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Abstract: ,
We define polynomial time computable operator. Our definition generalizes Cook's
definition to arbitrary function inputs. Polynomial classes are defined in terms of
these operators; the properties of these classes are investigated. Honest polynomial
classes are generated by runnina time. They posses a modified Ritchie-Cobham property.
A polynomial class is a complexity class iff it is honest. .
Starting from the observation that many results about subrecursive classes hold for
all reducibility relations (e.g. primitive recursive in, elementary recursive in),
which were studied so far, we define abstract subrecursive reducibility relation. Many
results hold for all abstract subrecursive reducibilities.

I. Introduction:

Subrecursive reducibility relations allow us to classify all computable functions
into subrecursive classes. Several such relations (e.g. elementary recursive in,
primitive recursive in, doubly recursive in, ...) are mentioned in the literature
{1,10,11,12,15,16]. All these relations are rather coarse; in particular all functions,
the complexity of which is not greater than Ax [2X], belong to the same class. In the
case of decision problems (sets) the situation is different. Cook [5] defined the re-
lation 'polynomial computable in' for decision problems; it is a proper refinement of
the relation ‘'elementary recursive in' and splits the class of sets, the complexity
of which is subexponential, into different classes. It is desirable to generalize
the notion ‘polynomial computable in', such that it is defined between arbitrary
computable functions. Constable {3] started research in this direction; we continue
his work.

In section II we define polynomial time computable operator. We give two equivalent
definitions for this class of operators: one is in terms of resource bounded oracle
Turing machines, the other one is a syntactic definition. The polynomial class generated
by a function f is the class of functions, which are obtained by application of the
polynomial operators to f; it is always a subset of the class of functions, which are
elementary recursive in f.

In section III we study the properties of polynomial classes. For example, we show
that every countable partial ordering can he embedded into the polynomial classes € '
such that.f < € <GB (we assume o/ € R).

In section IV we study the relation between polynomial classes and computational
complexity. Polynomial classes classify computable functions according to their com-
plexity; i.e. if f is polynomial computable in g (f <pgg g), then for every running time
Ty of g there is a running time T, of £ such that Tg <, T . Honest polynomial classes
are polynorial classes, which are generated by runninqptfmc? Every generator of a honest
class is honest; honest classes satisfy a modified Richie-Cobharm property. A polynomial
class is honest iff it is a complexity class. Finally we consider density probertieq
of honest pclynomial classes.

Machtey [12] notes that several properties of the primitive recursive reducibility
hold true for several other reducibilities including elementary, doubly recursive, and
multiply recursive reducibilities. Ladner [10] shows that the range of these results
is even wider. The results are true of a wide variety of Turing machine space or time
definable reducibilities (if we restrict our attention to decision problems). We remove
the restriction to reducibilities, which are definable in terms of resource bounded
oracle Turing machines. We define abstract subrecursive reducibility: the definition
is in the spirit of Strong's definition {[20] of BRFTs. An abstract subrecursive re-
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ducibility is defined by a set of general recursive operators which contains the opera-
tor APPLY and the constant operators, which is closed under composition, definition by
cases and forming finite variants, and which possesses a rudimentary simulation feature.

II. Polynomial Operators

In this section we define polynomial time computable operator; we denote the class

of polynomial time computable operators by é?ol( ). GPor(f) is the polynomial class
generated by f; it is the result of applying the operators in ot{ ) to £. Cook (5]
gave a definition for SPoi(f) in the case that f is a characteristic function. A very
simple definition suffices in this case: g € GPolr(f) if g can be computed by an oracle
Turing machine, the running time of which is pbounded by a polynomial, using an oracle for f.
Constable [3] gave a definition for GPof( ) in the general case. His definition is also
in terms of resource bounded oracle machines. Since the bounds are considerably more
complex than in the simple case of set inputs, a complexity-theoretic definition does
not provide us with an efficient and transparent definition of JPof( ). Because of this
Constable also proposed a syntactic definition of SPor( ), which he called KUY, By
syntactic definition we mean a characterization as closure class: simple operations on
operators together with a small set of simple basic operators generate the entire class.
Unfortunately GPor(£) = K(f) holds only for nondecreasing functions f. Our definition
is a variant of Constable's definition; it agrees with his definition in the case of
nondecreasing functions and it agrees with Cook's definition in the case of character-
istic functions. For our definition we are able to prove the equality between FPol( )
and the syntacticly defined class of operators.

