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Approximation polynomiale et oloration de graphes
RésuméConsidérons un graphe G = (V, E) d'ordre n. Le problème de la oloration minimumonsiste à attribuer d'un nombre minimum de ouleurs aux sommets de V de façon à e quedeux sommets adjaents ne soient pas oloriés ave la même ouleur. Ce problème est parmiles premiers démontrés intrinsèquement di�iles et, par onséquent, il est très improbablequ'il puisse être résolu optimalement par un algorithme polynomial. Dans et artile, nousfaisons un tour d'horizon des prinipaux algorithmes d'approximation (eux pour lesquelsdes rapports d'approximation théoriques ont été étudiés) pour le problème de olorationet disutons leurs rapports d'approximation et leur omplexité. En�n, nous proposons uneamélioration du rapport d'approximation pour e problème.Mots-lé : graphe, oloration, omplexité, NP-omplet, algorithme d'approximation.

Polynomial approximation and graph-oloring
AbstratConsider a graph G = (V, E) of order n. In minimum graph-oloring problem we try toolor V with as few olors as possible so that no two adjaent verties reeive the same olor.This problem is among the �rst ones proved to be intratable and hene, it is very unlikelythat an optimal polynomial-time algorithm ould ever be devised for it. In this paper, wesurvey the main polynomial time approximation algorithms (the ones for whih theoretialapproximability bounds have been studied) for the minimum graph-oloring and we disusstheir approximation performane and their omplexity. Finally, we further improve theapproximation ratio for graph-oloring.Keywords: graph, oloring, omplexity, NP-omplete, approximation algorithm.
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1 IntrodutionConsider a graph G = (V, E) of order n. In minimum graph-oloring problem (C), we wishto olor V with as few olors as possible so that no two adjaent verties reeive the sameolor. This problem was shown to be NP-hard in Karp's original paper ([40℄), and remains NP-omplete even restrited to graphs of onstant (independent on n) hromati number at least 3(for more informations about the omplexity of numerous restritions, or generalizations of C, theinterested reader is also refereed to [35℄). The hromati number of a graph, denoted by χ(G), isthe smallest number of olors that an feasibly olor its verties. A graph G is alled k-olorableif its verties an be legally olored by k olors, in other words if its hromati number is atmost k; it will be alled k-hromati if k is its hromati number.Sine adjaent verties are forbidden to be olored with the same olor, a feasible solutionof C an be seen as a partition of V into vertex-sets suh that, for eah one of these sets, notwo of its verties are mutually adjaent. Suh sets are usually alled independent sets. So, theoptimal solution of C is a minimum-ardinality partition into independent sets.Another ombinatorial quantity de�ned on disrete strutures that will be useful in the sequelis the one of set-overing. Given a family S of sets drawn from a ground set C (satisfying
∪Si∈SSi = C), a set-overing is a family S ′ ⊆ S suh that ∪Si∈S′Si = C.Both quantities, independent set and set-overing, give rise to two well-known NP-hard op-timization problems, namely the one of �nding the maximum-ardinality independent set of agraph, denoted by α(G), and the one of �nding the minimum-ardinality set-overing of a setsystem. In what follows we will denote by IS the former and by SC the latter.Given the omputational hardness of C, if one wishes to devise fast algorithms, then he/shehas to develop polynomial time methods providing, for all instanes, feasible solutions, the valuesof whih are as lose as possible to the value of the optimal ones. This is what in the literatureis ommonly alled polynomial time approximation algorithms (PTAA).The �goodness� of a PTAA A is measured by the so-alled approximation ratio. Two typesof ratios have been used until now: the one that, in some way, ompares the value A(I) of theapproximate solution for I, provided by A, with the value OPT(I) of the optimal one, and theone omparing A(I) not only with OPT(I) but also with WORST(I), the value of the worstfeasible solution of I. Eah one of these measures draws its proper working-framework intowhih every NP-hard problem an be analyzed and implies its proper approximation results.This is, as we shall see in the sequel, partiularly true for C (in general, given an NP-hardproblem, approximation results an be very di�erent when using the one working-framework orthe other). For reasons of simpliity, we will speak about ρ-framework to denote the former andabout δ-framework to denote the latter. Informally:
• in the ρ-framework, the omparison between A(I) and OPT(I) is usually performed byanswering the following question: �what is the ratio between A(I) and OPT(I)?�; thisquestion indues the so-alled approximation ratio;
• in the δ-framework, the omparison between A(I), OPT(I) and WORST(I) is performedby answering the question: �what is the least ǫ for whih A is to an extent of (1 − ǫ) likethe worst algorithm, and to an extent of ǫ like the ideal one?�; this question indues thedi�erential-approximation ratio.Let A be a PTAA for an NP-hard problem Π, let I be the set of instanes of Π, let A(I) be thevalue of the solution provided by A on an instane I ∈ I, OPT(I) be the value of the optimalsolution for I and WORST(I) be the value of the worst solution of I. Moreover, let for a �xedonstant M , IM be the subset of I de�ned as IM = {I ∈ I : OPT(I) > M}, and let σ(I) bethe number of the feasible solutions of I. 1



• Approximation ratio ρ:� the approximation ratio ρA(I) of the algorithm A on an instane I ∈ I is de�ned as
ρA(I) =

A(I)

OPT(I)� the approximation ratio ρA of A for Π is de�ned as
ρA =

{

sup {r : ρA(I) > r, ∀I ∈ I} Π a maximization problem
inf {r : ρA(I) < r, ∀I ∈ I} Π a minimization problem� the asymptoti approximation ratio ρ∞A of A for Π is de�ned as

ρ∞A =

{

sup {r : ∃M, ρA(I) > r, ∀I ∈ IM} Π a maximization problem
inf {r : ∃M, ρA(I) 6 r, ∀I ∈ IM} Π a minimization problem� the approximation ratio ρΠ for Π is de�ned as

ρΠ =

{

max {ρA : A a PTAA for Π} Π a maximization problem
min {ρA : A a PTAA for Π} Π a minimization problem

• Di�erential-approximation ratio δ:� the di�erential-approximation ratio δA(I) of the algorithm A on an instane I ∈ I isde�ned as
δA(I) =

WORST(I)− A(I)

WORST(I)−OPT(I)� the di�erential-approximation ratio δA of A for Π is de�ned as
δA = sup {r : δA(I) > r, I ∈ I}� the asymptoti di�erential-approximation ratio δ∞A of A for Π is de�ned as

δ∞A = lim
k→∞

sup
I

σ(I)>k

{

WORST(I)− A(I)

WORST(I)−OPT(I)

}

� the di�erential approximation ratio δΠ for Π is de�ned as
δΠ = max {ρA : A a PTAA for Π}Let us note that the best expeted ase for the behavior of an approximation algorithm isthat it ould guarantee an approximation ratio tending to 1. More formally, the ideal wouldbe that we had a PTAA A reeiving as inputs an instane I of an NP-hard problem and a�xed onstant ǫ and guaranteeing approximation ratio (resp., di�erential-approximation ratio)

1 + ǫ or 1 − ǫ depending on if the problem at hand is a minimization or a maximization one(resp., 1 − ǫ, for the δ-framework), for every ǫ > 0. In this ase, we have, in fat, a se-quene (Aǫ)ǫ>0 of approximation algorithms having the desired approximation properties justdesribed. Suh a sequene is alled a polynomial time approximation shema (PTAS) or, in the
δ-framework, di�erential PTAS (DPTAS). Moreover, we an further lassify suh shemata fol-lowing the time-omplexity of algorithm Aǫ. We so speak about PTAS (DPTAS) if its omplexityis O(f(|I|)Θ(1/ǫ)) and about fully PTAS (FPTAS), or fully DPTAS (FDPTAS) if its omplexity2



is O(g(1/ǫ)O(|I|k)), where |I| is the size of I, f and g polynomials not depending on |I| and ka �xed onstant (not depending neither on |I|, nor on ǫ). A PTAS, or FPTAS (resp., DPTAS,or FDPTAS) is alled asymptoti if, for every instane I, it guarantees approximation ratio
1 + ǫ + c/OPT(I) or 1− ǫ− c/OPT(I), depending on if the problem at hand is a minimizationor a maximization one (resp., 1− ǫ− c/(WORST(I)−OPT(I)), for the δ-framework), for some�xed onstant c and for every ǫ > 0.The approximation of C by e�ient algorithms is a entral problem in omplexity theory.In ρ-framework, people knew quite early that a polynomial time approximation shema annotexist for it, sine a lower bound 2 was proved for the ratio of every PTAA supposed solving C;this result, due to Garey and Johnson, has been published in 1976. But even if the researhersonjetured that approximation ratios greater than 2 were equally unlikely, suh a result was notformally produed up to the early 90's when the impossibility of approximating C by a onstantratio approximation algorithm is proved by Lund and Yannakakis. This result, motivates fromthen on, many researhers for searhing either for approximation algorithms with improvedapproximation ratios, or to strengthen the existing inapproximability results. On the otherhand, in δ-framework, C is better-approximable than in the ρ-one, sine onstant di�erential-approximation ratio PTAAs exist sine 1994.This paper, even if it surveys both positive and negative approximation results1 about Cin both the approximation frameworks, is rather oriented towards the positive ones. For thisreason, positive results are presented and ommented in detail and the underlying algorithms arespei�ed in a kind of �pseudo-PASCAL�, while the inapproximability ones are simply mentioned.Before presenting positive results, we give the intuition (or key-idea) behind them. The objetiveof this survey is double: to present already known results and to introdue some new ones. Inorder to be as short and easy to read as possible, only new results are proved, while alreadyexisting results are stated without proofs. Also, in setion 3 a oloring method is disussed usinga randomized algorithm that has been derandomized later by rather ompliated tehniques.Sine both random algorithm itself and its derandomization are long, and on the other hand,paper does not deal with probabilisti methods, only the underlying idea is disussed, while weomit to speify the overall algorithm.Let us onsider a simple undireted onneted graph G = (V, E) of order n. Sometimes, wewill denote by |G| the order of G and by V (G) its vertex-set. Given a set V ′ of verties of agraph G, we will denote by G[V ′] = (V ′, E(G[V ′])) the partial subgraph of G indued by V ′. Forevery vertex v ∈ V , we denote by ΓG(v) the set of neighbors of v (neighborhood of v) and by d◦(v)the quantity |ΓG(v)|, this quantity is lassially alled the degree of v; ∆(G) = maxv∈V {d

◦(v)}is the maximum degree of G. The notion of neighborhood an be extended to apply to a set
V ′ ⊆ V ; we denote by ΓG(V ′) the set of neighbors of the verties of V ′, i.e., ΓG(V ′) = ∪v∈V ′ΓG(v).Whenever no ambiguity an our we use notation Γ(v) instead of ΓG(v). Given verties v and u,we denote by d(v, u) their distane, i.e., the length (number of edges) of the shortest elementarypath linking v and u (sine G is undireted d(v, u) = d(u, v)). By Kt, we denote a ompletegraph on t verties. All logarithms of the paper are to the base 2 unless otherwise noted. Finally,the following well-known expression ([10℄) links χ(G) and α(G) and will be used later:

