
Polynomial Approximation—A New Computa-

tional Technique in Dynamic Programming:

Allocation Processes

By Richard Bellman, Robert Kalaba, and Bella Kotkin

1. Introduction. The problem of maximizing the function

(1.1) F(xi, Xt, • • • , xH) = 0i(zi) + 6f2(x2) + • • • + gN(xN)

over the domain

(1.2) Xi + X2 + ■ ■ • + XN = X, Xi¡ä 0

can be reduced via familiar dynamic programming techniques (see [1]) to that of

determining the sequence of functions j/n(x)j generated by means of the recur-

rence relation

SÁx) = 0i(z),
(1.3)

Sn+x{x) = max \gn+i{y) + /»(a; - y)\.

The problem can thus be solved numerically in a very simple fashion, regardless

of the complexity of the functions gi(x). A number of important allocation processes

can be resolved in this way. If we consider cases in which two distinct types of

resources must be allocated, we face the problem of maximizing the function

F(xi, Xi, ■ ■ • , xx ; yi, y2, • • • , yN)

(1.4)
= gi(xi , 2/1) + g»(xt, 2/2) + • • • + gN{xN , y*)

over the domain

X\ + x2 + ■ ■ ■ + xN = x, i¡iO,

(1.5)
2/1 + 2/2 + • • • + vn = y, y i à 0.

Theoretically, there is no difficulty in applying the same techniques.

The maximization problem can be reduced to the determination of the sequence

{Sn(x, y)} generated by means of the recurrence relation

(1.6) Sn+Áx, y) = max [gn+i(w, r) + Sn(x — w,y — r)].
OSmáJ
Oáráíí

In principle, this equation can be solved computationally using the same technique

that applies so well to (1.3). In practice (see [1] for a discussion), questions of

time and accuracy arise. There are a number of ways of circumventing these diffi-

culties, among which the Lagrange multiplier plays a significant role.

In this series of papers, we wish to present a number of applications of a new,

simple and quite powerful method, that of polynomial approximation. We shall

begin with a discussion of the allocation process posed in the foregoing paragraphs

and continue, in subsequent papers, with a treatment of realistic trajectory and

Received March 2, 1962.

155

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

156 R. BELLMAN, R. KALABA, AND B. KOTKIN

guidance processes. In a separate series of papers we shall apply this fundamental

attack upon dimensionality to the solution of a number of the equations of mathe-

matical physics.

We would like to express our appreciation to Oliver Gross for the analytic solu-

tion of some test problems we used to check the accuracy of our techniques, and

for his general interest in the program.

2. Polynomial Approximation. In the systematic study of dynamic programming

as a computational algorithm given in [1], a function f(x) is considered to be a table

ol values at an appropriate set of grid points:

x I Six)

(2.1) A

0

A

2A

KA

U
/>
u

h
In this way, the function f(x) is stored in the computer. For functions of one vari-

able with K — 100 or 1000, this is a reasonably convenient way to proceed. For

functions of two variables, this procedure becomes a bit inconvenient since {K + 1)

values for x combined with (K + 1) values for y yields a total set of (K + l)2

values. Consequently, when we encounter functions of three or more variables,

we must balance accuracy against time and the limited storage of contemporary

computers in our choice of K.

The storage of functional values by means of a table of values is ideally suited

to the treatment of problems involving functions of quite arbitrary form. It is, on

the other hand, quite wasteful and inefficient if we are dealing with functions

possessing a definite structure, which is to say, situations in which there is a high

correlation between the values of /(rA) and /(sA). Since functions of this type

occur in many important applications, and throughout mathematical physics, it is

worthwhile to develop methods which take advantage of the "smoothness" of the

function.

One such method is polynomial approximation, or to be precise, generalized

polynomial approximation. We represent the function in the form
M

(2.2) S{x) S E am(x),
k-l

where the <Pk{x) are known elementary functions such as x , sin kx, P/,(x) (the

Legendre polynomial of degree k) or Tk(x) (the Chebyshev polynomial of degree

k), and then store the function for all values of interest by means of the set of M

coefficients [eti, a2, • • • , au].