GPos is the class of functions which can be computed in polynomial time on a Turing
machine. Several investigators [2,21] gave a syntactic definition for@oi. Weihrauch

defined the class d?g = [sl'SZ""'Sr’A27 Os, Rf]; it is the smallest class of functions;
which contains the generalized successor functions Si(x) = xa; (for all x & L*,

I = {al,...,ar}, r > 2), the length bounded exponentiation function Az(x,y) = allxl.lyl
(]x| is the length of the string x) and is closed under the operations of substitution. [4]
and limited recursion on notation. f is defined from g, hl""’hr and b by limited re-
cursion on notation if for some n > 0

g: )"+ 1

. .. KR

hy: (2672 4 g 1<ic<x)

: (X*)n+l + I

: (Z*)n+l .

> -+ -+
(x,ya;) = h; (x,y,£(x,y)) )
-+ >

(x,y)| < Ibp(x,¥)]

> n
for all x € (Z*)" and y & L* .

b
f

ES >
£ (x,e) = g (x)
£
£

Fact: [2,21) GPol =(§§

The following simple observation leads in a natural way to our definition.

Observation: Let g c¢§§ ' g:(Z*)n + £. Then there is a polynomial p: iN + (N such
———————m— - .
that for all x € (£*)"

|g(;)] <p (max{lxil; 1 <i<n})

Conversely let p be any polynomial. Then there is a function g t¢§§, g: I* » L* ,
such that for all x & L*

p(lx]) < lg(x)]

Using this observation we can give an alternate definition of Pot

Covmgy
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Pos = {f; there is a TM M computing f such that the running time of M
is bounded by some h € ]d?g]}*

The following equation summarizes the discussion up to this point.

é?g = {f; f can be computed within time bound
h for some h & ld?§|}

In the following we extend this equality to the operator level. As machine model we -
use oracle Turing machines {11,19].

Def 2,1: (§§<f) = [5;,5,,.4+,5S_,A,,f; Os, Rf]_is the smallest class of functions,

which contains the base functions Sl,Sz,...-:Sr,A2 and f and is closed under the operations
of suhstitution and limited recursion on notation. If we consider f as an uninterpreted
function symbol, then d?z(f) is a class of operators. We denote it by ¢§§( ).

Def 2.2: 3”02( ) = {¢[ ]; there is an oracle machine M, which computes the
operator ¢ ], and a bounding expression G € |d?§$ )|, such that for all
£ and x : the running time of M on f and X is bounded by G[f) (X)}

Example: APPLY[ ) (APPLY[f)(x) = f£(x)) is a polynomial time computable operator.

-We describe an oracle machine M,.which computes APPLY[ ]. M copies the input from

the input tapes on its oracle input tapes (|x;| + [x,| + ... + Ixnl steps), calls
the oracle (1 step) and finally copies the result of the oracle call from the oracle
output tape on its output tape (|f(x)| steps). Let G be the following operator in (Sg( )

> - "
GIf) (x) = a) X3 Xy ee. X £(x)

|Gl 3] is a bounding expression for M.
Theorem 2.1: Pol( ) = éag( )
Proof: - .

a) é? ( ) € 5?02( ) : For every H € é? ( ) we construct an oracle machlne M and a
boundlng expression G & é? ( ) such that for all £ and x € (Z*)"

MI£] (X) = H[£] (%)
T [£] (%) < |GE£) (%)

(TM[f](;) is the running time of M on f and ¥). We proceed by induction on the
structure of H. The base step and part of the induction step (the operations of sub-
stitution) are trivial and left to the reader. It remains to consider limited recursion
on notation.

Let H H_ and B be in d?g( } and let H be defined from them by limited recur-

0' l,..., r

~sion on notation.

