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Abstract

Three dimensional confocal scanning laser microscope images offer dramatic visualizations of the 

action of living biofilms before and after interventions. Here we use confocal microscopy to study 

the effect of a treatment over time that causes a biofilm to swell and contract due to osmotic 

pressure changes. From these data, our goal is to reconstruct biofilm surfaces, to estimate the 

effect of the treatment on the biofilm’s volume, and to quantify the related uncertainties. We 

formulate the associated massive linear Bayesian inverse problem and then solve it using iterative 

samplers from large multivariate Gaussians that exploit well-established polynomial acceleration 

techniques from numerical linear algebra. Because of a general equivalence with linear solvers, 

these polynomial accelerated iterative samplers have known convergence rates, stopping criteria, 

and perform well in finite precision. An explicit algorithm is provided, for the first time, for an 

iterative sampler that is accelerated by the synergistic implementation of preconditioned conjugate 

gradient and Chebyshev polynomials.
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1 Introduction

Microbial biofilms are ubiquitous in nature. They form on our teeth, on rocks in creek 

bottoms, in pipes on oil drilling rigs, and inside intravenous catheters. They are everywhere 

there is water and a carbon source (Hall-Stoodley et al., 2004). A bacterial biofilm is a 

community of bacteria aggregated together in a gel-like matrix of extracellular polymers. 
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This appears to be the preferred growth mode for bacteria because it confers several 

advantages to the individual bacteria that compose the biofilm, including increased tolerance 

against antimicrobial treatments (Stewart, 2015).

The venerable approach to quantifying bacterial abundances is to put a sample of bacteria 

onto agar in a petri dish and then count colony forming units that become visible to the 

naked eye as the bacteria grow exponentially on the agar. This approach is still used by 

researchers, government agencies, and standard setting organizations (e.g., ASTM 

International) to quantify bacterial populations found in many different environments. 

Incredible advances in technology now allow more in-depth analyses to be performed. 

Molecular techniques identify bacterial phylogenies, mass spectrometry reveals how bacteria 

communicate and conduct warfare, and microscopy allows fantastic visualizations of 

individual cells interacting with each other and their surroundings.

Confocal scanning laser microscopy allows 3D images to be constructed of dynamic living 

biofilms over time at resolutions smaller than 1μm. Confocal microscopes (CM) capture a 

set of planar “slices” or images, parallel to, and at different distances from, the bottom of the 

biofilm where it is attached to a surface. The 3D image is generated by stacking the 2D 

slices. The laser illuminates bacteria that have either been stained, or genetically modified, 

to fluoresce when excited by the laser. In this paper we analyze a sequence of CM images 

over time (i.e., a video, see Supplementary Material) of a green fluorescing Staphylococcus 

aureus biofilm grown under controlled conditions in an engineered system. S. aureus is a 

common human pathogen that is notorious for its potential for evolution into an antibiotic-

invulnerable methicillin resistant strain (MRSA).

At each spatial location corresponding to a pixel in the image, the CM records the intensity 

of the biofilm’s fluorescence as an 8-bit integer (i.e., a value between 0 and 255). In our 

example, the horizontal (xy) field of view for each planar slice is 620μm×620μm with a 

vertical (z) range of 112μm. The 3D pixelation is 512×512×17 pixels with a 512×512 pixel 

representation for each planar slice (i.e., the physical representation of an xy pixel is 1.2μm); 

and there are 17 planar slices stacked together with 7μm between each pair of z-slices. Each 

z-slice is identified with an integer value between z = 1 (where the biofilm is attached to a 

surface) and z = 17 (the z-slice at the very top of the image). In the video that we analyze, 

approximately four 512 × 512 × 17 images are captured each minute over 45 minutes. 

During the course of the video one can see the effect of a salt water treatment on the biofilm. 

The biofilm goes through a series of contraction and swelling events due to osmotic pressure 

changes after multiple applications and removals of the treatment. Here we present a 

Bayesian analysis of 10 minutes of the video (40 frames) that captures the response of the 

biofilm as the salt water is removed and then applied again.

CM images are commonly analyzed using tools available in the software packages Imaris or 

COMSTAT (Heydorn et al., 2000). To quantify biofilm characteristics (without uncertainty 

quantification), these packages typically perform calculations on bright pixels 

(Lewandowski and Beyenal, 2014). For example, to estimate a biofilm volume as we do 

here, Imaris simply counts bright pixels. Such an approach is reasonable if the biofilm being 

imaged is thin - that is, less than 100μm. We have found that when imaging thicker biofilms 
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with a CM, the light attenuates markedly as it passes through the top layers of the biofilm so 

that the bacteria in the interior of the biofilm do not fluoresce at all (Figure 1A). Independent 

analyses suggest that the biofilm contains viable bacteria all the way through (Figures 1B-

C). For the thick biofilm featured in Figure 1A, simply counting bright pixels would clearly 

produce a biased volume estimate.

We apply a polynomial accelerated iterative sampler to the problem of constructing biofilm 

surfaces and quantifying biofilm volumes and the associated uncertainties from a video of 

3D CM images. This inverse problem is cast within a linear Bayesian framework with a 

Gaussian likelihood. After sampling variance parameters, we apply the methods of 

preconditioned conjugate gradients (PCG) and Chebyshev polynomials to iteratively sample 

from a multivariate Gaussian in order to garner information about the posterior density of 

the biofilm surface from which characteristics such as volume can be inferred. For this 

biofilm imaging problem it is too computationally and memory intensive to sample by either 

the conventional Cholesky factorization or conventional componentwise-wise iterative Gibbs 

sampling.

The rest of this paper is structured as follows. In Section 2 we present the linear Bayesian 

inverse problem that we solve. In Section 3 we review recent polynomial methods for 

iteratively sampling from Gaussians that have been derived from numerical linear algebra. 

This review includes: conditions for convergence; convergence rates; and the performance of 

these samplers in finite precision. These previous results are built upon in section 4 to 

present an explicit algorithm, for the first time, for the synergistic implementation of a PCG 

sampler and a Chebyshev sampler that capitalizes on the strengths and overcomes some of 

the weaknesses when PCG and Chebyshev samplers are used alone. In section 5, image 

analysis results are presented. We conclude in Section 6 with a discussion and future 

directions.

2 Inverse Problem for quantifying 3D images of biofilms

We consider a linear model of the biofilm’s surface given CM images of thick biofilms such 

as presented in Figure 1A (as suggested, e.g., in Sheppard and Shotton (1997)). Each image 

represents the biofilm in a 620μm × 620μm field of view on a 512 × 512 pixelated lattice. To 

represent the biofilm’s surface from CM data, first the data is thresholded so that pixels with 

an intensity value less than 50 are set to 0, and other pixels are set to 1. The biofilm’s surface 

(or thickness) at the ith pixel location in the 512 × 512 lattice is set by first identifying the set 

of z values for which there are adjacent planar z-slices with non-zero pixels in the 

thresholded data. The thickness is then set to the largest value of z in this identified set. 

