE
DOPAMINERGIC SYSTEM IN SCZ

Genetic polymorphisms strongly correlated with SCZ
susceptibility (Harrison and Weinberger, 2004; Jablensky,
2006), and 108 SCZ-associated loci were identified (2014);
however, these may include false positives due to sampling
bias. Particularly, polymorphisms in the dopamine system-
associated genes are repeatedly discussed (Howes et al., 2017).
Dopaminergic gene mutations may regulate the formation of
dopaminergic circuitry and sensitivity to antipsychotics. As
yet, GWAS have failed to detect significant SCZ-associated
risk sites among dopamine genes (Edwards et al., 2016);
however, the potential role of dopamine genes in SCZ motor
syndromes or the adverse effects of antipsychotics cannot
be excluded because large-scale screenings often neglect
population structures when sampling. Besides genetic regulation,
microRNA-based modulation of the D2R pathway has been
reported in SCZ (Hauberg et al., 2016). Akt, a serine-threonine
kinase downstream from dopaminergic receptor signaling, has
been associated with SCZ (Emamian et al., 2004). Dopaminergic
gene SNPs are strongly related to SCZ behavioral phenotypes,
and specific genotypes can be associated with different aspects of
clinical symptoms (Rybakowski et al., 2006), in addition to drug
sensitivity or the adverse effects of antipsychotics.

In the next section, we will briefly discuss the implications of
polymorphisms in three major dopaminergic genes, catechol-O-
methyltransferase (COMT), DAT (SLC6A3), and D2R (DRD2) in
SCZ pathology, with particular interest in SNPs loci.

COMT, a catabolic enzyme involved in dopaminemetabolism,
effectively removes dopamine from the synaptic cleft to terminate
its actions (Tunbridge et al., 2004). COMT is linked with
altered prefrontal functions (Meyer-Lindenberg et al., 2006) and
prefrontal-midbrain connections that are closely related to SCZ
(Meyer-Lindenberg et al., 2005), and affects dopaminergic flux in
the prefrontal cortex (Tunbridge et al., 2006).The COMT gene
is located on human chromosome 22q11.2, an SCZ-associated
region (Owen et al., 2004), and its microdeletion increases SCZ
risk (Murphy, 2002).In addition to this microdeletion, COMT
polymorphisms also contribute to SCZ etiology. The mutation of
the haploblocks of COMT gene is closely associated with COMT
functions. Within this region, Valine (Val) to methionine (Met)
substitution at the rs4680 loci of COMT has been widely studied.
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In particular, the homozygous Val allele showed remarkably
reduced cortical dopamine activity (Schacht, 2016). An early
study reported a correlation between neuromotor performance
and COMT Val158Met SNP (Galderisi et al., 2005). Recently,
increased recruitment of supplementary motor area was reported
in SCZ patients with Met homozygotes, compared to those with
Val homozygotes (Lopez-Garcia et al., 2016). Tardive dyskinesia
was shown to be associated with COMT GG genotype (Srivastava
et al., 2006). These results suggest that COMT gene SNP may
help to predict motor deficits in SCZ patients and antipsychotic
treatment-associated adverse motor effects.

As dopamine transporters are abundantly distributed in
striatal structures, COMT may not exert primary effects on
dopamine metabolism in these subcortical regions. The tandem
repeat polymorphism of the DAT gene has been related to
midbrain activity (Schott et al., 2006), and DAT KO mice
showed decreased cortical spine density (Kasahara et al., 2015).
DAT KO mice also presented hyperlocomotion (Giros et al.,
1996) and stereotypic activities (Pogorelov et al., 2005), which
were rescued by psychostimulant treatment (Trinh et al., 2003).
Similarly, DAT knockdown mice showed higher extracellular
dopamine concentration and presented hyperactivity in a
novel environment (Zhuang et al., 2001). Different distribution
patterns of DAT genotypes exist in SCZ patients, compared to
healthy cohorts (Persico and Macciardi, 1997). A site-specific
DAT gene mutation revealed altered dopamine transmission
and locomotor abnormalities (Speca et al., 2006). Functional
imaging showed that DAT gene SNPs are associated with
the cortico-thalamus-caudate circuit functions (Meda et al.,
2010), indicating the potential behavioral relevance of these
genetic polymorphisms. Clinical evidence showed that DAT
gene polymorphisms affected verbal and visuospatial working
memory in SCZ patients (Zilles et al., 2012) and were potentially
related to antipsychotic treatment resistance (Bilic et al., 2014).
Furthermore, DAT genotype was found to be associated with
susceptibility to haloperidol-induced EPS (Zivkovic et al., 2013);
this may be attributed to the altered temporal gyrus-cingulate-
premotor patterns due to DAT SNPs (Meda et al., 2010).