HIE] (X,€) = Hy[£) (%)
H[f](x,ya ) = H (£l (x,y, H[f](x,y))
B389 (x,y)l IB[f] (x,¥) |
Let oracle machine Mi compute Hi and let Gi be a bounding expression for Mi‘ We

describe M.

*Let ¢/ be a set of functions which map (£*)" into I. Then 7| is a set of functions
which map (£*}™ intoN. h € |Z| if there is a g € ¢ such that hix) = lg(?)l,



Step 1:

Step 2:

Step 3:

Step 4:

Copy X on the input tapes of the Mi's (1 < i < r) and reset the heads
(2(|xy [+..o+]x |) steps).

Compute Ho[f](x) using M0 (TM [f](i) steps) and reset the head on the
0

output tape (|H0[f](x)| steps). Let the current output tape be the output
tape of Mo.
Copy the next symbol of y (say aj) on the appropriate square of the n+1St
input tape of M; (1 < i < r) and reset the heads of all input tapes
(2]y|+]xl]+...!xn] steps). » ‘

If there is no next symbol then copy the content of the current output
tape on the output tape (]H[f](x,y)| steps) and halt.

Compute H.[f]l(x,y,...y, HBI{f]({x,y,...Y,)) using M.; M. uses the current
J 1 k nd 1 k - b N
output tape as its n + 2 input tape (TM [f](x,yl...yk, H[f](x,yl...yk))

steps). Let the current output tape be Mj's output tlape. Goto step 3.

The running time of M is bounded by

T, [£] (X,¥) < 2(]xy [+ otlx 1)+ m

Molf1(§) + |H (£] () |

ly|-1

+ Z (2|ly| + lxll +o. .t !?_{nl + Ty Lf] (x,yl...yk,Hlfl_G,yl...yk)))
X=0 Ix '

[N .

+ |BIEIG.) [ L -

)

5'|A2(x1...xn,alaly)A2(y,Y) A, (y,y) éolf](§) Ho[f](§) HIE) (X,y)

B4

=

ch [£] (X,yp-0-¥p, BIEL(R,yq.00y )]
k

a3

k=

(=]

In order to show that the last expression is in é?g( } it is sufficient to show that

d?g( ) is closed under length bounded concatenation.

Lemma 2.

Proof:

1: I1f 6l 1(x,y) € c?g( } then
lyl .
TN Gl 1GLy,-.ey) € 500,
k=

The product is defined by limited recursion on notation. In order to get a

bound on the length of the product we determine first the longest operand of the product.

L{f) (X,e) = €
LIf] (X,ya;)

if |GIE) (X,va) | < |GLEN (X,LI£) (X, ¥)) |
then‘yai ) ’
else L[f](§,y)

ILig) (x,v)] < |yl

1A
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and

lel
"ﬁ' GI£] (?c,yl...yk) = G[f] (i,;)

lya,| -yl
oz -
, Th 18 Goygeeeyy) = Y SIEI Gy .y GLEI Ghoyay)
k=0 ,
. (
N
”IYI

53 th](§.v;...yk) | 2 1a,(a,y,6LE) (X, LL£) (k,y))) |
k.—

~ “r .

[}

b) 90:2.( ) € (32( ): For every operator opl ] ¢ Posr (computed by oracle machine M
and bounding expression G[ ] € | 4?2( Y]) we have to construct an operator H{ ] &d?g( ).,
such that Op[f](X) = H[f](X) for all functions £ and inputs ¥ € (™. H is constructed
by arithmetization and simulation of oracle machines {[18]. From M we define functions
lnit'(§), Decode (y) and an operator Yield{ 1. Init (x) is the Godel number of the in-
itial instantaneous description of M. Yield(£f] (y) is the Godel number of the instantan-
eous description, which is the result of applying M (with oracle f) to the instantaneous
description, whose Godel number.is y. Decode (y) is the content of the output tape of the
instantaneous description y. Init, Cecode are in'(gg , Yield{ ] is in(?é( ). Now we
define a functional U[ ] by limited recursion on notation.

Ul£] (X,e) = Init (x)
UL£) (x,ya;) = Yield[£](Ulf] (X,y)
IU[f](x,Y)I <?

