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Polynomial Algorithms for Item Matching

Ronald D. Armstrong and Douglas H. Jones

Rutgers, The State University of New Jersey

To estimate test reliability and to create parallel
tests, test items frequently are matched. Items can
be matched by splitting tests into parallel test halves,
by creating T splits, or by matching a desired test
form. Problems often occur. Algorithms are
presented to solve these problems. The algorithms
are based on optimization theory in networks
(graphs) and have polynomial complexity. Compu-
tational results from solving sample problems with
several hundred decision variables are reported.
Index terms: branch-and-bound algorithm, classical
test theory, complexity, item matching, non-
deterministic polynomial complete, parallel tests, poly-
nomial algorithms, test construction.

Gulliksen (1950/1987) presented a matching
procedure to estimate split-half test reliability (see
Allen & Yen, 1979, pp. 78-83). In the broader
context of test construction, splitting a test into
two parallel parts can be thought of as the con-
struction of two tests. Van der Linden &
Boekkooi-Timminga (1988) proposed several -1
mathematical programming models for problems
that arise when creating multiple tests. Arm-
strong, Jones, & Wu (1992) also generated multi-
ple tests based on item matching, with distances
based on either classical item statistics or item
response theory parameters. They attempted to
generate parallel tests with respect to psychomet-
ric and content characteristics.

All of the resulting problems presented by Van
der Linden & Boekkooi-Timminga (1988) are Np-
hard. A problem is NP-hard if there is a
nondeterministic polynomial complete (NP-
complete) problem that can be polynomially
reduced to it. This implies that, in the worst case,
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the stated problems are difficult to solve.
Moderate-size practical problems may take ex-
cessive computer time. Van der Linden and
Boekkooi-Timminga did not provide computa-
tional results, but in two related articles that
apply 0-1 programming models (Adema & Van
der Linden, 1989; Boekkooi-Timminga, 1990),
some computational information was given. For
example, to generate a 20-item test from a 500-
item databank on a DEC 2060 using the computer
program LANDO (Land & Powell, 1973)—which
uses a branch-and-bound algorithm procedure—
Adema & Van der Linden noted that ‘‘it takes
too much time to find a 0-1 solution’ (p. 284).
Boekkooi-Timminga also used LANDO to gener-
ate 10-item tests from a 100-item databank. Be-
tween 32.7 and 94.7 CPU seconds were required
to obtain a 0-1 solution that was not guaranteed
to be optimal.

Polynomial algorithms solve problems with
solution times that can be expressed as a
polynomial in the problem parameters. The nota-
tion O(») is commonly used to denote the order
of the polynomial describing the complexity (see
Garey & Johnson, 1979, for further information
on the concept of complexity). Polynomial
algorithms generally are considered ‘‘efficient”’
algorithms. Applying a polynomial algorithm
rather than an exponential algorithm often pro-
vides several orders of magnitude reduction in
computational time. For large problems, in the
worst case, polynomial algorithms will out-
perform exponential algorithms in terms of solu-
tion time. In some practical settings, however,
exponential algorithms can outperform poly-
nomial algorithms. For example, Bixby, Gregory,
Lustig, Marsten, & Shanno (1992) reported ex-
cellent results combining interior point and
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simplex methods to solve practical large-scale
linear programming problems. This paper
presents polynomial algorithms that are used to
solve selected problems in test theory and pro-
vides computational results that demonstrate the
benefits of these algorithms.

Pairwise Item Matching
Distance Measures

Let n be the number of items in an item bank
and d; be a non-negative measure of the distance
between every (i,j) pair of items. 8, as used by
Van der Linden & Boekkooi-Timminga (1988) is
an example of a distance measure based on clas-
sical item statistics. Other examples of distances,
which are derived from item response theory
statistics as well as classical item statistics, are
given in Armstrong et al. (1992). Two other dis-
tance measures based on the three-parameter
logistic function are described here.