A direct relation between D2R gene polymorphism and
EPS has not yet been revealed (Tybura et al., 2014). However,
D2R mRNA downregulation was reported after clozapine or
haloperidol treatment in rats (Lipska et al., 2003). Compared to
individuals homozygous for the A2 allele of D2R, A1(T) allele
carriers showed reduced striatal D2R-specific binding (Eisenstein
et al., 2016). The D2R binding affinity of antipsychotics can
affect their efficacy and EPS. Therefore, we speculated that
D2R gene SNPs are involved in these processes. Further
studies are warranted to investigate drug resistance or adverse
effects associated with antipsychotics in conjunction with D2R
genotype screening. In addition to single gene regulation,
epistatic regulation may be involved in SCZ pathogenesis and
the associated phenotypic variance, and the accumulation of
small effects from individual genetic polymorphisms can exert
prominent effects. The variable number of tandem repeats
(VNTR) of the 3′ untranslated region of the DAT gene and
COMT Val158Met SNP interacted to modulate the activity of
cortical regions, including the left supramarginal gyrus and right

orbital gyrus, in SCZ patients (Prata et al., 2009), providing
an example of combined effects of multigene polymorphisms
on dopamine function. Furthermore, polymorphisms in a
network of dopaminergic genes, including DAT, D2R, and
COMT, increase SCZ susceptibility (Talkowski et al., 2008). The
dopamine system may also interact with the glutamate system.
DAT gene polymorphism and glutamate metabolic enzymes
coregulate executive functions between striatum and para-
hippocampus (Pauli et al., 2013). Collectively, dopaminergic gene
polymorphisms can be prominent contributors to the cognitive
and motor dysfunctions in SCZ.

GENETIC POLYMORPHISMS IN THE
DOPAMINE SYSTEM IN SCZ AND
DRUG TARGETS

Pharmaceutical research for SCZ faces major challenges and
requires a comprehensive understanding of the genetics and
neural circuits involved (Pratt et al., 2012). SNPs may influence
the effect of antipsychotics. The COMT Val158Met substitution
at the rs4680 loci effectively predicted dopaminergic drug
effects, as the COMT inhibitor improved cognitive functions
Val homozygotes, whereas the antipsychotics were more effective
in Met homozygotes (Zhuo et al., 2019). Protein structure and
function studies revealed that Val-Met substitution disrupts
enzyme stability, leading to suppressed dopamine clearance and
higher dopamine activity (Chen et al., 2004). Hence, COMT SNP
analysis can be used to predict antipsychotic effects. Conversely,
Met homozygotes showed better response and more significant
behavioral improvements after treatment with the D2R partial
agonist, aripiprazole (Kaneko et al., 2018). These two results
indicate the complicated homeostatic balance of the dopamine
system and the potential benefit of genetic screening prior to drug
administration. Recently, the “pharmacogenetics” approach has
been adopted to include D2R gene polymorphisms in predicting
positive and adverse drug effects (Shen et al., 2009; Giegling et al.,
2013; Blum et al., 2014). Patients with the C/C genotype at the
C957T SNP loci of D2R presented a relatively poor response to
aripiprazole (Shen et al., 2009), resulting in a better response
in A1 allele carriers of the D2R gene (Miura et al., 2012). Such
phenomena can be explained by the altered binding affinity for
antipsychotics due to D2R gene polymorphisms.