In order to exhibit a bound for the length of U[f](i,y), we have to derive a relation
between the length of the non-blank portions of the tapes and the length of the computa-
tion. Such a relation is easily established for all tapes except the oracle output tape.
In order to establish the relation for the oracle output tape, one only has to note, that
though the oracle machine is charged only a nominal amount for calling the oracle (1 step)
it is charged in a reasonable way for reading the output of the oracle call. (Compare

the example preceeding the proof). A complete proof can be found in the full paper.

Def 2.3: Gfosr(f) is the. polynomial class generated by f. A function g is polynomial
computable-in f (write g ipol £f) if £ & é@bl(g).

. Theorem 2.2: (Basic properties of <po£)

a) Our definition of é?bﬁ(f) agrees with Cook's definition [5] in the case of
characteristic functions.

b) Our definition of 3?o£(f) agrees with Constable's definition [3], in the case
of non-decrea51ng functions.



c) .5po£ is transitive and reflexive

d) Por( ) is recursively enumerable

e) Spol(f).g & (£f) (= the set of functions elementary recursive in £ [12,16])
for all £f. If |f(x)| > zl’<I for all x, thendPol(f) = &(£).

Remark l: Polynomial classes are always subclasses of the elementary classes
(Thm 2.2.e), but not always proper subclasses. This fact might be surprising, however,
it is not counterintuitive. Intuitively speaking polynomial operations are lengthe
. Ix]| '
bounded (length~bounded search, length-bounded summation ziu length-bounded product
| x| i=0 x
iﬁ;,...), elementary operations are value-bounded (value-bounded summation EZ , value-
i=0 x i=0
bounded product ?ﬁy,...). In the presence of exponentiation the difference disappears.
i=0

Remark 2: By 2.2.d%Por () is recursively enumerable. For the following we assume a
fixed enumeration {Opi[ ]}:=0 .

IJI. On the structure of polynomial classes

In this section we consider the relation :pol in greater detail. First we consider
the density properties of the relation. We state only the most simple density result
and give an informal proof for it. By doing so we hope to build up enough intuitjon
for the abstract treatment of density in section V.

Theorem (3.1): (see also [10]) Let g be a computable function such that 0 <po£ g.

There is a computable function h such that 0 <p02 h <

poz~g‘

Proof: We have to construct a function h such that

(1) h ﬁpoz g

(2) g ipoz h , i.e. g # Opi[h] for all i

(3) h 0 , i.e., h # Opi[O] for all i

ipoz

h is constructed in pieces as indicated in the figure.
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During the construction of h we can be in either one of two modes (2) or (3) and we try
to cancel some index i. Assume we are in mode (2) and we want to cancel index i; i can
be cancelled if we have ensured that g # Opi[h]. At any point of the construction only
a finite initial segment of h is defined. If we would extend h to be the constant zero
almost everywhere then certainly g # Opi[h]; hence g({x) # Opi[h](x) for some x. This
shows that if we define h(x) = 0 for sufficiently many arguments then g # Opi[h]. We
must also be able to detect that g # Opi[h]. Since g # Opi[h] implies g(x) # Opi[h](x)
for some x we will be able to detect this fact in |y| steps for sufficiently long y.
At this argument we will cancel i and change the mode to (3).

We describe now a program for h., Let {xi}z=l be an enumeration of L*,

To compute h(x):
(A): let n = |x|;
execute n steps of the following program
"compute g(xl), g(xz),... and build up a table G of the values";
execute n steps of the following program
"compute h(xl),h(xz),... and build up a table H of the values"
let G0 and H0 be the tables after n steps. '
Using the tables G0 and Ho execute n steps of the following program
mode + (2), index <« 1;
Loop: i+« 1

while G(xi) = Op.

1ndex[H](xi) 22 l_* i+ 1

mode « (3);
i<«1;

ey

while H(xi) = Op,

1ndexfo](xi) do i« i+ 1

mode + (2);
goto Loop"
let modeo be the value of mode after n steps.'