α(G)χ(G) > |G| (1)
1For an NP-hard minimization (resp., maximization) problem Π, an approximation result is alled positiveif, given an approximation algorithm A, it provides an upper (resp., lower) bound on the approximation ratioguaranteed by A when used to solve Π; it is alled negative or inapproximability result when it provides a lower(resp., upper) bound for the ratio of an algorithm or of a whole lass of approximation algorithms for Π
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Part IGraph-oloring in standard approximation2 How an one always olor a graph with ∆(G) olors?We �rst reall some standard graph-theoreti onepts used in what follows in this setion (formore details one an be referred to [10, 15℄). Consider a onneted graph G = (V, E). A subset
A ⊆ V is alled artiulation set if G[V \ A] is not onneted; an artiulation set of size 1 willbe alled artiulation point. A graph G is k-onneted i� |G| > k + 1 and i� it does not ontainartiulation set of size less than k. As a onsequene, G is bionneted i� |G| > 3 and it doesnot admit artiulation points (i.e., for every pair (x, y) ∈ V × V , there exist two vertex-disjointelementary paths between x and y). A blo in G is a set A ⊆ V suh that G[A] is onneted,without artiulation points, and maximal (i.e., for any v ∈ V \ A, G[A ∪ {v}] is either notonneted, or it has at least an artiulation point). Then if |A| > 2, G[A] is bionneted, while,if |A| = 2, it is an isthmus, i.e., an edge whose removal inreases the number of the onnetedomponents of the graph. Obviously, the set of blos of G overs V . A blo B is alled extremalif it ontains a vertex z suh that for any other blo B′, either B and B′ are vertex-disjoint, or zis their only ommon vertex.2.1 A non-onstrutive theorem and its ulterior onstrutive proofTheorem 1 below (known also as Brook's theorem and non-onstrutively proved in [17℄) wasonstrutively proved by Lovász in [42℄ in a rather ondensed way. We give in this setion apersonal interpretation of this result. The proofs are given in the appendix.Theorem 1. ([17℄) If G is onneted with ∆(G) > 3 and if it ontains no subgraph K∆(G)+1,then it is ∆(G)-olorable.Consider a graph G, and order its verties, say x1, x2, . . . , xn. One an olor them one-by-onein the following way: olor x1 with 1; then, olor x2 with 1, if x1x2 /∈ E, with 2 otherwise andontinue oloring eah vertex with the smallest olor it an be assigned at that stage. Denote thisalgorithm by LEGAL_C and suppose it is alled with inputs G and x1, x2, . . . , xn. The followingeasy lemma holds for LEGAL_C.Lemma 1. LEGAL_C olors the verties of any graph G with at most ∆(G) + 1 olors, inpolynomial time.Proof. Sine ∆(G) is the maximum graph-degree, ∆(G) + 1 olors are su�ient to legally olorany vertex of G and all its neighbors.The key-idea of the algorithm of [42℄ is to onstrut �good� orderings of the verties of G, sothat LEGAL_C olors them with no more ∆(G) olors.2.1.1 Coloring 3-onneted graphsConsider a graph G = (V, E) suh that: it is onneted, ∆(G) > 3, it does not ontain a K∆(G)+1and it admits at least a pair of verties, the removal of whih does not disonnet G. Note that a3-onneted graph verifying the onditions of theorem 1 an be suh a graph. Also onsider thefollowing algorithm 3C_COLOR. We onsider in what follows two types of exeution for 3C_COLOR.The �rst one is parameterized by a graph G, when it is exeuted starting from line (1). Theseond one is parameterized by a graph G and two verties v and u, when we suppose thatlines (1) and (2) are omitted and its exeution starts from line (3). This is the ase of exeutionof 3C_COLOR in the body of algorithm ∆_COLOR in paragraph 2.1.3.4



BEGIN *3C_COLOR*(1) let {1, . . . , ∆(G)} be the set of olors to be used;(2) hoose verties v and u suh that d(v, u) = 2and G′ ← G[V \ {v, u}] remains onneted;(3) let w be a vertex adjaent to both v and u;(4) arrange the verties of G′ in a sequene (w = x1, x2, . . . , xn−2) suh thateah vertex xi, i > 2 is adjaent to a vertex xj, j 6 i;*this an be done breadth-first-searh (BFS,[1℄) starting from w*(5) olor v and u with the olor 1;(6) OUTPUT {1} ∪ LEGAL_C(G′, xn−2, xn−3, . . . , x1);END. *3C_COLOR*Lemma 2. Let G be a 3-onneted graph not ontaining a K∆(G)+1. Then 3C_COLOR omputesa legal ∆(G)-oloring for G in polynomial time.2.1.2 Coloring onneted graphs ontaining verties of degree less than ∆(G)We now give another algorithm assigning at most ∆(G) olors to the verties of a onnetedgraph with at least one vertex of degree < ∆(G).BEGIN *1V_COLOR*(1) let{1, . . . , ∆(G)} be the set of olors to be used;(2) hoose a vertex v suh that d◦(v) < ∆(G);(3) arrange the verties of G in a sequene (v = x1, x2, . . . , xn) suh thateah vertex xi, i > 2 is adjaent to a vertex xj, j 6 i;*this an be done by BFS starting from v*(4) OUTPUT LEGAL_C(G, xn, xn−1, . . . , x1);END. *1V_COLOR*Lemma 3. Let G be a bionneted graph, not ontaining a K∆(G)+1, with at least one vertexof degree < ∆(G). Then 3C_COLOR omputes a legal ∆(G)-oloring for G in polynomial time.2.1.3 The overall algorithmGiven a oloring, we will all olor-permutation the exhange of a olor i to j and of j to i on allverties olored with these olors (when j has not been used, then olor-permutation between iand j beomes in using j instead of i). We are well-prepared now to speify an algorithm legallyoloring the verties of any graph G by using at most ∆(G) olors.BEGIN *∆_COLOR*(1) ompute all the blos of G;(2) FOR every blo A of G DO(3) IF ∆(G[A]) < 3 THEN(4) order arbitrarily the verties of A, say x1, x2, x3;(5) LEGAL_C(G[A], x1, x2, x3);(6) GOTO (2);(7) FI(8) CASE |A| DO(9) |A| < ∆(G) + 1: olor A with olors 1,...,∆(G) and GOTO (2);(10) |A| = ∆(G) + 1: 1V_COLOR(G[A℄) and GOTO (2);(11) |A| > ∆(G) + 1:
5



(12) IF G[A℄ is 3-onneted THEN 3C_COLOR(G[A℄) and GOTO (2) FI(13) IF G[A℄ is bionneted THEN(14) hoose arbitrarily a vertex x with d◦(x) > 3;(15) IF G[A \ {x}] is bionneted THEN(16) let y ∈ A be suh that d(x,y) = 2;(17) 3C_COLOR(G[A℄,x,y) and GOTO (2);(18) FI(19) IF G[A \ {x}] is not bionneted THEN(20) let B1 and B2 two extremal blos of G;(21) let z1 ∈ B1 and z2 ∈ B2 adjaent to x;(22) 3C_COLOR(G[A℄,z1, z2);(23) FI(24) FI(25) OD(26) OD(27) order the blos in suh a way that eah blo has at most a vertexin ommon with the blos preeding it in the ordering;(29) OUTPUT the union of the olors used by permuting them if neessary;END. *∆_COLOR*Theorem 2. Let G be a onneted graph with ∆(G) > 3 and not ontaining subgraph K∆(G)+1.Then, algorithm ∆_COLOR legally olors the verties of G with at least ∆(G) olors, in polynomialtime.2.2 A ∆(G)/3 approximation ratio for graph-oloringSuppose now that 1_COLOR is an algorithm reeiving an input-graph G and deiding if G is anindependent set and, if yes, oloring its verties with one olor. Obviously, this an be done inpolynomial time. Also, let 2_COLOR be another algorithm deiding if G is bipartite. This an bedone by starting with two olors and by oloring a vertex with one of them and its neighborswith the other one. If at the end all the verties of G are legally olored, then it is bipartite and,moreover, a 2-oloring is disovered. Finally, onsider the following PTAA for C.BEGIN *APPROX_COLOR*1_COLOR(G);2_COLOR(G);
∆_COLOR(G);OUTPUT the smallest of the legal olorings produed;END. *APPROX_COLOR*Theorem 3. ρAPPROX_COLOR 6 ∆(G)/3.3 Towards ratios of o(∆(G))A well-known method for solving numerous NP-hard problems approximately uses the followingshema, denoted by SCHEMA in the sequel:[Phase1℄ optimally solve the linear-programming relaxation of the problem (this an be done inpolynomial time ([5℄));[Phase2℄ round this solution to a feasible (but approximate) solution for the original (integerprogramming) problem. 6



Reently an evolution of the above shema uses an extension of linear-programming relaxations,the so-alled semide�nite programming relaxations ([3, 30℄). As opposed to the formers, thelatters o�er rounding tehniques leading to feasible integer solutions that are guaranteed to bewithin a spei�ed fration to the optimal ones. Semide�nite programming in omputing approx-imate solutions for ombinatorial problems is originally used by Goemans and Williamson ([29℄)for maximum ut and maximum 2-satis�ability problems. Based upon the work of [29℄, Karger etal. ([39℄) devise a randomized approximation algorithm for C ahieving approximation ratio o(∆).Their method an be shortly desribed as follows.3.1 A semide�nite relaxation for graph-oloringConsider a k-olorable graph. Instead of assigning integers (or olors) to the verties of thegraph, a unit vetor ~vi ∈ R
n is assigned to any vertex vi ∈ V , i = 1, . . . , n. In order to apturethe fat that adjaent verties are assigned with di�erent olors, the vetors assigned to adjaentverties have to be di�erent in some spei� (but natural) way. This requirement leads to thevetor k-oloring.Given a graph G = (V, E) of order n and a real k > 1, a vetor k-oloring of G is anassignment of unit vetors ~vi ∈ R

n to any vertex vi ∈ V , suh that for any two adjaent verties viand vj the dot produt of ~vi and ~vj satis�es 〈vi, vj〉 6 −1/(k − 1) (in other words, the anglebetween the vetors orresponding to adjaent verties must be su�iently large).The so-de�ned vetor k-oloring is seen in [39℄ as a kind of relaxation for C that playsthe role that a hypothetial frational k-oloring would play if one used a onventional linear-programming relaxation for the problem. This is justi�ed by the following lemma.Lemma 4. ([39℄)
• Every k-olorable graph has a vetor k-oloring.
• Moreover, for all positive integers k and n with k 6 n + 1, there exist k unit vetors of R

nsuh that the dot produt of any distint pair is −1/(k − 1).Remark that the k vetors of the seond item of lemma 4 ful�ll the spei�ation of the vetor k-oloring (the emphasized proposition just above). Furthermore, one an immediately bijetivelymap these vetors to k distint olors in order to produe a k-oloring of a graph G of order n.Following [Phase1℄ of SCHEMA, one has now to determine a vetor k-oloring of G. Thisan be done using the following auxiliary problem. Given a graph G = (V, E) of order n, amatrix k-oloring of G is an n × n symmetri positive semide�nite matrix M with mii = 1 and
mij 6 −1/(k − 1) for vivj ∈ E. The key-point of the relationship between matrix and vetorolorings of a graph is given by the following lemma.Lemma 5. ([39℄)
• A graph has a vetor k-oloring if and only if it has a matrix k-oloring.
• If a graph has a matrix k-oloring, then a vetor (k + ǫ)-oloring an be onstruted fromthis matrix oloring in time polynomial in n and in log(ǫ−1).
• Conversely, if a graph G has a vetor k-oloring, then a matrix (k + ǫ)-oloring of G anbe onstruted in time polynomial in n and in log(ǫ−1).We have supposed at the beginning of the urrent paragraph that G is k-olorable. Therefore,by the seond item of lemma 4, there exists a vetor k-oloring for G and, by the �rst item
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of lemma 5, there exists a matrix k-oloring of G. This matrix oloring an be onstruted bysolving the following semide�nite optimization problem:
SDP =