Surface representations of two images from the video are shown in Figure 2. The results of 

this edge detection scheme agree well with a Sobel edge detector implementation but is 

seven times faster (in Matlab). Given a surface representation, y, of a biofilm over the 512 × 

521 lattice, we estimate the volume of the biofilm by summing the components of y.

The linear statistical model that we apply to the surface profile is:

y = Fθ + ε .
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The random vector y is a representation of the biofilm surface calculated from the CM 

image; θ is the true biofilm surface that we want to estimate; the matrix F implements 

possible blurring of the surface due to the point spread function of the CM; and ε ∼ N(0,Σy). 

Based on the above specification, the likelihood is π(y|θ,Σy) = N(Fθ,Σy). We introduce our 

prior assumption that the surface changes smoothly by assuming π(θ) = N(0,
1

λ
W

−1
) where λ 

is an unknown precision parameter (i.e., a regularizer (Bardsley, 2012)) that controls the 

level of smoothing of the surface. The 5122×5122 unscaled prior precision matrix W is the 

Laplacian considered by Higdon (2006) and Rue and Held (2005),

[W]
i j

= 10
−4

δ
i j

+

n
i

if i = j

−1 if i ≠ j and s
i
− s

j 2
≤ 1

0 otherwise

.

The locations {si} are on the 512×512 lattice over the 2D domain 620μm×620μm. The scalar 

ni is the number of points in the lattice that neighbour si (4 in the interior), i.e., that have 

distance 1.2μm (1 pixel) from si. This specification presumes that the biofilm surface at each 

location, conditioned on the surface at the closest locations in the lattice, is independent of 

the rest of the surface (Geman and Geman, 1984; Higdon, 2006; Rue and Held, 2005). We 

have investigated neighborhood sizes as large as 5 for a small subset of the imaging data, 

with no discernable effect on the volumes that we report here. Increasing the neighborhood 

size makes the computations even more expensive due to the decrease in the sparsity of the 

precision matrix of the posterior (see section 4.3).

The distribution of θ given everything else is the multivariate Gaussian

π(θ y, Σy, λ, W) = N A
−1

F
TΣy

−1
y, A

−1 (1)

with precision matrix A = F
T

Σ
y
−1

F + λW (Calvetti and Somersalo, 2007; Higdon, 2006). This 

shows how to apply the sampler presented here to any linear model with arbitrary and fixed 

F, Σy, λ and W. Our goal, is to find estimates of θ, Σy and λ given data y, the process F, and 

the unscaled precision W. We make some simplifying assumptions that are appropriate for 

these data: Σy = σ2I, the errors when measuring the surface at each location in the lattice are 

iid with unknown variance σ2; and F = I, there is no blurring of the surface due to the point 

spread function because adjacent pixel locations in space are far from each other (1.2μm) 

compared to the 200nm xy resolution of the CM (Sheppard and Shotton, 1997). Non-trivial 

F might be required, for example, when using the higher pixel resolution capabilities of the 

CM that we use when imaging biofilms that are not dynamically changing over time, or 

when interpolating the biofilm surface at spatial resolutions finer than the pixel resolution of 

collected CM data. Diffuse Gamma hyperpriors for each of 1/σ2 and λ (using the 

parameterization π(λ) ∝ λα−1e−βλ with α = 1 and β = 10−4), that we assume are 

independent, complete the Bayesian specification.

Our goal is to estimate the posterior
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π θ, σ
2, λ | y ∝ π y |θ, σ

2, λ π θ π σ
2, λ . (2)

We use the mean of the posterior as the Bayesian estimate θ  of the biofilm surface θ. 

Uncertainty of this estimate is quantified by constructing a Markov chain of samples from 

the posterior (2). We use the conditional (Gibbs) sampling approach used by Higdon (2006) 

and Bardsley (2012) to draw samples (θ,σ2,λ) from the posterior. Given the specification 

above, the distribution of 1/σ2 and λ conditioned on everything else is a product of Gamma 

distributions (Higdon, 2006). With the assumptions made earlier regarding F and Σy, the 

distribution of θ conditioned on everything else (1) simplifies to a 5122 dimensional 

Gaussian

π(θ | y, σ
2, λ) = N

1

σ
2

A
−1

y, A
−1 (3)

with precision matrix A =
1

σ
2

I + λW.

To draw samples from (2), we first sample from the conditional Gammas for 1/σ2 and λ. 

Given these precision parameter values, the second step is to sample from (3). The Gaussian 

in (3) is massive. Therefore, conventional sampling techniques that utilize the Cholesky 

factorization are too expensive to apply. Instead, we apply an iterative PCG-Chebyshev 

sampler, derived from the PCG and Chebyshev iterative optimizers, to generate Gaussian 

samples.

3 Iteratively sampling the massive multivariate Gaussian

3.1 Iterative sampling and linear solving

The Cholesky factorization is the conventional way to produce samples from a multivariate 

Gaussian and is also the preferred method for solving moderately sized linear systems (Rue 

and Held, 2005). For large linear systems, iterative solvers are the methods of choice due to 

their inexpensive cost per iteration and small computer memory requirements. For very large 

dimensional multivariate Gaussians of the form N(A−1b,A−1) given an n × n SPD precision 

matrix A and fixed vector b, the well-known component-wise Gibbs sampler (Gelman et al., 

1995; Gilks et al., 1996) is one of the few general iterative samplers available that samples 

each component of a random vector conditioned on the current state of the other 

components. At the kth iteration, one sweep of this Gibbs sampler may be written in matrix 

form as

θ
k+1 = M

−1
Nθ

k + M
−1

c
k (4)

where ckiid
N b, M

T
+ N , M = L + D, N = −LT, L is the strictly lower triangular part of A, 

and D is the diagonal of A. Note that MT +N = D. Repeating this sweep indefinitely 
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produces iterates {θk} that converge in distribution to N(A−1b,A−1) as long as A is SPD 

(Adler, 1981; Amit and Grenander, 1991).

Perhaps it is not so well known that the forward component sweep Gibbs sampler is 

essentially identical to the Gauss-Seidel iterative method that solves Ax = b for x given an 

n× n matrix A and fixed vector b (Adler, 1981; Amit and Grenander, 1991). At the kth 

iteration, one sweep of the Gauss-Seidel linear solver may be written in matrix form as

x
k+1 = M

−1
Nx

k + M
−1

b (5)

Repeating this sweep indefinitely produces iterates {xk} that converge to A−1b as long as A 

is SPD.

Remarkably, the only difference between the sampler iteration (4) and the solver iteration (5) 

is the introduction of a random vector ck instead of a fixed right hand side b! This 

equivalency in form shows that both the forward component sweep Gibbs sampler from a 

multivariate Gaussian and the Gauss-Seidel linear solver are equivalent in the sense that both 

utilize the same iteration operator M−1N and also converge under the same conditions (A is 

SPD) with the same convergence rate (Roberts and Sahu, 1997; Young, 1971). Extensions of 

this Gibbs sampler (Barone and Frigessi, 1990; Roberts and Sahu, 1997), equivalent to the 

successive-over-relaxation (SOR) linear solver and the symmetric-SOR (SSOR) linear solver 

(Axelsson, 1996; Golub and Van Loan, 1989; Saad, 2003), were the state-of-the-art for 

iterative samplers until only recently. SOR and SSOR were used as linear solvers in the 

1950’s and are now considered rather slow (Saad and van der Vorst, 2000). These solvers 

and samplers are referred to as stationary methods by numerical analysts because the same 

operator is applied to the current state at each iteration to generate the next state. Today, 

stationary iterative solvers are used as pre-conditioners at best, while CG polynomial 

methods (Hestenes and Stiefel, 1952) are the current state-of-the-art because they can solve 

a linear system in a finite number of steps (Saad and van der Vorst, 2000). Iterative samplers, 

on the other hand, have lagged behind. There has been a recent push to adapt more 

sophisticated iterative linear solvers to the job of sampling.