(B) if mode0 = (2) then output + 0
i else output « g(x)

The execution time of this operator is bounded by c, + c2]x| for some constants c;,c¢,:
hence h Epol g. To show 0 <po£ h <po£ g it is sufficient to show that mode and index
do not reach stable values. Assume otherwise, say mode reaches the stable value (2).

Then h(x) = 0 for almost all x; from g = Op, [h] and h is a function of finite

index
support we infer g ipol 0. But 0 <po£ g by hypothesis. If the stable value of mode is
(3) then h(x) = g(x) for almost all x. h = Opindex[O] implies g ipol 0.

The use of recursion in part A of the program for h can be justified by an application
of the recursion theorem. This is done in section VI,

The next theorem can be proﬁed using essentially the same technique.

Thm 3.2: Let f£,g be such that £ <pol g. Every countable partial ordering can be

embedded into the set {h; f <pol h <po£ gl

Corollary 3.3: Every countable partial ordering can be embedded into the set of func-

tions of subexponential complexity.

The proofs in [10] can be adapted to prove:

Thm 3.4: There are functions f,g with 0 <po£ £f and 0 <po£ g such that h ipoz f and
¢ 9 imply h < 0.

ipo pol



Thm 3.5: The polynomial classes do not form a lattice under set inclusion.

IV. Honest Polynomial Classes:

In this section we study the relation between the reducibility 'polynomial computable
in' and computational complexity. First we show that the reducibility orders functions
according to their complexity. Then we define honest polynomial class, i.e. a class
which is generated by a running time, and study their relation to complexity classes.
Honest classes possess a modified Ritchie-Cobham property; a polynomial class is honest
iff it is a complexity class. In {12) similar results are shown for the elementary
honest classes.

Def 4,1: Let M be any Turing machine; say M has n input tapes. T: ()" - {al}

(= the set of finite or infinite strings of al's) is the rumning time of M (is a time
bound for M) if for all x € (Z*)™ M halts in exactly (less than) |T(x)] steps on input

-
X.

For us a running time (time bound) maps strings to strings. Usually ([8]) a time bound
is a mapping from integers to integers, such that the length of no computation on an
input of a certain length exceeds the time bound applied to that length. The standard
definition is too coarse for our purposes; most of the following theorems are false for
the standard definition.

Lemma 4.1: Let M be any TM. Then there exists a TM P which computes the running time
T,, of M such that
M T =T
P M
Proof: P looks almost like M, except that M's output tape is a worktape for P. P
simulates M; at every step it prints a; on its output tape and advances the head by
one sqguare. .

Lemma 4.1 states that running times are very honest. They can be computed in a time
bound, which is equal to their size. The next lemma states an important simulation
property.

Lemma 4.2: For every Turing machine M there exists a polynomial time bounded TM SM

- .
which on input X, t simulates M on x for exactly |t| steps.
Proof: obvious.

Corollary 4.1: Let f be a computable function and let the TM M compute f. Then
fc 3PO£ITM).

Proof: By lemma 4.2 there is a simulatof SM € Pos for M. Also by lemma 4.2
M(x) = SM(x,TM(x)). Hence f cé?bl(TM).

The next theorem states that < ol orders the computable functions according to their
complexity. P

Thm 4.2: Let £ «@bL(g), let M compute g and let TM be the running time of M. . Then there
is a TM P computing f such that
Ty & Pos (Ty)
Proof: Let R be an oracle machine in@%o%( ) which maps g into f, let G € d?g( ) be
a bounding expression for R. P is the result of replacing the oracle calls in R by the
T M for g; symbolically
P =R+ M
The following inequality holds for the running times.
- ) ->
|Tp(x)] < ITR[gj(x)l-i*j}—H ITM(y)[ + overhead

gly) is
called during -
the computation R[g] (x)

< lGlg) (x)] + 22 ITM(y)I + overhead .
g(y) is called




From Corollary 4.1 we know that g € S?OZ(TM). Hence G[g)] &« é?bz(TM). The overhead
is bounded by a polynomial in the length of the input. It remains to show that