min σ
M = {mij} positive semide�nite
mij 6 σ for vivj ∈ E
mij = mji

mii = 1Remark that, by de�nition of the matrix oloring given just above lemma 5, the solution of SDPspei�es the entries of a matrix k-oloring M . Sine G has a vetor (and, by the �rst itemof lemma 5, a matrix) oloring, there exists a solution to SDP with σ∗ = −1/(k − 1). If oneuses a linear-programming method, she/he is able to determine a feasible solution of SDP with
σ 6 −1(k + ǫ − 1), for some arefully hosen ǫ ∈ R. This solution, by the de�nition of thematrix oloring, spei�es a matrix (k + ǫ)-oloring of G. This, by the seond item of lemma 5,an produe a vetor (k + 2ǫ)-oloring of G. In order to simplify presentation, the error ǫ anbe ignored sine it an be made very small as to be irrelevant to the analysis in [39℄. So, thefollowing proposition holds.Proposition 1. ([39℄) Given a k-olorable graph G a vetor k-oloring of G an be determinedin polynomial time.3.2 The rounding phaseOne [Phase1℄ aomplished, one has to proess [Phase2℄ that implies the rounding of the relaxedsolution to a feasible integer one. The original rounding tehnique proposed, alled semi-oloringin [39℄, is randomized and produes an assignment of olors with �relatively few� identiallyolored adjaent verties. This semi-oloring is then transformed into a legal graph-oloring.More formally, a k-semi-oloring of a graph G is an assignment of k olors to at least half of itsverties suh that no two adjaent verties reeive the same olor. Dealing with semi-olorings,the following holds.Lemma 6. ([39℄) If an algorithm SEMICOLOR an kp-semi-olor any subgraph of order pof a graph G in randomized polynomial time (where kp inreases with p), then SEMICOLOR anpolynomially olor the whole graph G with O(kn log n) olors.In other words, a semi-oloring of G an be transformed into a legal oloring by losing onlya logarithmi fator with respet to the olors used for the semi-oloring. The randomizedalgorithm transforming vetor olorings into semi-olorings is not given here. The interestedreader an be referred in [39℄. In any ase, the following an be shown.Proposition 2. ([39℄) For every integer funtion k = k(n), a vetor k-olorable graph G anbe semi-olored with at most O(∆(G)1−(2/k)

√

log ∆(G)) olors in randomized polynomial time.Combination of lemma 6 with the �rst item of lemma 4 and with propositions 1 and 2 impliesthe following.Proposition 3. ([39℄) Any k-olorable graph G of order n an be olored in randomizedpolynomial time with at most O(∆(G)1−(2/k)
√

log ∆(G) log n) olors.Two last points remain to be settled: (i) an the randomized method proposed be transformedinto a deterministi one, and (ii) how one an make this method to run for any graph (reallthat until now the graph is supposed k-olorable2)?2This means that the input of C is a graph G, an integer k 6 n and the information that G is k-olorable.8



For point (i) the answer is found in [44℄. The authors propose there a lever (but long) poly-nomial derandomization of the algorithms in [39℄ ahieving the same approximation guaranteesthan the original (random) ones. On the other hand, for point (ii), the following proedure, thatwill be used later also, an be used. Sine the omplexity of the overall k-oloring algorithm ispolynomial in k, one an run it for all k ∈ {2, . . . n} in this order (multiplying so its worst-aseomplexity by n), and stop it for the �rst k for whih a feasible solution is produed. As it ispointed out in [51℄, this thought proess an be implemented by divide-and-onquer in suh away that the whole omplexity of the derived algorithm will be multiplied not by k but by log k.So, in the light of the above settlements, proposition 3 holds for any graph and the algorithmlaimed runs in deterministi polynomial time.Finally, run both algorithm ∆_COLOR and the shema dealt in the urrent setion (parameter-ized by the algorithms of [39℄, derandomized by the method of [44℄, and extended so as it runsfor any graph by the remark settling point (ii) above), and take �nally the best of the solutionsprodued. Then, the following onluding theorem holds.Theorem 4. C an be approximately solved in polynomial time and in any graph G withinapproximation ratio
ρC 6 min

{

∆(G)

χ(G)
, O

(

∆(G)1−
2
k

√

log ∆(G) log n

χ(G)

)}

.

4 The greedy oloring-algorithm4.1 An exavation shema for graph-oloringWhen one tries to approximately solve C, the �rst algorithm oming in mind is the greedy onedesribed by the following �exavation shema� exeuted with parameters G and an IS-algorithmINDEPENDENT_SET.BEGIN *EXCAVATION*REPEAT
S← INDEPENDENT_SET(G);olor the verties of S with the same not already used olor;remove S from G;UNTIL G beomes empty;OUTPUT X the set of used olors;END. *EXCAVATION*Algorithm EXCAVATION has two interesting properties, expressed by items 1 and 2 of proposition 4below. Item 1 is proved in [31℄, but has been impliitly used in [11, 37, 51℄ and expliitly in [31℄.Item 2 is proved in [36℄ for the ase where S is a maximum independent set and is generalizedin [2℄ for the ase where S is any independent set. Here it is mainly used in setion 8.Proposition 4.1. Any iterative appliation of algorithm INDEPENDENT_SET that omputes an independent setof size ιk(G) = Θ(n1/t), t > 1, in a k-olorable graph G of order n, produes a oloring Xverifying |X| 6 2n/ιk(G).2. ρEXCAVATION 6 lnn/ρINDEPENDENT_SET.
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4.2 Instantiating INDEPENDENT_SET by the greedy algorithmAn interesting polynomial instantiation of the shema desribed above, where the independentset is found via a greedy algorithm, has been studied by Johnson in [37℄. We give in what followsan outline for both the greedy IS-algorithm and the greedy C-algorithm that ensues.BEGIN *GREEDY_IS*
S← ∅;REPEAT

v← argminvi∈V{d
◦(vi)};

S← S ∪ {v};
V← V \ ({v} ∪ Γ(v));
G← G[V];UNTIL V = ∅;OUTPUT S;END. *GREEDY_IS*BEGIN *GREEDY_C*REPEAT
S← GREEDY_IS(G);olor the verties of S with the same non already used olor;
V← V \ S;
G← G[V];UNTIL V = ∅;OUTPUT the set XJ of used olors;END. *GREEDY_C*The omplexity of algorithm GREEDY_IS is O(|E|) and will be alled at most n times withinthe REPEAT loop of algorithm GREEDY_C, eah suh all stritly dereasing V . Hene, the overallworst-ase omplexity of GREEDY_C is O(n|E|).Let us denote by V (ℓ) the vertex-set of the urrent, surviving, graph at the beginning ofthe ℓth iteration of GREEDY_C. The key-point for the study of its approximation performane is thefollowing. If a graph is k-olorable, then, at eah iteration ℓ of GREEDY_C, d◦(vj) 6 |V |−⌈|V |/k⌉,where vj is the minimum-urrent-degree vertex hosen by GREEDY_IS. Therefore, the vertiesolored during ℓth iteration (i.e., the onstruted maximal independent set during this iteration)will be of size at least logk |V |. This leads to the following lemma, proved by Wigderson in [51℄.Lemma 7. ([51℄) Algorithm GREEDY_C olors any k-olorable graph G with |XJ | 6 3n/ logk nolors.By lemma 7, the approximation ratio of algorithm GREEDY_C in a χ(G)-hromati graph beomes:

ρGREEDY_C 6
|XJ |

χ(G)
6

1

χ(G)

3n log χ(G)

log n
6

n

log n
(2)leading so to the following onluding theorem.Theorem 5. ([37℄) ρGREEDY_C 6 n/log n.
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5 Improving the ratio for graph-oloringThe improvement of the approximation ratio of C has remained open for 9 years until 1982 whenWigderson has shown in [51℄ how to obtain better performane guarantees. His method, outlinedin what follows, is based upon the following observations:1. the neighborhood of any vertex in a k-olorable graph is (k − 1)-olorable;2. 2-oloring is polynomial (see setion 2).These observations (the seond being a termination ondition) lead, as we will see, to a niereursive approximation strategy for C.5.1 Coloring k-olorable graphsWe �rst present the following proedure, alled with parameters k and G and i (where i meansthat G will be olored with olors i, i + 1, . . .), that olors a k-olorable graph with �relatively�few olors. Set, for k = 2, 3, . . ., fk(n) = n{1−(1/(k−1))}.BEGIN *k_COLOR*(1) CASE k DO(2) k = 2: OUTPUT 2_COLOR(G);*verties of G will be olored with olors i and i+1*(3) k > log|G|: olor V(G) with a distint olor per vertex;*verties of G are assigned olors i, i+1,...,i+|G|-1*(4) k 6 log|G|: WHILE ∆(G) > ⌈fk(|G|)⌉ DO(5) let v be suh that d◦(v) = ∆(G);(6) H← G[ΓG(v)];(7) {i, i + 1, . . . , i + j− 1} ← k_COLOR(k − 1, H, i);(8) olor v with i+j;(9) i← i + j;(10) G← G[V \ (ΓG(v) ∪ {v})];(11) OD(12) {i, i + 1, . . . , } ← ∆_COLOR(G);(13) OUTPUT Xk_C the set of used olors;(14) ODEND. *k_COLOR*In the initial graph, algorithm is alled as k_COLOR(k,G,1). Line (12) of k_COLOR will beexeuted on graphs with ∆(G) < ⌈fk(|G|)⌉, using so less than ⌈fk(|G|)⌉ unused olors. Thealgorithm alled in line (2) is the one deiding if a graph is bipartite, and if yes, omputing a2-oloring of its verties.Lemma 8. ([51℄) k_COLOR assigns, in O(k(n + |E|)), the verties of any k-olorable graphwith at most 2k⌈fk(n)⌉ = 2k⌈n(1−(1/(k−1)))⌉ olors.5.2 Expanding k_COLOR to run for all graphsAs we have already mentioned at the end of paragraph 3.2, one an expand algorithm k_COLOR(destinated to olor k-olorable graphs) to run for any graph. Reall that she/he only has torun it for all k ∈ {2, . . . n} in this order, and stop it for the �rst k for whih proedure k_COLORprodues a feasible solution. This an be implemented as follows.
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BEGIN *Ek_COLOR*(1) FOR p← 1 TO ⌈logn⌉ DO(2) X← k_COLOR(2p, G, 1);(3) IF X is feasible THEN p0 ← p and GOTO (5) FI;(4) OD(5) apply binary searh in {2p0−1 + 1, . . . 2p0} to find the least k← k0for whih k_COLOR produes a legal oloring;(6) OUTPUT XE ← k_COLOR(k0, G, 1);END. *Ek_COLOR*Sine, given a graph G:(i) the exeution of line (2) of algorithm Ek_COLOR produes a legal oloring for all k > χ(G),(ii) G is always χ(G)-olorable, and(iii) k0 is the smallest k for whih the exeution of line (5) will produe a feasible oloring,the following lemma holds.Lemma 9. ([51℄) k0 6 χ(G).Combining lemmas 8 and 9, we get the following onluding theorem for the approximationperformane of algorithm Ek_COLOR.Theorem 6. ([51℄) Ek_COLOR olors, in O((n + |E|)χ(G) log χ(G)), the verties of G with atmost 2χ(G)⌈n(1−(1/(χ(G)−1)))⌉ olors.5.3 The whole improvementBy theorem 6, ρEk_COLOR 6 2⌈n(1−(1/(χ(G)−1)))⌉ and funtion f(x) = 2⌈n(1−(1/(x−1)))⌉ is inreasingin x. On the other hand, by lemma 7 and expression (2), ρGREEDY_C 6 3n log χ(G)/(χ(G) logn)and funtion g(x) = 3n log x/(x log n) is dereasing in x. Let us ombine the two algorithms toprodue the following �nal algorithm.BEGIN *W_COLOR*
XE ← Ek_COLOR(G);
XJ ← GREEDY_C(G);OUTPUT XW = argmin{|XE|, |XJ|};END. *W_COLOR*Of ourse algorithm W_COLOR omposed by polynomial omponent-algorithms is also polynomial.A little algebra shows that the intersetion point of the urves f(x) and g(x) is in theneighborhood of x = ⌈n log log n/2 log n⌉. Algorithm Ek_COLOR is superior to GREEDY_C for