The prescription for the sampler in (4) and for the linear solver in (5) emphasizes that there 

is a general equivalence between sampling and solving. The first step is to identify matrices 

M and N such that A = M − N is a matrix splitting of the precision matrix A. Fox and Parker 

(2017) applied this matrix splitting formalism from numerical analysis to show how to 

convert any solver of Ax = b of the form

x
k+1 = (1 − αk)xk−1 + αkx

k + αkτkM
−1(b − Ax

k) (6)

(as described, e.g., in Golub and Van Loan (1989); Axelsson (1996)) into an iterative 

sampler of a multivariate Gaussian N(A−1b,A−1),
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θ
k+1 = (1 − αk)θk−1 + αkθ

k + αkτkM
−1(ck − Aθ

k) . (7)

The parameters αk and τk in both (6) and (7) are updated according to the specific linear 

solver method. For example, the assignment αk = τk = 1 corresponds to the stationary solver 

(5) and sampler (4). As was the case when comparing (5) and (4), the solver (6) utilizes a 

fixed vector b while the sampler (7) uses a random vector ck; in this case, ck ∼ N(b,akMT + 

bkN) where ak and bk are functions of αk and τk (Fox and Parker, 2017). The key when 

implementing either the solver or the sampler is to pick a splitting for which it is inexpensive 

to perform the operations by M−1 (e.g., when M is triangular); for the sampler, it is also 

crucial to be able to inexpensively sample from ck ∼ N(b,akMT + bkN).

This similarity in form assures that these solvers and samplers have the same conditions for 

convergence.

Lemma 1 (Fox and Parker, 2017, Theorem 5) Let A be SPD and A = M − N be any matrix 

splitting. The linear solver (6) with a set of parameters− − {αk}, {τk} that are independent of 

{xk} converges to A−1b (i.e., xk → A−1b) if and only if the sampler (7) converges, 

θ
k �

N(μ = A
−1

b, A
−1

).

After k iterations of the solver (6), a kth order polynomial pk is generated that reduces the 

solver’s error, ||xk+1 − A−1b||, according to

(x
k + 1

− A
−1

b) = p
k
[I − M

−1
N](x

0
− A

−1
b)

(Axelsson, 1996). The notation p[·] indicates the (possibly matrix) argument to the 

polynomial, and the notation pk[·](v − w) (for vectors or matrixes v and w) indicates 

(possibly matrix) multiplication of pk[·] and (v −w). To ease notation, we set Pk := pk[I − M
−1N]. For example, the assignment αk = τk = 1 in (6) and (7), that correspond to the 

stationary solver and sampler in (5) and (4) respectively, yields the polynomial pk[λ] = 

(1−λ)k so that pk[I −M−1N] = Pk = (M−1N)k. The assignment of {αk} and {τk} in (6) to 

other non-constant values corresponds to a polynomial accelerated solver when Pk ≠ (6 M
−1N)k and convergence is faster than the stationary solver (5). The following Theorem shows 

that this same polynomial reduces the sampler error in the first and second moments, ||E(θk)

−A−1b|| and ||Var(θk)−A−1||. In other words, applying the prescription (7) based on a 

polynomial accelerated solver (6) always results in a polynomial accelerated sampler.

Theorem 2 (Fox and Parker, 2017, Corollaries 6 and 7) Suppose that the polynomial 

accelerated linear solver (6) converges. Then it converges with geometric convergence rate ρ 
= (limk→∞ maxλ |pk[λ]|)1/k, where pk is the kth order polynomial recursively generated by 

iterating (6). Under the conditions of Lemma 1, the polynomial accelerated sampler (7) also 

converges with
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E θ
k + 1

= μ + P
k

E θ
0

− μ μ = A
−1

b

with geometric convergence rate ρ where Pk := pk[I − M−1N]; and

Var θ
k + 1

= A
−1

+ P
k

Var θ
0

− A
−1

P
k
T

A
−1

with geometric convergence rate ρ2.

Theorem 2 shows that solvers and samplers have the same convergence rate. Hence, the 

geometric rate of convergence of these iterative samplers can be found by looking up the 

corresponding solver in a numerical linear algebra textbook (e.g., Axelsson (1996); Golub 

and Van Loan (1989); Saad (2003); Young (1971)). In fact, the Theorem shows that samplers 

from distributions that have zero mean converge faster than the corresponding solver 

because the covariance matrix of the sampler converges with convergence rate ρ2 < ρ < 1. 

For a solver (5) or sampler (4), because the linear operator is the same at each iteration, Pk = 

(M−1N)k, which shows that the convergence rate of these iterations is the spectral radius ρ = 

ϱ(M−1N) (Axelsson, 1996; Golub and Van Loan, 1989; Saad, 2003; Young, 1971). Hence 

convergence of the sampler and solver can be assessed by simply checking whether ϱ(M
−1N) < 1 (Young, 1971). This inequality is always satisfied for a component sweep Gibbs 

sampler of a Gaussian and also for a Gauss-Seidel linear solver given an SPD A. The solver 

in (5) and the sampler in (4) are actually accelerated by the polynomial iterations (6) and (7) 

when the polynomial convergence rate ρ is less than the convergence rate ϱ (M−1N).

3.2 Optimal iterative samplers

The previous section gave a general method, i.e. the correspondence between equations (6) 

and (7), for deriving a polynomial accelerated sampler from a polynomial accelerated solver. 

The goal is to find a sampler by tweaking αk and τk and implicitly generating a different 

operator (≠6 M−1N) at each iteration so that the resulting polynomial sampler (7) converges 

faster than the stationary sampler (4). Fox and Parker (2014) applied this approach to attain 

an iterative sampler with an optimal geometric convergence rate using Chebyshev 

polynomials. We mean optimal with respect to all iterations (7) that have coefficients 

{αk,τk} independent of the states {θk}. Parker and Fox (2012) accelerate sampler 

convergence even more to only a finite number of iterations using CG polynomials 

(Algorithm 1 below with M = I); in this case the coefficients are not independent of the 

states.

In the rest of this section, we present the strengths and limitations of these and other 

available iterative Gaussian samplers. The goal is to derive a sampler (in section 4) that is 

provably convergent in exact arithmetic, has an optimal geometric convergence rate, and 

performs well in finite precision.