It is important to point out that (2.2) is particularly useful in automatically

furnishing the interpolation values frequently needed in dynamic programming

calculations. If one uses a table of values of the form shown in (2.1), interpolation

is frequently a source of difficulty.

To determine the coefficients ak it is convenient to make the ¡Pk(x) an ortho-

normal set. Then

(2.3) ak = / S(x)<Pk(x) dx,
Jo

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

POLYNOMIAL APPROXIMATION: ALLOCATION PROCESSES 157

assuming for the purposes of convenience that 0 ^ x ^ 1. We can, of course, use a

Chebyshev fit instead, and we will explore this in subsequent papers. A priori, we

would suspect that it would be more efficient to use a mean-square fit (implied by

(2.3)), and take M to be larger, than to go to the trouble of determining the ak

to minimize the function

M

(2.4) max \f(x) - X a*#>*(aO |,

which for a fixed M may be expected to yield a more accurate approximation.

Alternatively, one could use an approximation by polygonal functions [11.

To evaluate the ak without requiring a knowledge of too many values oí f(x),

we use a quadrature technique

R

(2.5) a* = 2 Wif(xi)<pk(xi),
»=i

where the weights Wi and the quadrature points x¿ are chosen so that the equation

«1 R

(2.6) / g{x) dx = X) Wig(xi)
Jo i=l

is exact for polynomials in x of degree (2Ä — 1) or less. This requirement narrows

us down to the Gauss quadrature technique [2]. If we use generalized polynomials

(expressions such as (2.6)), we will obtain different weights and quadrature points.

We may then store the function/(x) for 0 ^ x ^ 1 by storing the coefficients

ak or the particular values S (xi) which enable us to compute the ak.

3. Application to Dynamic Programming. Consider now the application of

these ideas to the computational solution of the functional equations of dynamic

programming. Suppose that we wish to compute the sequence \Sn(x)\ determined by

(3.1) SÁx) = max \gN{y) +/y_i(;c - y)\,
0-¿y<,x

N ^ 2, given that/i(a;) = g\{x). To avoid the tabulation of each of the functions

Sn(x) at the z-grid [0, A, • • • , KA], where K may be a large number, we approxi-

mate to each function Sn(x) in the manner indicated above. Starting with Si(x),

we store the values Si(xi), i = 1, 2, • ■ • , R, needed to evaluate f\(x — y) in the

formula determining SÁX),

(3.2) fî{x) = max [g¡(x2) + }x{x - y)].

We then determine successively SÁxi)> SÁxí), • • • , SÁXr), a set of values which

stores the function /2(x). This process is then repeated.

Although the calculation of Sn-i{x — y) using (2.2) is far more time-consuming

than taking a value from storage, we expect to gain time over-all because of the

fact that we are required to calculate only a few values, /«(a;¿), i = 1, 2, • • • , ß,

at each stage.

4. The Legendre Polynomials. Since in allocation processes we have a range

[0, Xo] which stays constant as the process continues from stage to stage, we can

normalize and consider the basic interval to be [0, 1]. Since the interval is finite

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

158 R. BELLMAN, R. KALABA, AND B. K0TKIN

and we want, at the moment, a polynomial approximation, we shall employ Le-

gendre polynomials.

Let Pk(x) denote the standard Legendre polynomial, defined over [—1, 1],

and let <Pk(x) be defined by the relation

(4.1) <pk(x) = (2k + l)ll2Pk(2x - 1).