χ(G) 6 log n/ log log n while, for χ(G) > log n/ log log n GREEDY_C is more performant thanEk_COLOR. For χ(G) = log n/ log log n, both ρEk_COLOR and ρGREEDY_C are of O(n log2 log n/log2n)and the following theorem onludes the setion.Theorem 7. ([51℄) ρW_COLOR 6 3n log2 log n/ log2 n.
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6 A better approximation ratio for oloringSeven years later, Berger and Rompel, using thought proesses quite lose to the ones adoptedin [51℄ (i.e., oloring �rst k-olorable graphs, extending the result to work for every graph, thehromati number of whih belongs to a ertain interval of values, and next omposing thealgorithm produed with another well-working in graphs with hromati-number values out ofthe interval onsidered), perform, in [11℄, a further notable improvement of the approximationratio of C.The key-observation in [11℄ is a kind of re�nement of the respetive observation of [37℄.Reall that, as we have seen in setion 4, Johnson observed that if G is k-olorable, then thereexists an independent set of size at least ⌈|V |/k⌉ and, onsequently, any node v in this sethas d◦(v) 6 |V | − ⌈|V |/k⌉; this observation enabled him, using algorithm GREEDY_IS, to �ndan independent set S of O(logk |V |) small-degree verties to whih gave the same olor. There�nement lying at the heart of the method proposed in [11℄ is that any subset S′ of S veri�es
|Γ(S′)| 6 |V | − ⌈|V |/k⌉. This allows them to somewhat modify algorithm GREEDY_IS to hooseat eah step a set (instead of one) of O(logk |V |) small-degree verties that are independent andhave small neighborhood. They are so able to legally olor O[(logk |V |)

2] verties with the sameolor.Let us now outline how Berger and Rompel produe feasible olorings for k-olorable graphs.We onsider, without loss of generality, that the olors are drawn from the set {1, 2, . . .}.6.1 Improving GREEDY_C in k-olorable graphsConsider the following algorithm k_COLORING parameterized by an integer k, a �xed α > 0 and agraph G. The �rst ondition in line (10) reeives TRUE if the set S is an independent set, FALSEotherwise.BEGIN *k_COLORING*(1) IF k > min{n1/2, nα} THEN OUTPUT GREEDY_C(G) FI(2) m← ⌊αlogkn⌋;(3) c← 1;(4) UNCOLORED← V;(5) WHILE |UNCOLORED| > km DO(6) U← UNCOLORED;(7) WHILE |U| > km DO(8) H← G[U];(9) FOR S ⊆ H suh that |S| = m DO(10) IF S AND |ΓH(S)| 6 |U| − (|U|/k) THEN GOTO (13) FI(11) OD(12) OUTPUT �G not k-olorable�;(13) olor S with olor ;(14) U← U \ [S ∪ ΓH(S)];(15) UNCOLORED← UNCOLORED \ S;(16) OD(17) c← c + 1;(18) OD(19) olor the UNCOLORED-verties with olors , ..., +|UNCOLORED|-1;*assigns an unused olor per UNCOLORED-vertex*(20) OUTPUT the olors used;END. *k_COLORING*
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Remark 1. Line (9) in algorithm k_COLORING an be implemented in the following way:partition the verties of U into ℓ = ⌊|U|/km⌋ sets Bi, i = 1, . . . , ℓ, suh that
Bj, j = 1, . . . , ℓ− 1, ontains km elements and
Bℓ ontains the remaining ones (km 6 |Bℓ| < 2km);FOR j← 1 T0 ℓ DO FOR S ⊆ Bj suh that |S| = m DO GOTO line (10);By the pigeonhole priniple, at least one of the sets Bi will ontain a set S of size m and this setan be found by exhaustively searhing the C

kα logk n
α logk n = O(n) subsets of eah Bi. Consequently,implementation of line (9) of algorithm k_COLORING an be done in polynomial time.Theorem 8. ([11℄) For any α > 0, algorithm k_COLORING olors, in O[n3+3α/(k logk n)], theverties of any k-olorable graph with 2n/(α log2

k n) + O(n/ log3
k n) olors.6.2 Modifying algorithm k_COLORING to run on all graphsThe following algorithm (parameterized by α and G) modi�es, in the spirit of [51℄, algorithmk_COLORING to work on any graph. Algorithms 1_COLOR and 2_COLOR alled by k_COLORING areas in setion 2.BEGIN *Ek_COLORING*(1) IF 1_COLOR(G) feasible THEN OUTPUT 1_COLOR(G) FI(2) IF 2_COLOR(G) feasible THEN OUTPUT 2_COLOR(G) FI(3) FOR p← 1 TO ⌈logn⌉ DO(4) X← k_COLORING(2p, α, G);(5) IF X is feasible THEN p0 ← p and GOTO (7) FI;(6) OD(7) apply binary searh in {2p0−1 + 1, . . . 2p0} to find the least k← k0for whih k_COLORING produes a legal oloring;(8) OUTPUT XE ← k_COLORING(k0, α, G);END. *Ek_COLORING*The omplexity of algorithm Ek_COLORING is O(n4+3α/ log n) (it alls at most n − 2 timesk_COLORING). Moreover, with the same arguments as the ones for lemma 9, k0 6 χ(G). So,the oloring produed satis�es

|XE | 6
2n

α log2
χ(G) n

+ O

(

n

log3
χ(G) n

) (3)
6.3 The whole improvementReall that ρEk_COLOR 6 2⌈n(1−(1/(χ(G)−1)))⌉ and this bound is inreasing in χ(G). Onthe other hand, by theorem 8 and expression (3), ρEk_COLORING 6 2n/(αχ(G) log2

χ(G) n) +

o(n/ log2
χ(G) n) and this last bound is dereasing in χ(G). For χ(G) = O(⌈log n/ log log n⌉),both bounds are at most O(n log3 log n/ log3 n). The following algorithm, BR_COLOR, ombinesalgorithms Ek_COLOR and Ek_COLORING into an algorithmi shema for C. Its running time isof O(max{n(4+(21/η))/ log n, (n + |E|)χ(G) log χ(G)}) ([11℄).BEGIN *BR_COLOR*fix a large η > 0;OUTPUT XE ← Ek_COLORING(7/η, G);OUTPUT X′E ← Ek_COLOR(G);OUTPUT argmin{|XE|, |X

′
E|};END. *BR_COLOR* 14



Theorem 9. ([11℄) ρBR_COLOR 6 ηn log3 log n/ log3 n.Let us observe that algorithm BR_COLOR has a fairly serious drawbak sine its exeution timerequirements (being polynomial in n for �xed η) is exponential in η. This means that the betterthe approximation ratio ahieved, the higher its exeution time.7 A still better approximation ratio for graph-oloringIn 1993, a further improvement of oloring's approximation ratio has been published by Halldórs-son in [31℄. The spirit of this work is quite similar to the previous ones (exept the one of [42℄),i.e., one olors a graph by exavating independent sets, but the used IS-algorithms are quitedi�erent from the greedy one used until then. It is well-known to people working on the de-sign of approximation algorithms that very frequently the e�ieny of an algorithm stronglydepends on the value of the optimal solution of an instane. Some algorithms work well forsmall optimal values, while some other ones work better on instanes with large optimal values.The key idea of [31℄ is to ombine into an exavation shema two IS-algorithms, one of them(OPT-CLIQUE_REMOVAL) behaving e�iently in graphs with small hromati numbers, while theother one (COLOR_IS) behaving well in graphs with large hromati numbers. Simultaneous run-ning, at eah iteration of the exavation shema, of both algorithms and oloring largest amongthe independent sets omputed with an unused olor leads to an improved ratio for any valueof χ(G).7.1 Finding large independent sets . . .We �rst brie�y desribe the two IS-algorithms, OPT-CLIQUE_REMOVAL and COLOR_IS, used in [31℄for exavating independent sets.The idea of using the former is based upon the fat that independent sets in graphs withoutliques or with small liques are larger than independent sets in general graphs. Furthermoresatisfatorily large independent sets (ahieving improved approximation ratios) an be polyno-mially found there (see for example [49, 50℄, where the author deals with triangle-free graphs).Hene, given a graph G, one an redue it by removing liques of a ertain size ℓ. In the survivinggraph (that is ℓ-lique-free), in partiular if its size remains large (in some sense), she/he anapply some e�ient algorithm omputing a �large� independent set. Exavation of suh �large�independent sets is possible as long as the initial and the onseutive (surviving) graphs ontain�few� disjoint liques. Of ourse, if large independent sets are exavated, by item 1 of proposi-tion 4, the graph an be olored with relatively few olors. On the other hand, if the initial graphontains many disjoint liques, then α(G) must be small and, by expression (1), χ(G) must belarge. In both ases the approximation ratio for C an so be improved.Algorithm COLOR_IS originally operates in k-olorable graphs. Informally, it reursively �ndsan independent set S of a ertain size and takes the union of S with the result of its reursiverunning on the graph G[S ∩ Γ(S)]. This is done as long as the order of the surviving graphexeeds a �xed threshold t. As soon as the order of the surviving graph beomes smaller than t,OPT-CLIQUE_REMOVAL is alled. The �nal independent set is the union of the independent setsreursively omputed by COLOR_IS together with the one omputed by OPT-CLIQUE_REMOVAL.Running COLOR_IS for any value of k and retaining the best result, one an obtain an independentset at least as good as the result of the exeution COLOR_IS(χ, G), and then using item 1 ofproposition 4, one an hope to ompute a small oloring for G.
15



7.1.1 . . . By removing liquesWe �rst present an intermediate algorithm, originally devised in [16℄, and used, diretly orundiretly, by both OPT-CLIQUE_REMOVAL and, COLOR_IS. It is based upon the following resultdue to Ramsey.Theorem 10. For any pair (s, t) of integers, there is an integer n for whih every graph oforder n ontains either a lique Ks, or an independent set S of size t.If we denote by R(s, t) the minimal value of n for whih the above theorem holds, then the bestknown upper bound for R(s, t), due to Erdös and Szekeres ([25℄), is R(s, t) 6 Cs−t+2
t−1 . Let us set