(*) Z |7, ()] < [ Por(Ty)|
g(;) is called

We proceed in two stages. First we construct an operator R' from R. R' simulates
R and whenever R calls the oracle R' prints an encoded version of the input of the
oracle call on its output tape (e.g. one can use the encoding: a; * aja;; aja, serves

as a delimiter). Apparently IT ,[g](x)[ <2 ]T [g](x)l Another oracle machine reads
this string, divides it into its components and applies the oracle for TM to them. Its

Tg?ning time is bounded by the length of the input. The combined operator establishes

If we view the operators in 3902( ) as possible ways of extracting information then
GPoL {f) is the information content of £ [13]. Using this intuitive concept Thm 4.2
reads as follows: If the information content of f is smaller than the information con-
tent of g then the complexity of £ is smaller than the complexity of g. The converse
is not true in general. This is due to the fact that information content is a "two-
dimensional" concept; it depends on the size of the function values and on their inter-
dependence.

Id
Def 4.2: a) GPoi{f) is a honest polynomial class if GPol(f) =é?b£(TM) where TM is
the running time of some TM M.
b) £ is honest if&Pof(f) is honest.

The next theorem shows that definition 4.2 agrees with the conventional definition
of honesty: a function is honest if its complexlty does not differ too much from the
function itself.

Thm 4.3: f is honest iff there is a TM M which computes f such that
Ty € Pos (£).

Proof: <= : Assume M computes f and TM € Por(f). By corollary 4.1 £ € gpol(TM),
hence éﬂbl(TM) = Pos(£).

=> : Let JPol(f) = 5Pol(TP) for some TM ﬁ. By lemma 4.1 there is a TM Q
computing Tp such that TQ = Tp.
that

By theorem 4.2 there is a TM M which computes f such

Ty € Por(1y) = Por(ry) = Potlf).

Def 4.3: Let t: I* - N, The complexity class determined by t is defined as:

C, = {f; there is a TM M computing f such that
ITM(x)] < t(x) a.e.}

Corolléry 4,4: g is honest iff Spol(g) = Y c|h]
h €%Por (g)
Proof:
=> : Assume g is honest. Hence there is a TM M, which computes g such that
Ty cgfor (g).

2: Assume f € C n| and h Eé?bk(g). By lemma 4.2 therefore f e Poslg).

C: Assume f & 3%02(9). By theorem 4.2 there is a TM P computing f such that

Tp € éﬁbi(TM) = P2 (g). Hence f & C|T l < v c .

PY o «Porlq)

<= : obvious.

Machtey [14) has shown that honest polynomial classes cannot satisfy the Ritchie-
Cobham-property. However they satisfy the modified Richie-Cobham property of corollary
4.4. The next theorem establishes the connection between honest classes and complexity
classes.



Thm 4.5: g is honest iffdPof(g) is a complexity class.,

Proof:

=>: Let g be honest; then Por(g) = v C{h'
h €%ol(g)

an enumeration of@Pol(g). We define

by corollary 4.4. Let {h,}” be
=1

R hi(x) = hlEX)°"hi(X)
Then h; «© SPos(g) and |hi| < ]hjl for i < j. The union theorem {7) implies that

Por(g) = U c, = U Clﬁ =C

. . | t
h ¢ Pollq) i €N 1

for some t: I* + N,

<=: Assume@of(g) = C,_ for t:I*+ N. Since g cé?bz(g) there is a TM M such that

t
|TM(x)| < t(x) for almost all x.

By lemma 4.1 there is a TM P, which computes T, such that T, = T,. Hence ITP(x)] < tlx)

for almost all x and hence TM 5 Ct = Pot(g). By theorem 4.3. g is therefore honest.
Thm 4.6: Let f,g be honest functions with £ <po£ g. Then every countable partial

ordering can be embedded into the functions {h; £ < h <pok g and h honest}

pol
Proof: Adapt the proof of theorem 3.2.

Open problem: Are the honest polynomial classes a lattice under set inclusion?

~

V. Abstract Subrecursive Reducibilities

Axt [1] and Machtey [12] study the properties of the primitive recursive reducibility.'