Let 8, be the scalar of the trait level for the
kth examinee. a;, b,, and ¢, are the scalars of the
true discrimination, difficulty, and the guessing
parameters, respectively, for the ith item. Let
u, be the response of the kth examinee on the
ith item, which is either 0 or 1. Then
P. = P(u, = 1|6,), which is the item response
function of item i given 6, and is defined as

exp[Da,(8, -b,)]

‘Pi'_”Pi(e):ci+(1_i s
‘ : 1+ exp|Da,(8,-b,)]

ey

where D is a scaling factor that equals 1.7. The
item information function (1IF) is associated with
the item response function and is defined as

(0, /96)
F(l - Ry)

See Lord (1980) for further explanation.
The Euclidean distance defines the two dis-
tances between item i and item j:

dij = [wl(ai_aj)z + Wz(bi—bj)z -+ Ws(ci"cj)z]l/z , (3

1(6,) = @

where w; = 0, for j =1, 2, 3 and w, + w, +
= 1. The L, distance is defined as

dy = [§ln®) - @)reae]”, @

where 1(6) is the IIF of item 7 in the item bank
given 8, and [(8) is the 1IIF of item j given 8. The
() is the distribution of 8 in the population. The
integration is over the 6 range. Armstrong et al.,
(1992) used these distances to generate parallel
tests for the Armed Services Vocational Aptitude
Battery (ASVAB; Shore, 1989).

Matching Algorithm

To simplify the discussion, » is assumed to be
an even value (although » also could be an odd
value). The pairwise matching problem is to di-
vide all the items into n/2 groups of 2 in which
the sum of the distances between the items in the
paired groupings is a minimum. This problem
was discussed by Van der Linden & Boekkooi-
Timminga (1988). They described a 0-1 program-
ming model and proposed that the problem be
solved using branch-and-bound methods of
mathematical programming. An alternative
formulation provides a solution method that has
complexity O(n®), rather than the exponential
complexity of a branch-and-bound procedure.
Papadimitriou & Steiglitz (1982, pp. 255-266)
presented the fundamental concepts related to
efficient solution methods for the problem.

Define binary variables x; to indicate whether
or not item { is matched with item j (as Van der
Linden & Boekkooi-Timminga, 1988, did in their
0-1 programming approach to Gulliksen’s
matched item-pair method; see Allen & Yen,
1979, pp. 78-83):

3 {1 if i and j are paired
7 {0 otherwise.

&)

Graphical Model

The problem can be described in terms of a
graph. The nodes of the graph correspond to the
items, and an arc between two nodes indicates
a potential pairing of the associated items. The
distance on an arc can be defined as previously
discussed. Because the arcs of the graph are un-
directed, x; is equivalent to x;
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Let S, k = 1, 2, ..., K be the subsets of {1,
2, ..., n} that have an odd cardinality greater
than 1; that is, the subsets represent all odd com-
binations of three or more items. The cardinality
of S, is denoted by 2s, + 1. s, gives the largest
number of pairwise item matchings within the
subset. Graphically, S, can be depicted by
2s, -+ 1 nodes.

The mathematical programming problem in
which items are optimally paired can be stated
as follows:

Minimize

X s (6)
Tx, 4+ Xx,=Li=12...,n, Q)
JiF

<sok=12 ...,k ®)

X
G, €Sk

where x; = 0 or 1;

i=1,2,...,N-1; and

j=i+1 ..., n
The objective function in Expression 6 minimizes
the sum of the distances between the assigned
pairs. Equation 7 guarantees that each item is
assigned to exactly one pair. Inequality 8 assures
that no more than the allowable number of items
are assigned from each subset with odd cardi-
nality. The value limitations on the decision vari-
ables (presented after Inequality 8) give the binary
restrictions.

The reason for including the constraints in
Inequality 8 is not obvious; in fact, it may seem
harmful to include the constraints because there
are 2""!' ~ n constraints of this type. The con-
straints do have a definite purpose, however. They
cause the linear problem with x; restricted to be
in the continuous interval [0, 1] to be equivalent
to the problem with the binary restrictions; that
is, an algorithm exists that will always provide in-
teger solutions for Equations 6 through 8. That
is not the case with the formulation proposed by

I
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Van der Linden & Boekkooi-Timminga (1988). The
formulation of Gulliksen’s (1950/1987) pairwise
matching method presented here places it in a well-
studied class of problems known generally as non-
bipartite weighted matching problems (Papadimi-
triou & Steiglitz, 1982). An algorithm exists to
solve such problems in O(n®) complexity. The
proof of existence of the algorithm is nontrivial
(see Papadimitriou & Steiglitz, pp. 255-266) and
will not be discussed here. Solution methods are
provided by Derigs & Metz (1991).