The sequence {<pk(x)\ is then orthonormal over [0, 1], i.e.,

(4.2) / <pk(x)<pt(x) dx = ht ■
Jo

From the standard recurrence relations for Pk(x), we obtain the relation

(x) = 1, <p2(x) = 31/2(2a: - 1),

(4-3) (2» + 3)1/2

*»W = {i + i) (2t + l)1/2(2x - 1WW
(2i ripi^^J-

This relation makes the evaluation of the sequence of values of <Pi(x) for any x a

relatively simple matter.

S. Examples. In order to experiment with this new approximating procedure,

we devised a FORTRAN program for the IBM-7090 whereby at each stage, after

obtaining the new coefficients akM, we computed fi(x) from (2.2) for a succession

of as many values of x as desired, and printed the result after each computation.

We used two modes of output, either a list of numerical values, [a;, fi(x)], or a

graphical plot (done directly by the 7090) of x versus /¡(a;).

We experimented with several types of functions g¡(x) for which the results

could be derived from analytic considerations. Using the known analytic results

as a checkpoint, we varied the parameters R, M, and the grid size H, in order to

determine the degree of accuracy we might expect in general. We found remarkably

good agreement to 2 or more significant figures with a relatively low order of ap-

proximation, namely R = 5, M = 6. This is encouraging from the point of view of

extending the method in the experimental investigations of higher-dimensional

allocation processes where, as pointed out above, time and storage aspects become

significant. We also incorporated in our program restraints of the form 0 ^ a¿ ^

Xi ^ hi ^ x, since constraints of this nature often occur in applications.

a. Time Estimates. Following are some estimates of the execution time re-

quired on the 7090:

1. Ten seconds for 4 stages, R = 5, M = 6 and a grid of 0.05 both for the search

and output listing.

2. Three minutes for a total of 4 cases of 10 stages each; R = 3, M = 4; R = 5,

M = 6;Ä = 7, M = 8;Ä= 10, M = 11. The grid in the search for the maximum

is 0.01 and the output listing is given for every x along the grid.

3. Three minutes for the total of 4 cases mentioned above, 10 stages per case

and a grid of 0.01 for the search. The output is a graph where the independent

variable x is listed at intervals of 0.025.

* Oliver Gross was of considerable assistance to us in this respect.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

POLYNOMIAL APPROXIMATION: ALLOCATION PROCESSES 159

b. Numerical Results.

readily obtain the values

1. g%(x) = i(x) . Using the Schwarz inequality, we

Mx) = (f (N + 1)(2N + l)x
\ 1/2

For R = 10, M = 11, H = 0.01 we found poor agreement at the origin. This is

to be expected because of the infinite slope at x = 0. Agreement between exact and

computed values was good as soon as x moved away from the singular value 0, as

can be seen from the following table:

Function

/i(0)
/i(2)
/i(D
/io(0)
/io(D

Exact

0.0
0.448
1.00
0.0

19.6

Computed

0.064
0.447
1.00
3.13

19.6

2. gt(x) = i(x + 0.1)1/2. We avoided the previous difficulty at x = 0 (see the

computed value of/i0(0) above), but found the function still rather sensitive near

the origin. As N (the number of stages) increased, the agreement at x = 0 de-

creased.
3. gi(x) = i(x + 1)1/2. The Schwarz inequality yields the upper bound

SAx)*G(N + 1)(2N + l)(x + N)
y/2

However, since the xt are subject to the restraint 0 ^ xt S x, we do not neces-

sarily achieve the upper bound. Some exact values based on an analysis by O. A.

Gross are listed as check points, R = 10, M = 11,// = 0.01.

Function

/i(0)
/i(D
SM
/3(-5)
/r(.35)
/io(D

Upper
Bound

1.00
1.41
6.48
7.00

32.1

Exact
Value

1.00
1.41

6.67
29.1
59.3

Computed
Value

1.00
1.41
6.00
6.67

29.1
59.3

4. g{(x) = e
-5/(l+Kte) R = 10, M = ll,H= .01.