3.2.1 Chebyshev accelerated sampling—Chebyshev polynomial acceleration can be 

applied via equations (6) and (7) for any symmetric matrix splitting (Golub and Van Loan, 
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1989; Fox and Parker, 2014). The coefficients {τk,αk} in a Chebyshev implementation are 

functions of the extreme real eigenvalues λmin and λmax of M−1A (Axelsson, 1996). 

Theorem 2 shows that Chebyshev samplers are guaranteed to be accelerated compared to the 

stationary sampler (4) because the geometric convergence rate, ρCheby, for the Chebyshev 

polynomial accelerated sampler satisfies

ρCheby ≔
1 − cond A

−1

1 + cond A
−1

< ϱ M
−1

N (8)

where cond(·) is the condition number of a matrix (Axelsson, 1996; Fox and Parker, 2017). 

In fact, ρCheby is the smallest geometric convergence rate among all polynomials generated 

by either (6) or (7) when {αk} and {τk} are independent of the iterates xk and θk (Axelsson, 

1996).

Theorem 2 shows that the errors in the mean and covariance of the samplers (7) decrease 

according to a specific polynomial. This allows, a priori to running a solver or sampler, for 

one to determine the number of iterations required for convergence to the target normal 

distribution.

For example, after k
stat
* = ⌈

log(ε)

logϱ M
−1

N
⌉ iterations, the stationary sampler (4) with mean μ = 

A−1b ≠ 0 attains an error reduction in the mean e
k
stat
*

/ e
0

≤ ε for any ε > 0, where ek = 

E(θk) − μ. The mean of the Chebyshev sampler converges even faster so that after

kCheby* = ⌈
log(ε/2)

log ρCheby

⌉ (9)

iterations the error reduction in the mean is e
k
Cheby
*

A
ν
/ e

0

A
ν

≤ ε for some real number ν 

where ρCheby is specified in (8) (Fox and Parker, 2014)). Convergence in the variance is even 

faster after only k
stat
* * = ⌈

log(ε)

log ϱ M
−1

N
2

⌉ iterations for stationary samplers, or after

kCheby* * = ⌈
log(ε/2)

log σ
2

⌉ (10)

iterations for Chebyshev accelerated samplers (Fox and Parker, 2014)).

3.2.2 CG accelerated sampling—A CG solver also takes the form of (6) by setting M 

= I and setting αk and τk to functions of the residuals (Golub and Van Loan, 1989, section 

10.3.6). Using CG with other symmetric matrix splittings (i.e., M and N are symmetric) is 

called preconditioned CG (PCG). In this case M is referred to as a preconditioner because M
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−1 is viewed as an approximation to A−1 (Saad, 1992). The corresponding CG sampler was 

investigated in (Parker and Fox, 2012). We provide an explicit algorithm for a PCG sampler 

in section 4.

Neither Lemma 1 nor Theorem 2 apply to CG polynomials because the CG coefficients 

({αk,τk} in (6) and (7)) are functions of the residuals and hence not independent of either 

the solutions {xk} or of the samples {θk}. The theory guaranteeing convergence of the CG 

sampler relies on the fact that a CG solver and CG sampler are equivalent to a Lanczos 

eigensolver, which implies that if the n eigenvalues of A are distinct then the CG sample θn 

∼ N(A−1b,A−1). The following Theorem describes the results of the CG sampler in exact 

arithmetic when it terminates at iteration k < n.

Theorem 3 (Corollary 3.2 of Parker and Fox (2012)) If the CG sampler terminates at 

iteration k with ||b − Axk||2 = 0, then the CG sampler has successfully sampled from the k 

eigenspaces of A corresponding to the well separated eigenvalues {λ1,...,λk} of A. More 

specifically, if w
i

i = 1

k
 are the corresponding eigenvectors of A, then (Var(θk|θ0,b) − A−1)v 

= 0 for any v ∈ span (w1,…,wk) and ‖Var(θk|θ0,b) − A−1‖2 = 1/λ* where λ∗ is the smallest 

eigenvalue of A such that λ* ∉ {λ1,…,λk}.

Theorem 3 shows that the error in the variance of a CG sample is as large as the largest 

eigenvalue of A−1 associated with the eigenspaces not sampled. This result is a consequence 

of the action of the CG polynomial that reduces the error of the solver and the sampler. Put 

another way, when setting αk and τk in (7) to the same values used by the CG solver, the 

resulting CG sampler is accelerated by the same CG polynomial (Parker and Fox, 2012).

Like Chebyshev, CG polymomial solvers and samplers are guaranteed to accelerate 

stationary methods. The acceleration is even faster than Chebyshev because CG converges in 

a finite number of steps (Nocedal and Wright, 2000; Parker and Fox, 2012).

3.3 Sampling in finite precision

Numerical analysts have invested decades to develop a Chebyshev accelerated linear solver 

that provably converges geometrically in finite precision (Axelsson, 1996). The Chebyshev 

accelerated sampler implementation in Fox and Parker (2014) is such an implementation. In 

all of the examples Fox and Parker (2014, 2017) have studied using computationally 

expensive diagnostics, the Chebyshev accelerated samplers behave like the corresponding 

solvers, and converge with the predicted convergence rates in finite precision.

CG is a member of a class of Krylov methods that at the kth iteration, after initialization with 

a starting state x0, have traditionally been used to find a linear solution of Ax = b in a Krylov 

space with basis {x0,Ax0,A2×0,...,Ak−1×0} (Meurant, 2006). Lanczos methods are Krylov 

eigensolvers that find eigensolutions of A in the same Krylov space (Lanczos, 1950). 

Lanczos methods were adapted to sample from Gaussians by Schneider and Willsky (2003); 

Simpson et al. (2008); Aune et al. (2013); Chow and Saad (2014). Like the CG sampler, 

these Lanczos samplers converge in a finite number of steps in exact arithmetic. 

Unfortunately, Lanczos methods may be challenging to implement for massive Gaussians 

because the states from all iterations must be either saved, or re-calculated, in order to 
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generate a sample. This is the same memory demanding and computationally intensive 

calculation that a Lanczos eigensolver must perform when determining eigenvectors of the 

matrix A (Meurant, 2006; Saad, 1992).

Relying on existing results from numerical linear algebra, all of the samplers described 

above are provably convergent in exact arithmetic (sections 3.1 and 3.2). Unfortunately, 

provably convergent methods (whether linear solvers, eigensolvers or samplers) in exact 

arithmetic do not always lead to convergent algorithms when implemented in finite precision 

(i.e., when implemented on a computer). All algorithms are affected by finite precision, 

some worse than others. There are many well-known examples of this phenomenon in 

numerical linear algebra. Notably the Lanczos eigensolver is only able to estimate the 

eigenpairs of a matrix associated with well-separated eigenvalues before numerical 

instability makes further progress impossible without corrective measures (Meurant, 2006).

Not surprisingly, in finite precision, the Krylov samplers (Aune et al., 2013; Chow and Saad, 

2014; Parker and Fox, 2012; Simpson et al., 2008; Schneider and Willsky, 2003) appear to 

perform like a Lanczos eigensolver without correction. That is, while provably convergent in 

exact arithmetic, in finite precision they effectively sample only from k of the eigenspaces of 

A after k iterations (Theorem 3) before numerical instability thwarts further progress. 