Cs−t+2
t−1 = r(s, t) for all positive integers s and t (by onvention, if one of s and t is negative orzero, then Cs−t+2

t−1 = 1), and let ts(n) = min{t : r(s, t) > n}.Algorithm RAMSEY (parameterized by a graph G and an integer s) developed in [16℄ andstrongly inspired by the proof of the upper bound for R(s, t) ([25℄) �nds, in time O(|E|), either alique K of order s, or an independent set S of size t. Moreover, r(s, t) > n and s.t > c(log n)2,for some onstant c.BEGIN *RAMSEY*
S← ∅;
K← ∅;WHILE |V(G)| > 1 DOhoose v ∈ V(G);

t← ts(n);IF |Γ(v)| > r(s− 1, t) THEN K← K ∪ {v};
G← G[Γ(v)];
s← s− 1;ELSE S← S ∪ {v};
G← G[V \ ({v} ∪ Γ(v))];FIODOUTPUT K← K ∪ V(G);OUTPUT S← S ∪ V(G);END. *RAMSEY*It is next ombined with a greedy mehanism of lique removal and the following IS-algorithm(parameterized by a graph G and an integer s) is derived in [16℄.BEGIN *CLIQUE_REMOVAL*

(S, K)← RAMSEY(G, s);WHILE |K| > s DO
G← G[V \ K];
(S, K)← RAMSEY(G, s);ODOUTPUT S;END. *CLIQUE_REMOVAL*In order that the �nal oloring-algorithm is the best possible, one needs to �nd the value of s forwhih the approximation ratio of algorithm CLIQUE_REMOVAL is the best possible (in other words,the independent set omputed is the largest possible). Then, one an follow the thought proessoriginally proposed in [51℄, i.e., one an use binary searh to de�ne a �good� s. This leads tothe following �nal version of CLIQUE_REMOVAL, alled OPT-CLIQUE_REMOVAL and parameterized16



by a graph G, of omplexity O(|E|n log n), where we denote by ρi the approximation ratio ofCLIQUE_REMOVAL(G,i).BEGIN *OPT-CLIQUE_REMOVAL*guess an s;
S← CLIQUE_REMOVAL(G, s);IF ρs > (n/s2)(1/s) THEN RETURN S FIREPEAT run CLIQUE_REMOVAL(G,p) with p = 2ℓ, ℓ = ⌈logk⌉, . . .;UNTIL the first ℓ← ℓ0 for whih ρp > (n/p2)(1/p);REPEAT apply binary searh in {2ℓ0−1 + 1, . . . 2ℓ0};UNTIL the least p← p0 for whih ρpO > (n/p20)

(1/p0);OUTPUT S← CLIQUE_REMOVAL(G, p0);END. *OPT-CLIQUE_REMOVAL*Lemma 10. ([31℄) Running algorithm OPT-CLIQUE_REMOVAL on a graph G of order n with
α(G) > tn, t > 1/ log n, returns an independent set of size at least e−1nt/t.7.1.2 . . . In k-olorable graphsLet us now onsider the seond IS-algorithm (parameterized by an integer k and by a graph G)presented in [31℄ and running in k-olorable graphs. As for algorithm k_COLORING in setion 6,the �rst ondition in line (3) reeives TRUE if the set S is an independent set, FALSE otherwise.BEGIN *k-COLOR_IS*(1) IF |V| = 1 THEN OUTPUT V FI;(2) FOR S ⊆ V suh that |S| = logkn DO(3) IF S THEN(4) IF |G[V \ (S ∪ Γ(S))]| > nlogn/(2kloglogn)(5) THEN OUTPUT S ∪ k-COLOR_IS(k, G[V \ (S ∪ Γ(S))]);(6) ELSE I← OPT-CLIQUE_REMOVAL(G[V \ (S ∪ Γ(S))]) ∪ S;(7) IF |I| > (logn)3/(6loglogn) THEN OUTPUT S ∪ I FI;(8) FI(9) FI(10) OD(11) OUTPUT G not k-olorable;END. *k-COLOR_IS*Note that remark 1 holds also for algorithm k-COLOR_IS. Consequently, the exeution of the FORloop of line (2) is performed in polynomial time.We an modify algorithm k-COLOR_IS to work for all graphs (i.e., for any k) produing sothe following IS-algorithm (parameterized by G) of omplexity O(n|E|χ(G)). The IF-onditionin this algorithm reeives TRUE if Sk is independent.BEGIN *COLOR_IS*FOR k← 1 TO n DO

Sk ← k-COLOR_IS(k, G);IF Sk THEN store Sk FIOUTPUT the best among the Sk's stored;ODEND. *COLOR_IS*Lemma 11. ([31℄) The appliation of algorithm COLOR_IS in G produes an independent setof size at least logχ(G) n log n/(2max{log(2χ(G) log log n/ log n), 1}).
17



7.2 The overall oloring-algorithmWe are ready now to outline the overall C-algorithm of [31℄, the worst-ase omplexity of whihis O(n2|E|).BEGIN *H_COLOR*REPEAT
SCR← OPT-CLIQUE_REMOVAL(G);
SCS← COLOR_IS(G);
S← argmax{|SCR|, |SCS|};olor the verties of S with the same unused olor;
V← V \ S;
G← G[V \ S];UNTIL V = ∅;OUTPUT the set of the olors used;END. *H_COLOR*Suppose �rst χ(G) 6 log n/(2 log log n). Then, by lemma 10, algorithm OPT-CLIQUE_REMOVALguarantees an independent set of size

|SCR| > e−1 n
1

χ(G)

1
χ(G)

= e−1χ(G)n
1

χ(G) .

By item 1 of proposition 4, an exavation shema using OPT-CLIQUE_REMOVAL (algorithm H_COLORis instantiation of suh a shema) omputes a oloring of size
|X| = O

(

n

e−1χ(G)n
1

χ(G)

)

= O

(

n
1− 1

χ(G)

χ(G)

) (4)
On the other hand, if χ(G) > log n/(2 log log n), then by lemma 11, algorithm COLOR_IS guar-antees an independent set of size

|SCS| >
log2 n

log χ(G)

1

2max
{

log
(

2χ(G) log log n
log n

)

, 1
} .

By item 1 of proposition 4, algorithm H_COLOR (using COLOR_IS) will produe a oloring with
|X| = O





n log χ(G) max
{

log
(

2χ(G) log log n
log n

)

, 1
}

log2 n



 (5)
The orresponding ratios are the right-hand sides of expressions (4) and (5) divided by χ(G), theformer being dereasing and the seond inreasing in χ(G). For χ(G) = log n/(2 log log n), thevalues of the two ratios are both of O(n log2 log n/ log3 n) and the following theorem onludesthe setion.Theorem 11. ([31℄) ρH_COLOR = O(n log2 log n/ log3 n).
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8 A further improvement of the performane guarantee for the approxima-tion of graph-oloringRevisit for a while algorithm OPT-CLIQUE_REMOVAL of setion 7. In [23℄, the following propositionis proved.Proposition 5. ([23℄) For every funtion ℓ suh that, ∀x > 0, 0 < ℓ(x) ≤ log log x, there existonstants κ and K suh that algorithm OPT-CLIQUE_REMOVAL omputes, for every graph G of or-der n > κ, an independent set S suh that if α(G) > ℓ(n)n log log n/ log n, then |S| > K logℓ(n) n.In what follows, we denote by EXHAUST, an exhaustive-searh algorithm for C. Without loss ofgenerality we suppose that verties are olored with 1, 2, . . . Moreover, let K and κ be as in thequoted proposition above.BEGIN *COLOR*(1) IF n 6 κ THEN OUTPUT EXHAUST(G) FI(2) S← OPT-CLIQUE_REMOVAL(G);(3) i← 1;(4) X̂← ∅;(5) V(Ĝ)← ∅;(6) WHILE |S| > Klogℓn DO(7) olor S with olor i;(8) V(Ĝ)← V(Ĝ) ∪ S;(9) Ĝ← G[V(Ĝ)];(10) X̂← X̂ ∪ {i};(11) i← i + 1;(12) G← G[V \ S];(13) IF G = ∅ THEN OUTPUT X̂ FI(14) S← OPT-CLIQUE_REMOVAL(G);(15) OD(16) ~X← ∆_COLOR(G);(17) OUTPUT X← X̂ ∪ ~X;END. *COLOR*Theorem 12.
ρC 6 max

{

2n

k logℓ(n)−1 n
,
2∆(G)ℓ(n) log log n

log n

}

.

Proof. Obviously, if line (1) of algorithm COLOR is exeuted, then it returns a minimum oloringfor G in polynomial time. The WHILE-loop of the algorithm above (lines (6) to (15)) is anappliation of EXCAVATION(G,OPT-CLIQUE_REMOVAL). Observe also that, for every iteration i ofthe WHILE-loop, if we denote by Gi the graph G[V \ V (Ĝ)] (G1 = G), then
ρOPT-CLIQUE_REMOVAL (Gi) >

K logℓ(|Gi|) |Gi|

|Gi|
(6)

Then by item 2 of proposition 4 and by expression (6):
ρEXCAVATION

(

Ĝ
)

6

ln
∣

∣

∣Ĝ
∣

∣

∣

K logℓ(|Ĝ|) |Ĝ|
|Ĝ|

=
log
∣

∣

∣Ĝ
∣

∣

∣

log eK logℓ(|Ĝ|) |Ĝ|
|Ĝ|

6

∣

∣

∣Ĝ
∣

∣

∣

k logℓ(|Ĝ|)−1
∣

∣

∣Ĝ
∣

∣

∣

(7)
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Set G̃ = G[V \ V (Ĝ)] (in other words, G̃ is the subgraph of G input of algorithm ∆_COLOR inline (16)). Then, by proposition 5 and expression (1), appliation of ∆_COLOR in G̃ will omputea set X̃ of olors verifying
ρ∆_COLOR

(

G̃
)

=

∣

∣

∣X̃
∣

∣

∣

χ
(

G̃
) 6

∆
(

G̃
)

log|G̃|
ℓ(|G̃|) log log|G̃|

=
∆
(

G̃
)

ℓ
(∣

∣

∣G̃
∣

∣

∣

)

log log
∣

∣

∣G̃
∣

∣

∣

log
∣

∣

∣G̃
∣

∣

∣

(8)
The following holds for the set X of olors omputed by algorithm COLOR:

|X| =
∣

∣

∣X̂
∣

∣

∣+
∣

∣

∣X̃
∣

∣

∣ 6 ρEXCAVATION

(

Ĝ
)

χ
(

Ĝ
)

+ ρ∆_COLOR

(

G̃
)

χ
(

G̃
)

6 max
{

ρEXCAVATION

(

Ĝ
)

, ρ∆_COLOR

(

G̃
)}(

χ
(

Ĝ
)

+ χ
(

G̃
)) (9)Obviously, both χ(Ĝ) and χ(G̃) are smaller than χ(G). So, using expressions (7), (8 and (9),one gets

ρCOLOR =
|X|

χ(G)
6 max
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k logℓ(|Ĝ|)−1
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6 max

{

2n

k logℓ(n)−1 n
,
2∆(G)ℓ(n) log log n

log n

} (10)
This ompletes the proof of the theorem.As we have already seen, in terms of n the best known approximation ratio for Cis O(n log2 log n/ log3 n) (setion 7) and the very tight analysis of [31℄ does not allow improve-ment of this ratio even in partiular lasses of graphs. Let ℓ > 5 and suppose �rst that themaximum in expression (10) is realized by the term O(n/ logℓ−1 n). Then, for graphs with
∆(G) = O(n/ logℓ−2 n), C is approximable within ratio O(n/ logℓ−1 n) and theorem 12 improvesthe ratio of [31℄ by a fator Ω(log2 log n logℓ−4 n).Revisit now the ratio in theorem 4 and remark that the �rst funtion is dereasing in χ(G),while the seond one is inreasing for χ(G) 6 2 log ∆(G) and dereasing for χ(G) > 2 log ∆(G).
• If χ(G) 6 2 log ∆(G), the ratio expression in theorem 4 attains its minimum value whenthe two terms are equal, in other words when (∆(G))2/χ(G) = Θ(

√

log ∆(G) log n), i.e.,when χ(G) = Θ(log ∆(G)/ log log n). In this ase, the minimum and therefore the value ofthe ratio guaranteed by the expression in theorem 4 beome O(∆(G) log log n/ log ∆(G)).On the other hand, by theorem 12, when ∆(G) = Ω(n/(logℓ−2 n log log n)), the ratio
O(∆(G) log log n/ log n) is always ahieved independently on the values of χ(G). Hene,for ∆(G) > n/ logℓ−2 n and χ(G) 6 2 log ∆(G), the result of [39℄ (seond term of the ratioin theorem 4) is improved by a fator log n/ log ∆(G).