Function

/2(.2)

SÁ-7)
/3(-2)

/a(.9)
SÁ-2)
/io(D

Exact

0.196
0.659
0.203
0.860
0.218
1.001

Computed

0.197
0.659
0.204
0.862
0.217
1.001

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

160 R. BELLMAN, R. KALABA, AND B. KOTKIN

6. Two-Dimensional Approximation. The problem of maximizing the function

(6.1)

over the domain

(6.2)

X Qi(Xi, yî)

¿L xi = x, Oá«¡á Xi ^ bi, Xi ^ x,

J2 y, = y, 0 ^ d ^ y, S di Vi ̂ y,

can be readily handled by the methods described in Sections 2 and 3.

The dynamic programming recurrence relation is:

Sn(x, y) = max [gN(xN , yN) + /jir_i(a; - xN , y — yN)],
R

where R is determined by aN Ú xN ^ min(x, bN), cN ^ yN is min(y, du). Let

Xi, i = 1, • • ■ , R, be the roots of the normalized Legendre polynomial 4>r(x),

and let jj/yj be a duplicate set of these quadrature points. Each function SAX, y)

is expressed approximately by the relation

M M

(6.3) Sn(x, ï)=H aiïVte)*.^),
r=l s-1

where the coefficients, using the quadrature method, are given by

(6.4) aff = X X wWiSAxi, yj)4>k(xi ,y¡).
i-l 3 = 1

As in the one-dimensional case, we start with the known values /i(a:, y) =

ffi^i, î/i), a:i = x, 2/i = y. In stage n we store the values Sn(Xi, y¡), for ¿, j =

1, 2, ■ • • , M, then compute and store the values ai"' in the storage allotted to the

previous stage. The latter coefficients are utilized in the computation of fn(x — xn+x,

y — yn+i) to obtain the values of/n+](a:¿, y¡) in the next stage.

7. Examples.

a. Time Estimate.

The execution time required on the 7090 was 2 minutes for 4 stages, with

R = 5, M = 6, a grid of H = 0.05 in the two-dimensional search, and an output

listing of 3 test values of f(x, y) in each stage.

b. Numerical Results.

1. Çi(x, y) = (2i — l)ll2(xy)1!i. Using the Holder inequality, we readily ob-

tain the exact values/„(a;, y) = n(xy)Vi, x„(x, y) = (2n — l)x/n, yn(x, y) =

(2n — l)y/n. Our results for R = 5, M = 6, and a grid of 0.05 in the search

are:

Function

/«(•5, .5)
Xi(.5, .5)

SÁ1, i)

Exact

1.40
0.375

4.00

Computed

1.40
0.35

(to the nearest 0.05)
3.91

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

POLYNOMIAL APPROXIMATION: ALLOCATION PROCESSES 161

Here again the agreement was poor at the origin, presumably because of the

singular behavior of (xy)1!i at x = 0, y = 0. To confirm this hypothesis, we con-

sidered the next case.

2. g¡(x, y) = (x + iy)/(l + x + iy). This case, as well as the theoretical

values, was suggested by 0. A. Gross, and he determined the exact values.

Function

/*(1, 1)
/«(I, 0)

Exact

1.17
0.667

Computed

1.17
0.647

8. Discussion. As can be seen, the agreement in general is quite satisfactory.

We can obtain reasonably accurate values of the maximum return and of the

optimal allocation policy using small amounts of machine time.

Combining these techniques with the method of the Lagrange multiplier, we

can expect to solve three- and four-dimensional resource allocation problems.

Extending the method to cover the approximation of functions of 3, 4, 5 and 6

variables, we can treat Hitchcock-Koopmans allocation processes of quite high

dimension.

Finally, if we combine these techniques—polynomial approximations and

Lagrange multipliers—with that of successive approximations, there should be

very few allocation processes which still resist our efforts.

The Rand Corporation

Santa Monica, California

1. R. Bellman & S. Dreyfus, Applied Dynamic Programming, Princeton University Press,
Princeton, N.J., 1962.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