Among the eigenspaces not sampled, if the smallest eigenvalue of A is equal to 

λ(not sampled), then when the Krylov sampler terminates at iteration k,

‖A
−1

− Var(θ
k

|b, θ
0
)‖

2
≈ 1/λ

not sampled

(Theorem 3). Schneider and Willsky (2003) implement a potentially expensive corrective 

measure (i.e., re-orthogonalization of the sampling directions) that allows a Lanczos 

algorithm to run longer in finite precision in order to converge to more of the eigenpairs of 

A, and also allows Krylov sampling from more of the eigenspaces of A. The preconditioning 

techniques applied by Chow and Saad (2014) actually seek to decrease the number of 

Lanczos sampler iterations by generating an approximation to A1/2z for z ∼ N(0,I) and use a 

residual stopping criterion. It is not clear whether their Gaussian sampler generates samples 

with the correct moments in finite precision.

Without corrective measures (e.g., re-orthogonalization) or without a favorable spectrum 

(the small eigenvalues of A are well separated), Krylov samplers such as CG and Lanczos 

suffer and fail to produce either exact samplers or exact eigenproblem solutions due to finite 

precision.

4. A fast iterative polynomial accelerated sampler

In this section we present our new methodological contribution. First, we present a PCG 

sampler that is constructed by adding a single line of code to a PCG solver. Given the 

strengths and limitations of the stand-alone applications of the CG and Chebyshev samplers 

described in section 3, our contribution is a synergistic implementation of the PCG and 

Chebyshev samplers.
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4.1 PCG accelerated sampling

The following algorithm accelerates iterative sampling by the same PCG polynomial that a 

PCG solver utilizes. Although not immediately obvious, this algorithm can be written in the 

form (7) (Golub and Van Loan, 1989, section 10.3.6). Removing the single line of code in 

Algorithm 1 that updates θk yields a PCG solver (cf. Algorithm 9.2 in Saad (2003)). Setting 

M = C = I in Algorithm 1 yields the CG sampler presented in Parker and Fox (2012).

Algorithm 1:

Preconditioned conjugate gradient accelerated sampler of N(A−1b,A−1)

input : SPD precision matrix A, M = CCT a symmetric splitting of A, maximum number of iterations kmax, initial state 
θ0, b, and residual stopping criterion ϵ

output : xk+1 ≈ μ = A−1b and θk+1 approximately distributed as N(0,A−1)

x0 = θ0, r0 = C−1(Ax0 − b), p0 = −C−Tr0;

for k = 1,…, kmax do

        dk−1 = p(k−1)TApk−1;

        γ
k − 1

=
r
(k − 1)T

r
k − 1

d
k − 1

;

        xk = xk−1 + γk−1pk−1;

        θ
k

= θ
k − 1

+
z

d
k − 1

p
k − 1

 for z ∼ N(0,1);

        rk = rk−1 + γk−1C−1Apk−1;

        β
k

=
r
kT

r
k

r
(k − 1)T

r
k − 1

;

        pk = −C−Trk + βkpk−1;

        Check for convergence: quit if ‖rk‖ < ϵ;

end

It is not necessary to factor M = CCT to implement a PCG sampler as might be suggested by 

Algorithm 1. Rather, one can implement a PCG sampler by starting with the PCG solver 

presented in one of Axelsson (1996); Golub and Van Loan (1989); Nocedal and Wright 

(2000) that directly operate by M−1 instead of by C−1 and C−T; and add in the single line of 

code θk
= θ

k − 1
+

z

d
k − 1

p
k − 1. We focus on Algorithm 1 because the symmetric matrix 

splittings that we implement come naturally as M = CCT. For example, one implementation 

of the SSOR sampler of Roberts and Sahu (1997) is implemented by the conventional 

forward sweep component-wise Gibbs sampler (4) with splitting M1 = L + D (defined after 

(4)) and then a backward sweep with splitting M
2

= M
1
T. The resulting symmetric matrix 

splitting for SSOR sampling (and solving) is M
SSOR

= M
1
M

1
T. Any sampling scheme (4) (or 

solver (5)) for a matrix splitting M1 can be implemented by forward and backward sweeps to 

generate a symmetric matrix splitting M = M
1
M

1
T to be used in Algorithm 1 with C = M1. 

The key is to pick a splitting for which it is inexpensive to perform the operations by C−1 

and C−T in Algorithm 1.
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In general, it is challenging to check whether an iterative sampler has converged in 

distribution. The PCG sampler, on the other hand, monitors the residual ||Axk − b|| as a 

stopping criteria, just as does a linear solver. Chow and Saad (2014) and Simpson et al. 

(2008) use an approximate residual as a stopping criterion that monitors the distance of a 

current sample from A−1/2z where z ∼ N(0,I). As for CG and Lanczos solvers (Meurant, 

2006), a small residual at iteration k before numerical instability indicates that a CG or 

Lanczos sampler has effectively sampled from k of the eigenspaces of A−1 (Theorem 3).

Convergence of the PCG sampler is assured by viewing PCG as CG applied to the random 

vector θk
= C

T
θ

k. Theorem 3 shows that the PCG sampler successfully samples from k∗ of 

the eigenspaces of CTA−1C corresponding to the k∗ well separated eigenvalues of C−1AC−T. 

Hence θk
= C

−T
θ

k
˙ N 0, A

−1 , the output of the PCG sampler, represents a sample from the 

corresponding k∗ eigenspaces of A−1. Preconditioners specific for CG and Lanczos 

sampling have been investigated by Schneider and Willsky (2003); Fox (2008); Chow and 

Saad (2014).

4.2 PCG-Chebyshev accelerated sampling

We have seen that, in exact arithmetic, the PCG sampler is guaranteedto sample from N(A
−1b,A−1) in a finite number of steps (Theorem 3). But in finite precision, PCG fails to 

sample from the eigenspaces that do not correspond to the well separated eigenvalues of A 

(section 3.3). This is only a problem if the magnitude of the eigenvalues of A−1 associated 

with the excluded eigenspaces are large (Theorem 3). To capitalize on PCG’s strengths 

(convergence in a finite number of steps to the eigenspaces corresponding to the well 

separated eigenvalues), the sampler we propose first runs the PCG sampler. We “clean up” 

the resulting PCG sample by secondly running a Chebyshev sampler that does sample well 

in finite precision and has optimal geometric convergence rate. Interestingly, even for linear 

solvers, CG has been used to seed Chebyshev accelerated deterministic iterations when there 

are multiple right hand sides (Golub et al., 2007).

The resulting PCG-Chebyshev sampler is outlined in Algorithm 2.