Efficiency of the Algorithm Versus
Branch-and-Bound

A study was performed to compare the practi-
cal computational efficiency of a branch-and-
bound solution approach with an O(°) al-
gorithm. LINDO (Schrage, 1986) was used to im-
plement the branch-and-bound method, and an
implementation of a special purpose matching al-
gorithm was obtained from Derigs (1988). The
item bank consisted of 510 binary-scored arith-
metic reasoning items from the ASVAB (Shore,
1989). Items to be matched were selected randomly
from the item bank for n = 10, 20, ..., 100. Dis-
tances were computed as the unweighted Euclid-
ean distance between the classical difficulty and
point-biserial item parameters. 10 problems were
solved for each value of n using a VAX 8550 with
VMS 5.3.

The results are summarized in Table 1. A
60-minute time bound was placed on LINDO, and
the optimal solution was not obtained {or verified)
by LINDO in some cases. In situations in which
LINDO used the 60-minute time limit, a time of
60 minutes was used in computing the reported
mean. The problems with n > 60 were not sclved
with LINDO because of computer budget restric-
tions. Derigs’ algorithm significantly outper-
formed LINDO except for the smaller values of n.
The variance of CPU time for LINDC was also
large because it uses a search technique that may
obtain the optimal solution early or may take un-
productive paths. The complete ASVAB databank
was matched in slightly over 2 minutes with
Derigs’ code.
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Table 1
Mean and Standard Deviation (SD) of CPU
Solution Times (In Seconds) for 10 Trials With
n Items for an O(n*) Polynomial Algorithm
and LINDO (Numbers in Parentheses Indicate
the Number of Trials in Which the Optimal
Solution Was Not Guaranteed With LINDO)

Polynomial LINDO Branch-and-Bound
n Mean SD Mean SD
10 73 .04 1.14 .04
20 .84 .04 2.81 2.01
30 1.01 .08 4.67 3.48
40 1.17 .05 228.87 492.82
50 1.39 .05 593.50 792.10
60 1.80 .07 1,774.00 (3) 1,452.00
70 2,18 .09 1,397.00 (3) 1,483.70
80 2.65 .10 3,600.00 (10) 0
90 .14 .19 a @
100 3.77 .25 a :

2Solutions were not attempted with LINDO.
Multiple Item Matching

The problem of matching multiple items is
generally more difficult than the pairwise match-
ing problem. Papadimitriou & Steiglitz (1982)
showed that the general multiple matching prob-
lem is NP-hard. A variation of the problem is,
however, solvable with an algorithm of polynomial
complexity.

Semiassignment Model

Consider a multiple item matching problem en-
countered by a testing organization when one of
the following situations arises: (1} a reference test
exists with » items or (2) a representative subset
of n items is selected from an item bank to
represent a ‘“‘typical’’ test. Each of these situations
provides a target with »n points to match when
creating new tests,

The solution proceeds as follows. From the
bank of N items, create 7 tests to match the tar-
get by assigning T items to each target point. No
item in the pool can be used more than once; thus,
N must be = nI. Let d; be the distance of item
i in the pool from the jth target point, The proce-
dure for calculating the distance depends on the
problem. If the problem is a special problem type,
called the ‘‘semiassignment,’ the distance is

calculated by minimizing

N n
% X dyx, ©)
subject to
%xijzl;i=l,2,...,N, (10)
N
Z.}x,-j=7}j=1,2,...,n, an
and
N
gx,-o =N-nT, (12)
where x; = 0 or ; .

i=1,2, , N; and

Jj=012,

x,; = 1 if item { is assigned to target point j, and
X, = 1 if item { is not assigned to any target
point.

Expression 9 minimizes the total distance of all
items from the assigned target point. Equation 10
guarantees that each item is assigned at most once
to a target point. The variable x,, takes on a value
of 1 when item i is not matched to any target
point. Equation 11 forces every target point to have
T items assigned to it. Equation 12 balances the
system by accounting for all items not assigned
to a target point (Equation 12 is redundant and
could be omitted).

All algorithms designed to solve Equations 9
through 12 obtain integer solutions through the
solution of the continuous problem. An algorithm
of complexity O[N(nT)*] was given by Kenning-
ton & Wang (1992}. They also provided powerful
preprocessing procedures that do not change the
complexity of the overall solution method but do
greatly reduce the solution time for most practi-
cal problems.

A special case of the semiassignment problem
arises when N = nand 7 = 1. In this case, every
item in the pool is used exactly once and the prob-
lem is the classical assignment problem, also called
the bipartite weighted matching problem. Several
algorithms for the assignment problem (Bazaraa,
Jarvis, & Sherali, 1990, chap. 10) have complex-
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ity O@®?).