Machtey [12] notes that several properties of the primitive recursive reducibility are
true for other reducibilities including elementary, doubly recursive, triply recursive,
..., and multiple recursive reducibility. Ladner [10] observes that the results have
an even wider range. He investigates reducibilities which are induced by resource
bounded oracle machine computations. All results of [10] hold true provided the

¢lass of resource bounds (time or tape bounds) satisfies reasonable closure properties.
Only sets are allowed as oracles. We extend his results in two directions: we remove
the restriction to reducibilities, which are definable in terms of Turing machine space
or time, and we remove the restriction to 0-1 valued oracles.

Subrecursive reducibilities are always induced by a class of general recursive
operators [19]; i.e. operators which are defined on all total functions and take total
functions into total functions. E.g. in section II we defined the reducibility 'poly-
nomial computable in' in terms of the class of polynomial time computable operators.

An abstract subrecursive reducibility is defined by a class of general recursive
operators, which satisfies reasonable closure properties. The closure properties are
in the spirit of Strong's definition of Basic Recursive Function Theories [20].

Def 5.1: Let (7 be the set of computable functions, let JR* be the set of 0-1 valued
computable functions and let {¢i[ 1} be an acceptable indexing of the recursive op-
erators.

Let € be either R or gR2*. s: N »iN defines an abstract subrecursive reducibility
over @ if ‘

(1) Opi[ ] = ¢s(i)[ ] is a general recursive operator

(2) there is a constant ¢ such that OpC[ } = APPLY[ ], i.e. Opc[f](x) f (x)

{(3) there is a computable function const such that

oPconst(i)[f](X) =1
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(4) there is a computable function comp such that

op y [E1(%) = op; [y 0p, [£] ()] (x)

comp (i, 3
(5) there is a computable function cond such that
oPcond(i,u,k,Z)[f](X) = if Op; L£1(x) = OPj[f](x)
then Opk[f](X)
else Opllf](x)
(6) a) for every i, g and finite function f there is a j such that

£ (x) if x € dom £
Opj[g](x) =
Opi[g](x) otherwise

b) for every i, g, f such that g = f almost everywhere there is a j such that
Opj[gl = Op, [f]

{7) there is a computable function sim such that

Op [£] (%) = ¢i[f](¢n(i)[f](x))

sim(i)
and ¢n(i)[f] is a non-decreasing function for every i and f. Furthermore if
¢i[f](y)+ for all y < x then » © range ¢n(i)[f].

In (1) - (7) £ and g are to be taken from € .

Remark: An abstract subrecursive reducibility is given by a list of total operators
(I}, which contains the operator APPLY[ ] (2), the constants (3), which is closed under
composition (4), definition by cases (5) and finite variants (6) and which has a rudi-
mentary simulation feature (7).

As we stated the definition, computations are dore over the integers. Equally well we
could have stated the definition, such that computations are executed over L*. All re-
ducibilities which are mentioned in the literature satisfy definition 5.1.

Thm 5.1: Each of the following is an abstract subrecursive reducibility:

a) the class of primitive recursive, doubly recursive,... operators (for Z7)
b) the class of operators in é”n( ) [6] for n > 1 (for ZR)

c) the class of polynomial operators (for 97)

a) - time reducibility for time class & (ford?*) [10)

e) &F- space reducibility for space class P(for ZR*) [10]

f) linear space, polynomial time reducibility

g) log-space reducibility [9]

Def 5.2: Let f,9 « €. £ Sg 9 iff £ = Op, [g] for some i.

Thm 5.2: s is transitive and reflexive.

Proof: Let f g gand g <g h, say £ = Opi[g] and g = Opj[h]. Then £ = Opi[Ay Opj[h]y] =
oPcomp(i,j)[h] by property (4). Hence f A h.

From APPLY[f} = f and APPLY[ ] = Opc[ ] for some ¢ we infer f <s £.

Next we study the density properties of abstract reducibilities. Theorem 5.3 is the
abstract analog to theorem 3.1,

Thm 5.3: Let g be such that 0 <g 9- (0 denotes the constant function with value 0
everywhere), Then there is a h such that 0 <s h <s g.