• If χ(G) > 2 log ∆(G) (and ∆(G) > n/ logℓ−2 n), then the ratio of theorem 4 is boundedabove by O((∆(G))1−(2/ log ∆(G)) log n/
√

log ∆(G)), while the ratio of COLOR remainsbounded above by O(∆(G) log log n/ log n). Therefore, in this ase also, algorithm COLORdominates the one of theorem 4.Corollary 1.
• For ℓ > 1, C is approximable within O(n/logℓ−1 n) in graphs with maximum degree atmost n/ logℓ−2 n log log n; 20



• C is approximable within O(∆(G) log log n/ log n) in graphs with maximum degree at least
n/ logℓ−2 n log log n.Remark �nally that ratio ∆(G)/χ(G) an always be ahieved if after the �rst line of COLORalgorithm ∆_COLOR(G) is exeuted and if the minimum between the solution omputed by thisall and the set X̂ ∪ X̃ is �nally retained. In this ase, the ratio ahieved is

min

{

∆(G)

χ(G)
, max

{

O

(

n

logℓ−1 n

)

, O

(

∆(G) log log n

log n

)}}

.

9 Inapproximability results9.1 Negative results via graph-theoreti gap tehniquesHistorially, the �rst negative approximation result about C is the one a�rming that no PTAAan guarantee approximation ratio stritly smaller than 4/3. This result an be obtained byappliation of the following more general theorem.Theorem 13. ([28℄) Let Π be a minimization problem having all solution values in IN+,and suppose that, for some �xed κ ∈ IN+, the deision-problem Πκ: �given an instane I of Π,is OPT(I) 6 κ?� is NP-omplete. Then, unless P = NP, no PTAA A for Π an guarantee
ρA < 1 + (1/κ). As a onsequene, Π annot be solved by a PTAS.Really, onsider a problem Π verifying the hypotheses of the theorem and suppose that thereexists a PTAA A guaranteeing, ∀I, ρA(I) = A(I)/OPT(I) < (κ + 1)/κ. Consider also a typialinstane I of Π. We will show how A an be used to solve Πκ in polynomial time. We run A on I.Then, if:
A(I) > κ + 2, the inequality A(I) < ((κ+1)/κ)OPT(I) leads to OPT(I) > κ(κ+2)/(κ+1) > κand A answers �no� for Πκ;
A(I) 6 κ, in this ase OPT(I) 6 A(I) 6 κ and A answers �yes� for Πκ;
A(I) = κ + 1, the expression κ + 1 = A(I) < ((κ + 1)/κ)OPT(I) gives OPT(I) > κ and Aanswers �no� for Πκ.Consequently, given A(I) (obtained in polynomial type following the hypothesis on A), one ansolve Πκ in polynomial time, a ontradition.The result of theorem 13 has a diret appliation in C. In fat, sine deiding if a graph is3-hromati (denote this problem by C3) is NP-omplete, C annot be approximated within aratio 4/3, unless P = NP; so, we get the following orollary.Corollary 2. No PTAA for C an guarantee ratio stritly smaller than 4/3, unless P 6= NP.Consequently, C annot be solved by a PTAS.Always in [28℄, the above result is further strengthened to apply even to asymptoti ratios andthe following theorem holds.Theorem 14. ([28℄) No PTAA A for Π an guarantee ρ∞A < 4/3 for C, unless P = NP.The proof of the above theorem is based upon a lassial tehnique, that an be seen as a polyno-mial redution of a problem Π′ to a problem Π, establishing that if Π is onstant-approximableby an algorithm A, then a gap between the values of A(I) would allow us to orretly answer �yes�or �no� about the deision-version of Π′. For the ase of theorem 14, the key-idea for the proposed
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redution is the onstrution of a kind of graph-omposition (or graph-produt) where, given twographs G1 and G2, their omposition graph G1[G2] an be produed by replaing eah vertexof G1 by a opy of G2 and then replaing eah edge of G1 by a omplete bipartite graph joiningevery vertex in the opy representing to one endpoint to every vertex orresponding in the opyorresponding to the other endpoint. So, if we onsider an instane G of C3, by onstruting,for a su�iently large m, the omposition G̃ = Km[G], then we an prove that following thevalues of the oloring-solution provided by a hypothetial onstant-ratio PTAA for C in G̃, onean orretly determine if G is 3-hromati or not.In [27℄, based upon a �ner very nie gap-tehnique, the approximation-bound of theorem 14is non-trivially improved and the following result is proved.Theorem 15. ([27℄) No PTAA A for Π an guarantee ρ∞A < 2 for C, unless P = NP.9.2 Negative results via interative proofsThe result of theorem 15 remained for long years the strongest one about C. But in 1991, thenotion of transparent proof was introdued by Babai et al. ([7℄) and has generated the exitingonept of probabilistially hekable proofs or interative proofs. Shortly, in language-theoreti(and hene in omplexity-theoreti) terms, an interative proof system is a kind of partiularonversation between a prover (P) sending a string ℓ, and a veri�er (V) aepting or rejeting it;this system reognizes a language L if, (i) for any string ℓ of L (sent by P), V always aepts it,and (ii), for any ℓ /∈ L, neither P, nor any imposter substituting P, an make V aept ℓ withprobability greater than 1/3. An alternative way of seeing this type of proofs is as maximizationproblems for whih the objetive is to �nd strategies (solutions) maximizing the probabilitythat V aepts ℓ.Interative proofs have produed novel very �ne haraterizations of the set of NP languages,giving rise to the development of very sophistiated gap-tehniques (drawn rather in an alge-brai spirit than in a graph-theoreti one) that lead to extremely important orollaries in theseemingly unrelated (to the one of probabilistially hekable proofs) domain of polynomial ap-proximation theory. The most important among these orollaries, that has onstituted a kindof break-through for the ahievement of negative answers for numerous open problems in poly-nomial approximation, is the one of Arora et al. ([4℄) that no MAX-SNP-hard problem admitspolynomial time approximation shema. The lass MAX-SNP is introdued by Papadimitriou andYannakakis in [47℄ and, informally, is a lass of problems admitting PTAAs with onstant ratio.The ompleteness of a partiular problem in MAX-SNP, holding under a speial kind of ratio-preserving redution, alled L-redution in [47℄, means that if this problem admits a PTAS, thenso do all the problems in MAX-SNP.For the ase of C, Lund and Yannakakis, inspired from thought proesses and tools developedin [4℄, prove in 1992 the following theorem.Theorem 16. ([43℄) There exists η > 0 suh that it is NP-hard to approximately solve Cwithin standard-approximation ratio nη.Theorem 16 does not preise values for fator η (alled hardness threshold in the literature).Nevertheless, this result has the great merit to use interative proof systems dealing with mini-mization problems, while these systems seem to be (intuitively) better-adapted for maximizationones.Subsequent strengthenings of the above negative results, obtained thanks to haraterizationsof NP �ner than the ones of [4℄, have been performed by Bellare and Sudan in [9℄ and inreased thefator η. In [9℄, several suh fators under several omplexity theory hypotheses are provided.For instane, η = 1/10 under the hypothesis NP 6⊆ oRP̃, η = 1/13 under the hypothesis22



oRP 6= NP, η = 1/14 under the hypothesis P 6= NP (for the de�nition of the omplexity lassesmentioned, see [38, 46℄). In [8℄, further strengthenings are obtained, always using haraterizationof omplexity lasses via interative proofs. The main results providing the best known hardnessfators asymptotially di�erent from both 0 and 1 (in any ase η ∈]0, 1[) are the ones of thefollowing theorem.Theorem 17. C annot be approximated:
• within ratio n1−ǫ for any onstant ǫ > 0 unless NP ⊆ oRP ([26℄);
• within ratio n(1/5)−ǫ for any ǫ > 0, assuming NP 6= oRP ([8℄);
• within ratio n(1/7)−ǫ for any ǫ > 0, assuming P 6= NP ([8℄).

Part IIGraph-oloring and di�erential approximation:maximizing the number of unused olors10 A few words about the worst-value solution for graph-oloringThe δ-framework has been axiomatized in [21℄(although it has marginally and oasionally beenused by some researhers, f. [6℄, sine 1980, this use was restrited to partiular problems).Key-requirement of the δ-framework is the stability of any adopted approximation ratio withrespet to the a�ne transformation of the objetive funtion. In what follows, we all a�ne-equivalent problems for whih the objetive funtion of the former is an a�ne transformationof the objetive funtion of the latter. A�ne transformation is very natural and frequent inombinatorial optimization (the pair independent set � vertex overing is the most known butnot the only example of suh a transformation), and the stability of the approximation ratiounder this type of transformation is not taken into aount in the ρ-framework.We give in what follows polynomial di�erential-approximation results for C. As we will see,in this framework C is well-approximable sine one sueeds to devise onstant-ratio DPTAAs.But �rst, let us make some remarks that will immediately introdue an information about theworst-value solution of an instane of C (reall that in di�erential-approximation ratio intervenes,exept the values of the approximate and of the optimal solution, the value of the worst aseone).Let A be the edge-vertex inidene matrix of G. In order to de�ne C as a mathematialprogram, we have to de�ne a priori a set of eventual olors X; let |X| = l. The variables ofthe program are then (i) ~y ∈ IRl, the harateristi vetor of the seleted olors of X, and (ii) lvetors ~xi ∈ IRn, i ∈ {1, . . . , l}, the harateristi vetors of the independent sets orrespondingto eah one of the l olors. More preisely, C an be formulated as follows:
C =











