Theunissen (1986, p. 388) developed a semi-
assignment model to create T tests that achieves
maximal test information at T 6 levels. In this
model, the binary variables indicate whether an
item is assigned to the test for a specified 6 level.
Each test must have a specified number of items,
and no item can be used more than once.

Multiple Splits

Once the items to be used on the 7 tests have
been optimally selected by solving Equations 9
through 12, the items themselves must still be as-
signed to the individual tests in a structured man-
ner. Van der Linden & Boekkooi-Timminga (1988)
proposed minimizing the maximum variance of
each test, which, in the split-half case, makes the
variances of each test half as close to each other
as possible. Some type of balancing procedure for
the 7 subtests does appear to be the only practi-
cal approach to the problem. A model slightly
different than the one proposed by Van der
Linden and Boekkooi-Timminga is proposed here.

Define {, wherej = 1, 2, ..., n, as the index
set of the T items assigned to target point j. Let
¢; be an item statistic for each item. Typically, the
gs are specified so that their sum for each test
measures either the variance of the test score (as
in the case of Van der Linden & Boekkooi-
Timminga, 1988) or the distance the test is from
a target. A binary decision variable x, is defined
to be 1 if item i is assigned to test ¢, and is 0 other-
wise. The objective is to minimize the range of the
total gs per test over the 7 tests. That is, minimize
Y subject to

%qci,—l,t_l, L Tji=1,...,n (13)

T

;Z;x,-,=1;ielj;j=1,...,n, (14)

Z-YS.f;_E,q,-x,»,sZ+Kt=l, s 4 (15)

J=1 i€l
=Q0orliel;j=1,...,n

r=1...,T, (16)

and
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z0and Y= 0. a7

The final value of Y will be 1/2 the range of the
total g, per test, and Z will be the midpoint of
the range. Alternatively, the sum of the total ¢;s
per test could be selected by providing a specific
value for Z, rather than defining Z as a variable.
Equation 13 requires that each test be assigned
one item from /,, and Equation 14 requires that
each item be assigned to a test. Expression 15
places an interval-about the total g, per test; be-
cause the objective is to minimize 'Y, the value of
Z will be the center of the range and Y will be
the deviation of Z from the smallest and largest
total g, per test.

Computational Experience

The problem of balancing the assignment of
items to individual tests is a more difficult theo-
retical problem than the optimal assignment of
items to the target points. Van der Linden &
Boekkooi-Timminga (1988) suggested a branch-
and-bound procedure to solve this problem. A
simple polynomial heuristic can be devised, how-
ever. Sort the items within set /, based on the
value of g;. Next, sequentially assign items to the
T tests by allocating the item with the largest ¢,
to the subtest with the smallest current value for
the partial total ¢, per test, and allocate the item
with the next largest ¢, to the subtest with the
next smallest partial total ¢, per test. Continue
allocating in this way until the smallest g, with
i € [, is allocated to the test with the largest par-
tial total g, per test. This procedure has
nT x logT complexity, and the difference be-
tween the solution obtained with this heuristic
and the optimal solution will be no more than
the largest ¢, value. The heuristic can be im-
proved, with small computational effort, by an
interchange procedure after the initial allocation.
An explicit statement of the heuristic is given in
Armstrong et al., (1992, appendix). This heuristic,
even with constraints that force a representation
of a specified number of items from taxonomic
groups, comes within less than 1% of the opti-
mal allocation. Computational results with the
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multiple item matching and test balancing
heuristic (Armstrong et al., 1992) indicated that
six tests of 30 items each could be generated from
the ASVAB in under 2 minutes using an Intel 80286
CPU and no math coprocessor.

The most apparent technigue available to
optimally solve Equations 13 through 17 is to use
Lagrangian relaxation (Nemhauser & Wolsey,
1988). Expression 15 would be brought to the
objective function with Lagrange multipliers,
leaving an assignment problem solvable in
O[(nT)*] complexity. Branch-and-bound still
would be required, in general, to verify the
optimal solution.

Discussion

There is considerabie literature on the topic of
test construction using mathematical program-
ming techniques. Most of the models address
problems belonging to the class of NP-hard prob-
lems; thus, there are no polynomial algorithms
to solve them. This paper presented polynomial
algorithms to solve important problems in test
construction. The problems formulated in this
paper can be solved on a personal computer even
with several hundred test items. Additional con-
straints on the problems presented here may cause
the problems to be Np-hard. The NP-hard prob-
lems must be solved with branch-and-bound
methods, as suggested by Van der Linden and
Boekkooi-Timminga (1988), or some other
enumerative technique.
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