Algorithm 2:

PCG-Chebyshev accelerated sampler of N(A−1b,A−1)

input : SPD precision matrix A, M = M
1
M

1
T

 where M1 is a matrix splitting of A, initial state θ0, b, and initial 

estimate of x0 of A−1b, PCG residual stopping criterion kPCG, maximum number of PCG iterations kPCG, number of 
Chebyshev iterations kCheby

output: θ ∼˙ N(A−1b,A−1) and x ≈ A−1b

PCG sampling

        input : θ0, x0, A, split preconditioner C = M1, ϵ = ϵPCG, kmax = kPCG

        output: θPCG ∼˙ N(0,A−1), xPCG ≈ A−1b and {γk,βk}

        Implement Algorithm 1, get approximate solution xk+1 and approximate sample θk+1;

end

Get the extreme eigenvalues of M−1A from {γk,βk} using the prescription in (Parker and Fox, 2012, Lemma 2.1);
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Chebyshev sampling

        input : Number of sampler iterations kCheby, θ0 = θPCG, x0 = θPCG, bCheby = 0

        output: θCheby ∼˙ N(0,A−1)

        Run Algorithm 3 of Fox and Parker (2014) for kCheby iterations. At the k
Cheby
th

 iteration, get approximate sample 

θ
Cheby
k + 1

;

end

θ = θCheby + xPCG and x = xPCG;

In addition to nailing down the k eigenspaces of A−1 corresponding to the k well separated 

eigenvalues of M
1
−1

AM
1
−T (by seeding θPCG into Chebyshev), Algorithm 2 makes clear that 

the PCG sampler also accomplishes two other crucial tasks:

1. The PCG sampler, with preconditioner equal to the splitting matrix M = M
1
M

1
T, 

provides an avenue to estimating the extreme eigenvalues of M−1A that are 

required by Chebyshev. Strictly speaking, a k × k tridiagonal matrix is built from 

the PCG parameters {γk,βk}. The extreme eigenvalues of this tridiagonal, found 

at a negligible k2 flops when k ≪ n, are the required extreme eigenvalues of 

M
1
−1

AM
1
−T - or equivalently, of M−1A.

2. PCG provides an estimate of the mean μ = A−1b ≠ 0 . The PCG sampler is used 

to perform the mean calculation because PCG is a faster linear solver than 

Chebyshev and will find μ after a finite number of iterations. Put another way, 

the Chebyshev sampler can sample from N(0,A−1) much faster (i.e., after only 

k
Cheby
* *  iterations with convergence rate ρ

Cheby
2 ) compared to sampling from N(μ ≠ 

0 ,A−1) that requires k
Cheby
* > k

Cheby
* *  iterations with convergence rate ρ > ρ2) - 

see section 3.2.1.

Acceptance of the PCG sample θPCG ∼˙ N(0,A−1) as an initialization into the Chebyshev 

sampler further reduces the geometric convergence rate by a constant factor, according to 

Theorem 2: Var(θk) = A−1 + Pk(Var(θPCG) − A−1)Pk
T. That is, Chebyshev converges faster 

the better that Var(θPCG) approximates A−1.

4.3 Implementation details

For each frame in the video, we procure samples (θ,σ2,λ) from (2) by performing 104 

iterations of the following: sample (1/σ2, λ)|(y,θ) using a product of Gammas; then sample 

θ|(y,σ2,λ) from the Gaussian (3) using the PCG-Chebyshev sampler (Algorithm 2) 

implemented in Matlab. M = M
1
M

1
T in the PCG-Chebyshev sampler is set so that M1 is the 

lower triangular matrix splitting defined after (5) (i.e., M implements forward and backward 

sweeps of a component-wise Gibbs sampler). When analyzing the first image in the video, 

the initialization for the sampler was θ0 = 1/2y + 1/2¯y1 where ¯y is a scalar value equal to 

the mean surface thickness in y and 1 is a 5122 vector of 1’s. For each subsequent image in 

the video, initialization for the sampler was θ0 = 1/2y + 1/2θˆpre where θˆpre is the Bayesian 

Parker et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimate for the previous image in the video. Our experience confirms the theory (Theorem 

2) that shows that while the convergence rate is the same for any initial condition, the 

number of iterations is adversely affected, for solvers and samplers, by a poor starting 

choice. For example, using white noise θ0 ∼ N(0,I) is terrible initialization, resulting in a 

dismal reconstruction of the biofilm’s surface even after substantial error reductions of 10−8 

or more because of the large initial errors ||E(θ0) − A−1b|| and ||Var(θ0) − A−1||. We also 

considered different starting choices for a few frames, e.g. θ0 = 1/2y + 1/2¯y1, with no 

discernable impact on the surface reconstructions.

Half of the 104 iterations were considered burn-in (Gelman et al., 1995) and hence for each 

image Markov chains of length 104/2 were used to estimate the posterior in (2). For each 

image, in each run of the 104 “outer-iterations” that generated a state (θ,σ2,λ) in the Markov 

chain, the Chebyshev component of the PCG-Chebyshev sampler ran for kCheby “inner 

iterations” to sample θ|(y,λ,σ2) from (3). We set the PCG residual stopping criterion of ǫ = 

10−4 and the maximum number of PCG iterations to kPCG = 103 which we have found works 

well for procuring acceptable eigenvalue estimates. These were the same criteria used for the 

standalone CG sampler implementation. The number of Chebyshev iterations was set 

according to k
Cheby

= min(max(10, k
Cheby
* * ), 100) where k

Cheby
* *  is the number of iterations 

calculated by (10) in order to attain an error reduction in variance of ε = 10−8. For early 

outer-iterations during burn-in, k
Cheby
* *  was sometimes larger than 100 because the 

convergence rate ρCheby (cf. (8)) was close to 1; in these instances kCheby was set to 100. But 

for later outer-iterations, especially after burn-in, kCheby was typically less than 10 

corresponding to cases when ρCheby < 0.1. Nonetheless, Chebyshev was always run a 

minimum number of kCheby = 10 iterations that assured a minimum reduction in the variance 

error of ε = 10−8.

The main computational costs of the iterative samplers are the matrix-vector multiplication 

by A and the forward solve to implement M−1 when generating the next sample θk+1 in (7). 

The cost of matrix multiplication is about 2n2 flops for a dense precision matric and is 

reduced to about (2nA−1)n flops for a sparse precision matrix A, such as we consider here, 

that has only nA = 5 non-zero elements per row. The cost of a forward or backward solve 

using a triangular M1 is n2 flops for dense matrices and (2nM −1)n flops for sparse M with 

nM = 3 non-zero elements per row (Watkins, 2002). The stand-alone PCG and Chebyshev 

samplers each multiply by A and operate by M
1
−1 and M

1
−T in each iteration. Hence the 

PCG-Chebyshev sampler costs at most (19kPCG + 19kCheby)n flops. A Cholesky 

factorization on the other hand costs about b2n flops, where b = n = 512 is the bandwidth of 

the precision matrix A that we consider, regardless of the sparseness of the matrix (Watkins, 

2002). Hence, the PCG sampler on this 2D problem will be less expensive than Cholesky as 

long as the total number of iterations is less than b2/19 = 1.4×104. We will see (in Figure 3) 

that the Cholesky factorization incurs 10 times more operations and more CPU time for the 

2D biofilm surface problem that we present. Iterative samplers are expected to outperform 

Cholesky even more when solving inverse problems using 3D Gaussian fields for which the 

posterior precision matrix has bandwidths b ≈ n or more (see, e.g., Fox and Parker (2017)).
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5. Results

Figure 3 compares results from the PCG-Chebyshev sampler (Algorithm 2) to a Cholesky 

sampler and a stand-alone CG sampler (Algorithm 1 with M = I). For a single image from 

the video, the posterior mean estimates of the biofilm surface for these 3 samplers are 

depicted in the first row of the figure. The estimated biofilm surface (θ) the associated 

uncertainty (assessed via the point-wise standard deviation over the 512 × 512 lattice across 

the samples), and variance parameter estimates (σ and λ) for the PCG-Chebyshev sampler 

are similar to results for the Cholesky sampler as predicted by the theory (section 3).