min ~1 · ~y

A.~xi 6 ~1 ∀i ∈ {1, . . . , l}

~xi − yi.~1 6 0 ∀i ∈ {1, . . . , l}
l
∑

i=1
~xi = ~1

~y ∈ {0, 1}l

~xi ∈ {0, 1}n ∀i ∈ {1, . . . , l}
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We distinguish four bloks of onstraints: the l stability onstraints of ~xi, the l exlusion on-straints meaning that if olor i is not seleted, then the independent set having harateristivetor ~xi is empty, the partition onstraint guaranteeing that every vertex is olored with ex-atly one olor, and �nally, the 0-1 usual onstraints for the harateristi vetors. We anhoose n = l, i.e., we onsider that there is no more olors than verties in G. This very simpleremark supposes that we have anyway a ertain initial knowledge of the problem without whihwe would not be able to de�ne ~y. Solution ~y = ~1 orresponds to the solution where we a�et adistint olor per vertex, solution �unwarranted� and feasible for every graph. Consequently, onean onsider that one has a resoure of n olors for oloring the verties of G. Then, if a PTAA Aomputes a oloring of size χA(G) for G, the quantity n − χA(G) (the enumerator of the dif-ferential approximation ratio) is exatly the number of olors A has left unused. Hene, underthe di�erential approximation, C has a natural and pituresque interpretation as the problem ofmaximizing the number of unused olors.11 A di�erential-approximation algorithm based upon a�ne-equivaleneIn [19℄, the following thought proess for the di�erential-approximation of C is proposed:(i) transform C into the following a�ne-equivalent maximization problem AEC: �given a graph
G = (V, E), �nd a partial sub-graph H of Ḡ (the omplement of G) having a maximumnumber of edges and suh that(a) H is ayli (or, equivalently, H is a forest), and(b) every onneted omponent (tree) of H is inluded in a lique of Ḡ�;(ii) devise a DPTAA for AEC and run it on Ḡ;(iii) transform the solution provided for AEC into a solution for C (thanks to the a�ne-equivalene, the two approximate solutions will indue the same di�erential-approximationratio).Items (ii) and (iii) of the above thought proess are summarized into the following DPTAA for Cwhere we denote by T a tree of H.BEGIN *D_COLOR1*(1) determine Ḡ;(2) ompute a maximum mathing M in Ḡ;(3) H← M;(4) FOR e ∈ E DO IF H ∪ {e} is feasible for AEC THEN H← H ∪ {e} FI OD(5) FOR T ∈ H DO olor the verties of T with a new olor OD(6) olor the verties of V \ V(H) using a new olor per vertex;(7) OUTPUT the set of used olors;END. *D_COLOR1*Theorem 18. ([19℄) AEC is a�ne-equivalent to C. Algorithm D_COLOR1 is an O(n2.5) DP-TAA ahieving di�erential-approximation ratio 1/2 for both C and AEC. This ratio is tight forD_COLOR1.Despite the fat that, as we shall see, the approximation ratio indued by theorem 18 has beensubstantially improved in the sequel, it has its own interest sine it is obtained by forwardlyexploiting the notion of a�ne-equivalene that, as it is shown in [21℄ as well as in a later pa-per ([20℄), an reveal very useful in analyzing the approximation performane of DPTAAs forseveral NP-hard problems. 24



12 From mathing to 3 - independent setsA little later in 1994, Hassin and Lahav ([34℄) have improved the di�erential-approximation of Cby proposing the following algorithm diretly working on the instane of C. In what follows, wedenote by i-IS an independent set of size i.BEGIN *D_COLOR2*(1) WHILE there exists 3-IS S ⊆ V DO(2) olor the verties of S with a new olor;(3) V← V \ S;(4) G← G[V];(5) OD(6) ompute a maximum olletion C of 2-IS in G;(7) FOR S ∈ C DO olor S with a new olor OD(8) olor G[V \ V(C)] using a new olor per vertex;(9) OUTPUT the set of used olors;END. *D_COLOR2*Theorem 19. ([34℄) Algorithm D_COLOR2 is an O(n2.5) di�erential-approximation algorithmfor C ahieving a di�erential-approximation ratio 2/3. This bound is tight for D_COLOR2.One an remark that there exist many similarities between algorithms D_COLOR1 and D_COLOR2.The only notable di�erene is that the former, instead of searhing for independent sets on 2verties (a olletion of independent sets on 2 verties in a graph orresponds to an equal-sizedmathing in its omplement), �rst searhes for suh sets on 3 verties. If we keep the same spiritof these algorithms, there exists a natural way to improve the approximation ratio for C:(i) by replaing the independent sets on 3 verties by larger ones, and(ii) by devising e�ient approximation algorithms for the ase where the surviving graph hasindependene number greater than, or equal to, 3.13 Coloring graphs via set-overingA lever improvement of the approximation ratio for C, using the solution of a partiular SCproblem, is presented by Halldórsson in [33℄. Before outlining the devised algorithm, we need todesribe a kind of loal improvement, alled t-improvement in [33℄, applied on any SC-solution.Consider an instane (S, C) of SC and a set overing S ′ ⊆ S. A t-improvement of S ′ is formedby sets S̃′
1, S̃

′
2, . . . , S̃

′
t in S ′ and by sets S1, S2, . . . , St−1 in S suh that S ′′ = (S ′\{S̃′

1, S̃
′
2, . . . , S̃

′
t})∪

{S1, S2, . . . , St−1} is also a over. Obviously, |S ′′| < |S ′|. A over is t-optimal if it ontains no
t-improvement. Moreover, for �xed t, t-improvements an be done in polynomial time, so doesthe veri�ation of t-optimality.In what follows, let us denote by 3SC the lass of SC where the sets of S are all of ardinalitiesat most equal to 3; moreover, we reall that the 2SC, i.e., the SC with sets of ardinality atmost 2, an be solved in polynomial time ([10, 28℄). In fat, given an instane I = (S, C) of 2SC,one an onstrut a graph GI = (V, E) where V = C and E = {vivj : ∃S = {ci, cj} ∈ S}

3.Then, every edge-overing of GI (i.e., every set of edges overing the verties of V ) orrespondsexatly to a set-overing of the same size of I. Consequently, optimal 2SC-solution of I is a3Of ourse, this transformation is reversible, i.e., given a graph G, one an obtain a 2SC-instane IG = (S, C)setting V = C and S = {{ci, cj} : vivj ∈ E}.
25



minimum edge-overing of GI and �nding suh an edge-overing an be performed in polynomialtime ([10℄).The following PTAA, where we denote by 2_SC the algorithm optimally solving 2SC inpolynomial time, is proposed in [33℄ for 3SC. Moreover, algorithm t_IMPROVE alled in line (6)of algorithm 3_SC repeatedly applies t-improvements until t-optimality.BEGIN *3_SC*(1) find a maximal olletion S1 of mutually disjoint sets in (S, C);(2) C′ ← C \ ∪Si∈S1
Si;(3) S ′ ← {Si ∩ C

′ : Si ∈ S, Si ∩ C
′ 6= ∅};(4) S2 ← 2_SC(S ′, C′);(5) fix a large integer t;(6) OUTPUT ~S ← t_IMPROVE(S1 ∪ S2);END. *3_SC*It is easy to see that the instane of SC obtained in line (3) of algorithm 3_SC is really aninstane of 2SC, so it an be optimally solved in polynomial time in line (4).If one hooses an even �xed t arbitrarily large, the analysis of algorithm 3_SC, performedin [33℄ produes an approximation ratio at most (7/5)+o(4/t), that onstitutes also an interestingimprovement for the approximation ratio of 3SC. The only draw-bak of this result is that theomplexity of the algorithm is of O(nO(t)) and therefore the loser to 7/5 the ratio, the higherthe exeution time of algorithm 3_SC; but, in any ase, even of high omplexity, it remains, fora �xed t, always polynomial.The following algorithm is the one proposed for C in [33℄ (we use the term 4-IS to denotean independent set on 4 verties); moreover, one more we suppose that olors are integers in

{1, . . . , n}.BEGIN *D_COLOR3*(1) find a maximal olletion S4 of mutually disjoint 4-IS's Vi in G;(2) FOR i← 1 TO |S4| DO olor the verties of Vi with i OD(3) V← V \ ∪Vi∈S4
Vi;(4) G← G[V];(5) find the olletion S3 of all the independent sets of G;(6) ~S ← 3_SC((S3, V));(7) olor eah member of ~S with a new unused olor;(8) OUTPUT the union of olors used in lines (2) and (7);END. *D_COLOR3*In algorithm D_COLOR3, sine all the disjoint independent sets on 4 verties have been removedin line (1), the surviving graph G has independene number at most 3; so, the instane (S3, V )on whih algorithm 3_SC is applied is really a 3SC-one (onstruted in polynomial time sine

|S3| = O(|V |3).Theorem 20. ([33℄) Algorithm D_COLOR3 is a DPTAA for C ahieving in O(nO(t)) differen-tial-approximation ratio 3/4.Let us note that, in [32℄, a PTAA of approximation ratio 5/7 for C is presented. This algorithmis essentially the same as algorithm D_COLOR3, but it ontains no t-improvements.14 Coloring, set-overing and semi-loal optimizationRevisit for a while the t-improvement seen in setion 13 and its appliation at line (6) of al-gorithm 3_SC. It is easy to see that the intuition behind suh improvement is the replaement26



of a onstant number of sets in the urrent over by a hopefully smaller number of other setsin suh a way that the over so obtained remains feasible. In [24℄, the following re�nementof t-improvement, alled semi-loal improvement, is proposed. A semi-loal (s, t)-improvementfor 3SC (s > t) onsists of the insertion of at least s sets of size 3 and the deletion of at least tsuh sets from the urrent over. In addition the elements remained unovered by the semi-loalimprovement are optimally overed by algorithm 2_SC. In other words in suh improvement, onetries to augment the number of the 3-sets used in the over (overing so more elements by thesesets) and to redue the number of the smaller sets used (2- and 1-sets).Based upon semi-loal improvement, a re�nement of algorithm D_COLOR3 is devised in [24℄.The basi idea remains the same: one greedily �nds a olletion of independent sets of up to aertain onstant size k + 1, olors any of them with a new olor and removes all of them fromthe input graph; next she/he transforms the surviving graph into an instane of kSC as we haveseen in setion 13 and approximately solves kSC in this instane. In [24℄, k = 6. The algorithmfor 6SC proposed inludes three phases. The �rst one is totally greedy and onsists of �ndinga maximal olletion of disjoint 6-sets in the initial 6SC-instane (S, C). The elements overedby this olletion are next removed from C and the remaining sets are updated. Of ourse thisupdate will eventually reate some 1-sets. The seond phase is more restritive than the �rst one.Here a maximal olletion of disjoint 5-sets, then 4-sets is onstruted but with the restritionthat any suh set is hosen to make part of the olletion only if its hoie does not inrease thenumber of 1-sets reated during the �rst phase. This is done greedily by onsidering a set andby examining if the removal of its elements will reate additional one sets. In what follows, wedenote by STRICT_PHASE the proedure implementing the seond phase. The elements overedby olletion so-onstruted are removed from C and the remaining sets are updated. Finally, thethird and last phase, applied in the surviving 3SC-instane, is a semi-loal (2,1)-improvement.In what follows, we denote by SL_OPT21 the algorithm repeatedly applying semi-loal (2,1)-improvement until no suh improvement is possible.BEGIN *6_SC*greedily hoose a maximal olletion S1 of mutually disjoint 6-sets in (S, C);
C← C \ ∪Si∈S1

Si;
S ← {Si ∩ C : Si ∈ S, Si ∩ C 6= ∅};
S2 ← STRICT_PHASE(S, C);
C← C \ ∪Si∈S2

Si;
S ← {Si ∩ C : Si ∈ S, Si ∩ C 6= ∅};
S3 ← SL_OPT21(S, C);OUTPUT ~S ← S1 ∪ S2 ∪ S3;END. *6_SC*Based upon algorithm 6_SC, the following oloring algorithm is proposed in [24℄ (we alwayssuppose that olors are integers in {1, . . . , n}).BEGIN *D_COLOR4*(1) find a maximal olletion S7 of mutually disjoint 7-IS's Vi in G;(2) FOR i← 1 TO |S7| DO olor the verties of Vi with i OD(3) V← V \ ∪Vi∈S7