Recently, genome-wide screening has provided insights for
novel drug targets (Schubert et al., 2014), and pharmacogenetics
can be used to predict the adverse effects of antipsychotics.
Although one study recruiting 191 SCZ patients failed to identify
an association of EPS with polymorphisms of the D2R, DAT, or
COMT genes (Tybura et al., 2014), another study indicated the
predictive power of the DAT rs2975226 SNP in the response to
clozapine (Xu et al., 2010). This discrepancy between may be
caused by the involvement of different loci, as the DAT VNTR
does not influence antipsychotic drug-induced EPS (Lafuente
et al., 2007). COMT A-G haplotype at the A278G loci causes
higher EPS susceptibility than the A-A haplotype does (Lafuente
et al., 2008). EPS liability after haloperidol treatment almost
doubled with DAT 9/10 and COMT Val158Met SNP (Zivkovic
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et al., 2013). In addition to the dopaminergic pathway genes,
metabolic genes, such as those involved in the mammalian
target of rapamycin pathway, are also associated with EPS
susceptibility and antipsychotic response (Mas et al., 2015).
Thus, genetic polymorphisms of the dopamine system are
potentially correlated with EPS; however, the detailed molecular
mechanisms remain unclear.

Other dopaminergic genes may also contribute to drug
effects. The S/S genotype and S allele of the dopamine 3
receptor (D3R) gene are potentially associated with resistance
to atypical antipsychotics in SCZ patients (Szekeres et al.,
2004). The dopamine 4 receptor (D4R) was found to be
associated with tardive dyskinesia syndromes in SCZ subjects
(Srivastava et al., 2006). In addition to the protein-coding region
mutations that alter protein structure and function, mutations
in noncoding regions may also affect SCZ susceptibility. Several
SNP loci in Armadillo repeat gene deleted in Velo-Cardio-
Facial syndrome (ARVCF), downstream of COMT, potentially
regulate SCZ risk (Mas et al., 2009). Thus, the complex
relation between dopaminergic genes and antipsychotic effects
necessitates further large-scale genomic screenings to better
understand the regulatory network for gene polymorphism in the
dopaminergic system in SCZ. These studies will aid prediction or
evaluation of the adverse effects of antipsychotics.

DOPAMINERGIC GENE SNPs AND
ANTIPSYCHOTIC DRUG-ASSOCIATED
MOTOR DEFICITS

Although pharmacogenetics enabled investigating the relation
between antipsychotic drug effects and dopaminergic gene
polymorphisms, inconsistent or even contradictory results are
frequently obtained. Some studies reported no association
between EPS and gene polymorphisms in D2R, DAT, and COMT
genes or other dopamine metabolic or transporter genes (Tybura
et al., 2014) (Lafuente et al., 2007; Gassó et al., 2010; Xu
et al., 2010). Specifically, D2R amino acid variants are not the

major predictors for adverse effects of antipsychotics (Kaiser
et al., 2002). Notably, serotonin receptor genes were associated
with antipsychotic therapy-associated EPS (Gunes et al., 2007).
Conversely, the correlation between dopaminergic gene SNPs
and the adverse effects of antipsychotics has been reported.
One D3R SNP site (rs167771) was associated with acute EPS
induced by antipsychotics (Gassó et al., 2009), and these EPS
are more likely contributed by SNPs within regulatory regions
and introns (Gassó et al., 2011). EPS after haloperidol treatment
was associated with the 9/10 genotype of the DAT gene or the
Val158Met genotype of COMT (Zivkovic et al., 2013). This was
further supported by a report on higher EPS risk in individuals
with the COMT A-G haplotype (Lafuente et al., 2008) and those
with the 9-repeat allele of DAT1 VNTR (Güzey et al., 2007).
Moreover, D2R gene SNPs contributed to EPS risk (Mas et al.,
2016). Two independent studies revealed that A1 allele of the
D2R gene was associated with increased EPS risk (Hedenmalm
et al., 2006; Güzey et al., 2007). Similarly, increased EPS
susceptibility was observed in individuals with the −141C Del
allele of the D2R gene (Nakazono et al., 2005). Thus, considering
such contradictory evidence, the role of dopaminergic gene SNPs
in antipsychotic drug-related adverse effects, including motor
disorders, needs to be investigated further.