When CG is used by itself, Figure 3 shows that the estimated surface is over-smoothed, and 

the uncertainty associated with the estimated surface is vastly underrepresented. This is due 

to the known finite precision issues with the CG sampler (section 3.3). Over-smoothed 

samples have been noted previously when CG sampling with a Laplacian prior precision 

(Parker and Fox, 2012). This is not unlike results produced by others when purposely 

terminating CG early (Feron et al., 2016; Wikle et al., 2001). The over-smoothing in the CG 

samples compared to the actual samples can be quantified by the eigenspaces of the 

posterior precision matrix that the CG sampler successfully sampled from (Theorem 3). 

These eigenspaces represent the low frequency components of the image. Figure 3 (in the 

“fit” row) shows an example of the graphical technique that we use to assess model fit at a 

single slice through the 3D data, although in practice the assessment includes similar plots 

over multiple xz and yz slices. In this case acceptable fit of the reconstruction θ  to the 

imaging data is shown in the yz cross-sectional slice shown except perhaps between 150 ≤ y-

pixels≤ 175; here, it appears that the Cholesky and PCG-Chebyshev samplers overfit to the 

data (i.e., the estimated surface exhibits high frequency). To impose more smoothing when 

using the PCG-Chebyshev sampler, we could use a more informative prior over larger values 

of the smoothing parameter λ.

One advantage of a sampling approach to statistical inference is that, once samples of the 

biofilm surface are procured from the posterior (2), we can calculate whatever function of 

the surface samples we like, whether linear or non-linear, thereby constructing a 

representation of the posterior of the corresponding parameter. We calculated a volume for 

each sample given a biofilm surface y. This volume is a sample from the marginal posterior 

π(volume|y). Using this approach, we estimated the biofilm volume with 99% credible 

intervals from 40 frames (i.e., about 10 minutes) of the video (see Figure 4). These 40 

frames capture the response of the biofilm as the salt water is removed (before frame 5) and 

then applied again (after frame 31). Application of the salt water treatment is associated with 

a 26% reduction in volume. A 99% credible interval for this reduction was [25%, 27%]. 

Such reduction calculations are the norm when assessing the efficacy of antimicrobial 

treatments. Figure 2 shows the biofilm surface before (frame 31) and after (frame 35) the 

application of the treatment. As a comparison, the biased volumes calculated by counting 

bright pixels (i.e., in this analysis, pixels with intensity values larger than 49) is also 

presented.
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6. Discussion and Conclusion

For the first time, we apply a PCG-Chebyshev accelerated iterative sampler (Algorithm 2) to 

efficiently solve the Gaussian step in a Bayesian linear inverse problem. There are more 

efficient ways to sample the variances (σ2 and 1/λ) than the conditional sampler that we 

show here (Agapiou et al., 2014; Feron et al., 2016; Fox and Norton, 2016). Fixed on values 

of the variances, to our knowledge, the PCG-Chebyshev implementation is the fastest and 

most memory efficient sampler from a LARGE Gaussian with arbitrary variance structure.

This is also the first time that the drastic attenuation of the CM laser intensity into thick 

biofilms has been quantitatively addressed (Pitts and Stewart, 2008). The artifact of 

attenuation or “shadowing” is fairly typical in our experience when imaging biofilms with a 

CM. The thickness of the biofilm that can be viewed satisfactorily from top to bottom in the 

z-dimension without this artifact appears to depend upon the density and composition of the 

particular sample. Given this artifact, we do not consider fluorescence microscopy (confocal 

or otherwise) to be the technique of choice for measuring biofilm thickness or examining 

stratification of activity with depth. Instead, cryoembedding and cryosectioning (Figure 1B), 

or optical coherence tomography (OCT) (Figure 1C) can be used. Cryoembedding and 

sectioning involves freezing the biofilm in standard tissue embedding medium, cutting 5 μm 

thick cross-sections through the sample on a cryostat, and placing those sections flat on a 

microscope slide. Sections can then be viewed using widefield fluorescence microscopy or 

CM, which eliminate any top-down viewing artifact. OCT is a relatively new addition to 

biofilm imaging techniques, but the method has been used widely in ophthalmology and in 

industry for at least 20 years. OCT is an interferometric technique, where an infrared laser is 

incident upon a sample, and the reflected light is compared to a reference beam to provide 

an image of a sample in a manner similar to an ultrasound. OCT does not use fluorescence 

and has a penetration depth on the order of 1 mm in biofilms. In general, all three methods 

(in Figure 1) are used in concert to provide a robust, fully dimensional picture of a biofilm 

that includes information regarding thickness, topography, stratification of activity, structure 

and function. While confocal microscopy and OCT enable in-situ, fully hydrated imaging, 

only cryosectioning provides fluorescence data that is free of the top-down imaging artifact 

that we illustrate here.

Previous Bayesian analyses of CM images of thin layers of human cells considered less 

severe attenuation effects (Al-Awadhi et al., 2011). Our approach was inspired by a desire to 

accurately calculate biofilm volumes from CM images with an associated measure of 

uncertainty. Fitting a surface the way we do is simple and subsequent samples from the 

posterior can be generated quickly using the PCG-Chebyshev accelerated sampler. This 

approach presumes that the precision of the CM’s identification of the top edge of the 

biofilm is small compared to the variability of the surface across the entire biofilm. The 

disadvantage of this surface model is that the data have been manipulated from pixels in 3D 

to a surface in 2D. Hence this model cannot reconstruct holes or overhanging features in the 

biofilm (e.g., Figure 1B). We are developing a more computationally demanding non-linear 

approach that deals with these issues. Perhaps most importantly, the non-linear approach 

does not require thresholding, a very common step of CM data pre-processing by today’s 

microscopists. Future work also includes developing a more computationally demanding 
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framework that directly models the temporal relationship of the frames in the video (see, 

e.g., Higdon (2006))

These results demonstrate the dramatic osmotic response of a biofilm to a targeted treatment. 

This behavior is not widely appreciated among biofilm researchers and merits further 

exploration. Is the biofilm more vulnerable under osmotic stress? Could manipulation of the 

osmotic response be paired with an antimicrobial treatment to better kill or remove biofilms? 

Our analyses show that the salt water treatment is associated with a statistically significant 

26% reduction in volume. For manufacturers of antimicrobials, quantifiable reductions of 

microbial abundances are crucial to bring products to market, convince consumers to buy 

them, and positively affect human health. Our future work will focus on determining how 

the surface representations of biofilms presented in this paper, and the reductions of biofilm 

volumes in other scenarios, might be used to predict reductions of biofilm microbial 

abundances.