Proof: We have to construct h such that

(1) h 5 9

(2) h is 0, i.e. h #0p (0] for all i

(3) g is h , i.e. g # Op;lh] for all i

h is constructed in stages as in the proof of theorem 3.1; for an informal discussion
of the proof technigue see theorem 3.1. In the proof of theorem 3.1 we used recursion;
we justify this use now by an application of the recursion theorem.

We define a computable function e such that range e € range s. Let i
point of e; i.e.

0 be the fixed

b iy 1 =060 1
e(lo) i
h = ¢i [g) is the desired function.
1]
Let {xi}:=0 be an enumeration of the integers (domain of computation). We will
first define a general recursive operator ¢e (i)[ l; 1 is a free variable.
1

() ¢

el(i)[g](x) : execute the following program for x steps
"compute 9(x1)'g(x2)"" and build up a tab}e G of the values"
execute the following program for x steps
"compute ¢i[g](xl),¢i[g](x2),... and build up a table H of the
values"
execute the following program for x steps
(using the tables G and H)
"initialize mode + 2; j <« 1;
while j < = do
begin k « 1
¢ we check if h # Opj[Q] £
while H(xk) Opj[Ol(xk)
do k « k + 1;
mode <« 3;
k « 1;
¢ we check if g # Op.[h] ¢
OPj[h](x

1]

while G(xk)
do k « k + 1;

mode <« 2

x)

end"”

the output of ¢e (i)[g](x) is the current value of mode
1

¢e (i)( ] is a general recursive operator. By the simulation property (7) there is a
1

non-decreasing unbounded (even fange B .y [g] = IN) function B .y [g] such that for
e; (1) e, (1)
all x
OPsin(e, (1)) 1916 = 0 (4) (91 (B (5, lal (x))

We define now
(B): 6g ) laltx) = £ 0Py (e (4)) [T ) = 2

then g(x)

else 0

k‘.
H :
,;!
£
Y
i
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= if Op

3L OPgine, (1)) f91 ) = op

const(z)[g](X)

then Opclgl(x)
glse oPconst(O)[g](X)

OPCOHd(Sim(el(i)),const(z),c,const(O))[g](X)

= ¢ {g} (x)

s(cond(sim(el(i)),const(2),c,const(0)))

by properties (2), (3) and (5) of abstract reducibilities. Let i, be the fixed point
of e, i.e. :

¢e(i0)[ ] = ¢i°( 1.

By definition of e there is a io' such that
op, [ VY =9¢_,. 0 }1=29¢, 0 1.
ig e(lo) iy
Let h = Opi ,Igl. It remains to show that requirements (2) and (3) are satisfizd.
0

First note that range B [g] = N. Hence larger and larger tables are generat2d

el(io) .
in part (A) of the algorithm. Therefore it is sufficient to showy that j becomes arbi=
trarily large, Assume otherwise; say j reaches a stable value jO' Then modé alsd

reaches a stable value. If this stable value is equal to 2 then we define h = g almodt

everywhere; also h = Opj [0]. By property (6a) of abstract reducibilities therefof?2
0

g <, 0, which contradicts the hypothesis of the theorem. If the stable value of mod2
is equal to 3 then we define h = 0 almost everywhere; also g = Opj [h]. By properwy
0

(Gb) of abstract reducibilities therefore g s 0, which contradicts the hypothesiz of
the theorem. g.e.d.

For the remainder of the section we also need property (8).
(8) there are constants encode, decode 1 and decode 2 such that

£ (x)

OPgecodel [*Y OPencogelfr9l (¥)1 (%)

OPgecode2 [AY OPencoge [fr9l ()1 (x) = gix)

Proofs for the following theorems are given in the full paper.

" Thm 5.4: <s is an upper semi-~lattice.

Thm 5.5: Let f,g be computable functions such that £ <g 9- Then there is a céomputabpla
function h such that £ <s h <g 9

Thm 5.6: Let f,g be computable functions such that £ <_ h <_ g. Every countable pareial
ordering can be embedded into the set {h; f < h < gl.

Thm 5.7: Thexe are computable functions f,g such that 0 <g £, 0 <g 9 and h <s £ and
h is g implies h s 0.
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