We believe that the adverse effects of antipsychotics can be
further interpreted in a systemic view of dopamine homeostasis,
because SCZ onset and progression affect different aspects of
dopamine transmission. COMT is crucial for cortical dopamine
degradation to terminate dopamine action within the synaptic
cleft. COMT being a major dopamine catabolic enzyme,
COMT SNP may cause altered dopamine clearance levels,
influencing antipsychotic effects and motor disorders. DAT is
responsible for dopamine transport, and DAT expression level
and protein structure may alter dopaminergic transmission
strength. Dopamine targets and binds specific receptors from
D1R to D4R, which have region-specific patterns (Laurier et al.,
1994), thus influencing various aspects from mental functions to
locomotor activities via differential modulation of downstream
signaling pathways. The dopamine system can also modulate the

FIGURE 1 | Current working model for regulation of dopaminergic system and the effect of genetic polymorphism on motor dysfunction and antipsychotic

drug-related motor deficits in SCZ patients.
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excitatory-inhibitory balance of complete neural networks, rather
than simply altering the activity of a single neuron (Birnbaum
andWeinberger, 2017).Therefore, a complex interaction between
different neurotransmitter systems can be expected in SCZ.
Future studies of polymorphisms in genes involved in the
dopamine system provide insights into the molecular pathway
and enable adverse effect prediction.

Studies on molecular mechanisms of the dopamine system
in SCZ pathogenesis and the adverse effects of antipsychotics
mainly include investigation of receptor binding affinity and the
downstream signal transduction pathways involved. Recently,
G-protein coupled receptor dimerization was suggested in
dopaminergic regulation. D1R and D2R can form receptor
heterodimers (Dziedzicka-Wasylewska et al., 2006), which can
be dissociated by clozapine (Faron-Górecka et al., 2008). These
D1R-D2R heterodimers exist in macaque models and were
enhanced by dopamine depletion (Rico et al., 2017). Studying
the effects of antipsychotics on D1R-D2R dimerization may help
to elucidate the molecular mechanisms underlying antipsychotic
drug action (Dziedzicka-Wasylewska et al., 2008). However,
whether polymorphisms of the dopamine receptor genes can
affect the association/dissociation kinetics of these receptor
dimers, remains unclear.

CONCLUSIONS

We present a brief review of the relation of dopaminergic genes
with SCZ pathogenesis and antipsychotic treatment-related
adverse effects. We focused on motor deficits associated with
SCZ or antipsychotic drug administration and the role of
dopamine system and gene polymorphism-based modulation.
We propose that dopaminergic gene polymorphisms influence
both SCZ-associated motor deficits and antipsychotic drug-
induced motor dysfunction (Figure 1). More importantly,
variations across individuals contribute to different SCZ
susceptibilities, symptoms, responsiveness to drugs, and adverse
effects, including motor disorders. However, publication bias
and variation across demographic structures are the limitations
involved in studies on human genetics. Moreover, both GWAS

and human candidate gene studies have their limitations,
as GWAS can suffer from ignorance of environmental
interaction and functional relevance, and candidate gene
study cannot identify synergistic effects among multiple
genes. In this study, we only discuss dopamine related
loci and SNPs from published data, and thus cannot cover
those genetic interactions with other genes, although such
relationship may exert important roles for brain functions.
Taken together, it is essential to combine genetic screening
data with clinical manifestations and use animal studies
for mechanistic substantiations. Nevertheless, the analysis
of gene polymorphism patterns can be useful in predicting
disease risk and evaluating antipsychotic actions and potential
adverse effects.

HYPOTHESIS

Dopamine system aberrations are strongly associated with
schizophrenia symptoms, including motor disorders, and
both antipsychotic action and adverse effects, including
motor disorders. Thus, investigating dopaminergic gene
polymorphisms may help to predict drug efficacy and decrease
adverse effects, thereby optimizing treatment strategies.
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