This work helps us to begin to answer the most frequently asked questions that we receive 

regarding CM experimental design. Because increased pixel resolution (set by the user) 

decreases temporal resolution (i.e., it takes the CM more time to capture more pixel data), 

microscopists want to know: How many xy pixels should be used in each planar z-slice? 

How many z-slices should be collected in the vertical dimension? How many different fields 

of view should be collected? These questions pertain to obtaining a precise assessment of the 

biofilm volume across the entire object being imaged. This work can begin to answer the 

first two questions regarding pixelation: If one wishes to use the CM solely as a half-a-

million dollar estimator of volumes, then our analyses suggest that the pixel resolution is 

much too fine because the error bars - i.e., the 99% credible intervals in Figure 4 - are 

extremely tight. The results presented here provide a first step towards the application of 

Bayesian experimental design techniques (e.g., see Solonen et al. (2012)) that will quantify 

how much less spatial resolution in CM images is allowed before the uncertainty in biofilm 

volumes, or some other imaging outcome, becomes too large. Based on our experience with 

other techniques that provide quantitative assessments of biofilms, we expect that the most 

important level of replication is to collect CM data from multiple independent environmental 

sites or experiments. In the latter setting, biofilms are grown independently with different 

inocula on different days in each experiment.

CG and Chebyshev samplers have been applied as stand-alone samplers for Bayesian 

problems before. Fox and Parker (2017) applied a Chebyshev sampler to refine the 

pixelation of CM images by Bayesian interpolation. Gilavert and Moussaoui (2015) apply 

CG for linear Bayesian image reconstruction. They clean up CG’s possible poor 

performance in finite precision by instituting a Metropolis Hastings step. Bardsley et al. 

(2012) applied the CG sampler within the ensemble Kalman filter and showed improved 

performance compared to other ensemble filter implementations. Feron et al. (2016) 

consider a linear Bayesian model with the same variance structure as we do, but, for every 

draw of the variance parameters, they implement a CG sampler with only a small number of 

jittered CG search directions to attain a Markov chain that is provably convergent in exact 

arithmetic. Unfortunately, that paper contains no specification of a convergence rate and its 

performance in finite precision is unknown.
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Two other promising methods directly adapt any solver to the task of iterative sampling. 

Conditioned on values for the variances (i.e., Σy and 
1

λ
W

−1 in (1)), the method of 

randomized maximum likelihood (RML) solves a linear Bayesian inverse problem with a 

Gaussian likelihood (Chen and Oliver, 2012). Randomize-then-optimize (RTO) is the 

extension of RML to non-linear problems (Bardsley et al., 2014) with a Gaussian likelihood. 

At each iteration, these algorithms jitter the data using Gaussian noise with variance Σy then 

perform a non-linear least squares optimization step that generates a sample from the 

posterior. The randomization step can easily be effected for the common case where the 

variance of the likelihood is Σy = σ2I (as for the example in this paper); but for general Σy in 

large problems, the randomization step would require that either Σy be factored or that a 

method such as introduced here be applied. Another potentially limiting issue for large 

problems is that RML and RTO require a factorization of the prior precision λW.

We suggest that PCG-Chebyshev is the current state-of-the-art iterative sampler from a 

LARGE Gaussian with an unstructured precision matrix that does not require any (precision 

or covariance) matrix factorization and has minimal memory requirements (only vectors 

from 2 previous iterations need to be saved). Our methodological contribution in this work is 

to present a two-phase PCG-Chebyshev iterative sampler that harnesses CG’s ability to 

converge in a finite number of steps when the spectrum of A is favorable (i.e., the small 

eigenvalues are well separated). For covariance matrices with less favorable spectra where 

CG may fail to converge satisfactorily, the Chebyshev sampler has an optimal geometric 

convergence rate and reliably samples in finite precision. Because Krylov methods like CG 

are the current state-of-the-art for linear solvers, we expect work to continue to obtain a truly 

iterative (i.e., only requires a few iteration’s worth of information) Krylov sampler that 

converges to the full Gaussian target in a finite number of steps in theory (exact arithmetic) 

and in practice (finite precision).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Cross-sectional views (i.e., pixels in the xz dimensions) of fluorescent S. aureus biofilms 

using 3 different imaging techniques. The attachment surface is along the bottom (z = 0) in 

each panel and the bulk fluid interface is at the top. Illumination in all 3 panels is from above 

(the bulk fluid side). A: A CM image of a biofilm that shows the typical attenuation of 

fluorescence intensity with increasing depth into the biofilm. B: A cryosection of a biofilm 

grown in an independent experiment under the same conditions as in (A) showing that these 

biofilms are typically solid, with microcolonies that are at least 100μm thick. Imaging of this 

cryosection was done on an upright epifluorescent microscope. C: An image of another 

biofilm from the same experiment as (B), collected using Optical Coherence Tomography 

(OCT). OCT uses interferometry rather than fluorescence to form an image. The biofilm is 

shown to be solid with this method.
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Figure 2: 
Biofilm surfaces for two images (frames 31 and 35) captured just over a minute apart by the 

CM. The coloring scheme provides better visualization of surface, with red indicating higher 

features and blue indicating lower features on the surface of the biofilm. Axes are in pixels, 

where each xy pixel corresponds to 1.2μm, and each vertical pixel corresponds to 7μm. 

Under each image is a 99% credible interval for the corresponding biofilm’s volume. The 

drop in the biofilm’s thickness, and the corresponding drop in volume, at frame 35 is due to 

application of the salt water treatment after frame 31.
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Figure 3: 
Comparison of 3 different samplers on the first frame of the video that we analyze. θ  row: 

Posterior mean estimates of the true biofilm surface. In each pane in the row, the x-axis is 

the left horizontal axis, the y-axis is the right horizontal axis. Axes are in pixels, where the 

distance between xy-pixels is 1.2μm, and the distance between vertical pixels is 7μm. UQ 

row: Uncertainty quantification of the estimate θ  with a standard deviation calculated at each 

xy location across the samples. fit row: An yz cross-sectional view of the intensities in the 

raw CM data at x = 280. The black curve shows the fit of the posterior mean estimate to the 

CM intensities. σ row: Posterior median estimate of the standard deviation of the biofilm 

surface measurement process. λ  row: Posterior median estimate of the prior precision that 

controls smoothing. 
flops

k
outer

 row: maximum number of floating point operations to generate a 

single Gaussian sample via (3) when processing the image. 
time

frame
 row: actual time to process 

this image over 104 outer iterations using a Matlab implementation of the samplers on THE 

BEAST, a Xeon X5690 with a 3.47GHz processor and 110GB.
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Figure 4: 
Posterior mean estimates of the volume for 40 frames (about 10 minutes) of the video are 

indicated by the solid line. These 40 frames capture the response of the biofilm as the salt 

water treatment is removed and then re-applied. Error bars indicate 99% credible intervals. 

Volume is underestimated by an estimator that only counts bright pixels as indicated by the 

dash-dotted line. The salt water treatment was applied sometime between frames 31 and 32 

that is associated with a large drop in volume between frames 31 and 33.
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