Vi;(4) G← G[V];(5) find the olletion S6 of all the independent sets of G;(6) ~S ← 6_SC((S6, V));(7) olor eah member of ~S with a new unused olor;(8) OUTPUT the union of olors used in lines (2) and (7);END. *D_COLOR4* 27



Theorem 21. Algorithm D_COLOR4 is a DPTAA for C ahieving in O(nO(t)) differential-approximation ratio 289/360.15 Unifying the above algorithmsWe now show that the four D_COLOR-algorithms presented above are instantiations of the followinggeneral shema (parameterized by a graph G and an integer k). In what follows, we denoteby k_SC a PTAA for kSC, i.e., the lass of SC where the sets of S are all of sizes at most k.BEGIN *DC_SCHEMA*(1) find a maximal olletion Sk+1 of mutually disjoint (k+1)-IS's Vi in G;(2) FOR i← 1 TO |Sk+1| DO olor the verties of Vi with i OD(3) Vk ← V \ ∪Vi∈Sk+1
Vi;(4) Gk ← G[Vk];(5) find the olletion Sk of all the independent sets of G;(6) ~S ← k_SC((Sk, Vk));(7) olor eah member of ~S with a new unused olor;(8) OUTPUT the union XDC of olors used in lines (2) and (7);END. *DC_SCHEMA*Obviously, if k is �xed, line (5) an be exeuted in polynomial time (at most O(nk)). Moreover,the set-system (Sk, V ) is an instane of kSC.Theorem 22. If algorithm k_SC approximately solves kSC within di�erential approximationratio δ 6 k/(k+1), then DC_SCHEMA approximately solves C in polynomial time within di�erential-approximation ratio δ.Proof. Let χk+1 and χk be the numbers of the olors assigned by the exeution of lines (2)and (7), respetively, and denote by χDC(G) the number of olors omputed at line (8), i.e., thesize of set XDC produed in line (8).Sine algorithm k_SC ahieves di�erential approximation ratio δ, the following holds for any

kSC-instane I
∣

∣

∣S̃
∣

∣

∣ 6 (1− δ)WORST(I) + δOPT(I) (11)In general, when dealing with SC, there exist two natural values that an be onsidered as worstsolution-values for an instane I = (S, C): |S| and |C|. The former orresponds in taking all thesets of the family S and the latter in taking a subset of S per element of C. In order to be asrestritive as possible, it seems natural to onsider
WORST ((S, C)) = min {|S| , |C|} .In instane (Sk, Vk) (line (6)), sine all the independent sets have already been produed inline (5), singletons, orresponding to verties of Vk are also inluded. Hene, a solution takinga set per vertex of Vk is feasible, and moreover, |Sk| > |Vk|. Consequently,

W ((Sk, Vk)) = |Vk| = n− (k + 1)χk+1. (12)So, using expression (11) for I = (Sk, Vk), expression (12) and the fats: (i) the optimal set-overof (Sk, Vk) is in 1�1 orrespondene to the optimal oloring of Gk, and (ii), χ(Gk) 6 χ(G), thefollowing holds:
χk 6 (1− δ) |Vk|+ δOPT ((Sk, Vk)) 6 (1− δ) (n− (k + 1)χk+1) + δχ(G) (13)
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On the other hand, χDC(G) = χk+1 + χk and using expression (13), we get
χDC(G) 6 χk+1 + (1− δ) (n− (k + 1)χk+1) + δχ(G)

⇓

n− χDC(G) > δ (n− χ(G)) + χk+1 (k − δ(k + 1)) > δ (n− χ(G))for δ 6 k/(k + 1). We so derive (n − χDC(G))/(n − χ(G)) > δ, that onludes the proof of thetheorem.The result of theorem 22 an be extended to work for any δ in the following way. Set, withoutloss of generality, Sk+1 = {S1, S2, . . . , Sq}, the olletion produed at line (1) of algorithmDC_SCHEMA; Si = k + 1, i = 1, . . . , q. Then the following holds:
WORST(G) = WORST (Sk, Vk) + q(k + 1) (14)

χDC(G) = χk + q (15)
χ ((Gk) 6 χ(G) (16)Combining expressions (14), (15) and (16), we get

WORST(G)− χDC(G)

WORST(G)− χ(G)
>

WORST(Sk, Vk) + q(k + 1)− (χk + q)

WORST (Sk, Vk) + q(k + 1)− χ (Gk)

=
WORST (Sk, Vk)− χk + qk

WORST(Sk, Vk)− χ (Gk) + q(k + 1)
> min

{

δ,
k

k + 1

}

.In all, the disussion just above derives the following theorem.Theorem 23. If algorithm k_SC approximately solves kSC within di�erential approxima-tion ratio δ, then DC_SCHEMA approximately solves C in polynomial time within di�erential-approximation ratio min{δ, k/(k + 1)}.15.1 Reovering algorithm D_COLOR4Algorithm DC_SCHEMA(G,6) is nothing else than algorithm D_COLOR4. A areful leture of theproof of theorem 4.2 (pp. 260�261) of [24℄ together with a preliminary remark just above thestatement of theorem 4.2 (. . . instead of harging ost 1 to a hosen set, now we will hargea ost (k − 1) to a hosen k-set . . . ), make lear that this proof is also the one of the fatthat the di�erential-approximation ratio of algorithm 6_SC is bounded above by 289/360. Then,appliation of theorem 22 derives the ratio laimed by theorem 21.15.2 Reovering algorithm D_COLOR3Suppose that DC_SCHEMA(G,3) is exeuted. This is exatly algorithm D_COLOR3 that alls algo-rithm 3_SC for whih the following is proved in [33℄:
∣

∣

∣S̃
∣

∣

∣ 6
1

4
WORST ((S3, V )) +

3

4

∣

∣

∣Ŝ
∣

∣

∣where S̃ is the solution produed at line (6) of algorithm 3_SC and Ŝ is some over of thesystem (S, C). Consequently, theorem 22 is applied with δ = 3/4.
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15.3 Reovering algorithm D_COLOR2Revisit now algorithm D_COLOR2 and observe that lines (6) to (9) an be seen as the polynomial-time algorithm of [10℄ optimally solving 2SC, or, equivalently, minimum edge-overing in thegraph G input of line (6).Then, it is easy to see that DC_SCHEMA(G,2) is exatly D_COLOR2. Let us denote by OPT(IG)the optimal 2SC-solution omputed by algorithm D_COLOR2 (see footnote 3), by S(IG) some other2SC-solution and by WORST(IG) the worst-value one onsisting of taking an edge per vertexof G (i.e., a set per element of C); obviously, WORST(IG) = |G|. We then have:
OPT (IG) =

1

3
OPT (IG) +

2

3
OPT (IG) 6

1

3
|G|+

2

3
|S (IG)| .In other words, we are in the ase of an appliation of theorem 22 with δ = 2/3.15.4 Reovering algorithm D_COLOR1Observe that the subgraph H produed in line (3) is feasible for AEC. Moreover, exeutionof line (4) may, at worst, not hange the number of the onneted omponents of H. In thisase, algorithm D_COLOR1 is nothing else than DC_SCHEMA(G,1) and the SC-instane produed atline (6) of DC_SCHEMA is an 1SC with the verties of V \ V (H) as ground set and the singletonsontaining these verties as olletion of subsets. Taking all these singletons is an optimal solutionfor the orresponding instane. Then, in a ompletely analogous way as the one of setion 15.3and denoting by XD1 the set of olors retained in line (7) of D_COLOR1, we get,

OPT(G[V \ V (H)]) = |XD1| =
1

2
|V \ V (H)|+

1

2
OPT(G[V \ V (H)]).We are here in the ase of an appliation of theorem 22 with δ = 1/2.16 Using ∆_COLOR to olor �sparse� graphsConsider a graph G verifying ∆(G) = o(n). Then, it is immediate to see that running algorithm

∆_COLOR in suh graphs provide olorings ahieving approximation ratio
n− o(n)

n− χ(G)
−→
n→∞

1.

Proposition 6. Whenever ∆(G) = o(n), limn→∞ δ∆_COLOR = 1.17 Negative resultsSine C is well-approximable in δ-framework, the negative results one an obtain here have aharater muh less �dramatial� than the ones of the ρ-framework.In an unpublished paper of 1993 (some of its results have later been published in [22℄), thefollowing inapproximability result has been proved for C.Proposition 7. Unless P = NP, C annot be approximated neither by a DFPTAS, nor by anasymptoti DFPTAS guaranteeing, for every ǫ > 0, di�erential-approximation ratio of the form
δ = 1− ǫ− {1/[n− χ(G)]}η where η is a �xed positive onstant.This result has been strengthened in [32℄ where, by a redution from the 3-dimensional mathing,it is shown that C is MAX-SNP-hard.
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Theorem 24. ([32℄) C is MAX-SNP-hard. Hene, it annot be approximated by a DPTAS,unless P = NP.Let us reall that in [48℄, an optimization problem is alled simple if, for every �xed onstant k,its restrition to instanes verifying OPT(I) 6 k an be optimally solved in polynomial time.For instane, IS or SC are simple, while C (sine 3-oloring is NP-omplete) or bin-paking arenot. The notion of simpliity has a natural extension in the di�erential-approximation frameworkwhere we all D-simple an optimization problem, the restrition of whih to instanes verifying
|WORST(I) − OPT(I)| 6 k an be optimally solved in polynomial time (observe that σ(I) 6

|WORST(I)−OPT(I)|). For instane, it is easy to see that IS, SC or, even, C and bin-pakingare D-simple. For D-simple problems the following theorem an be proved (see also [45℄).Theorem 25. Every D-simple problem has a DPTAS i� it has an asymptoti DPTAS.Proof. Suppose Π a minimization problem, i.e., WORST(I) − OPT(I) > 0. Of ourse, if Πhas a DPTAS, then it has an asymptoti one. Suppose that Π has an asymptoti DPTASwith a onstant c (see de�nition of asymptoti DPTAS in setion 1) and denote by EXACT thealgorithm (parameterized by an instane I of Π and an integer k > 0) deiding if |WORST(I)−
OPT(I)| 6 k and, if yes, omputing the optimal solution of I. Also, denote by AD_SCHEMA theasymptoti DPTAS for Π and suppose that it is parameterized by I and ǫ > 0. Then, the DPTASlaimed is as follows.BEGIN *D_SCHEMA*fix a onstant ǫ > 0;IF EXACT(I, 2c/ǫ) suessfully terminated THEN OUTPUT EXACT(I, 2c/ǫ) FI;OUTPUT L(I)← AD_SCHEMA(I, ǫ/2);END. *D_SCHEMA*We now prove that D_SCHEMA is a DPTAS for Π. Observe �rst that 2c/ǫ is a �xed onstant.Moreover, if EXACT(I, 2c/ǫ) has not suessfully terminated, then

WORST(I)−OPT(I) >
2c

ǫ
=⇒ c 6

ǫ

2
(WORST(I)−OPT(I)) (17)In this ase, exeution of AD_SCHEMA ahieves

WORST(I)− L(I) >

(

1−
ǫ

2

)

(WORST(I)−OPT(I))− c (18)Combining expressions (17) and (18), one immediately gets
WORST(I)− L(I)

WORST(I)−OPT(I)
> 1− ǫonluding so that D_SCHEMA is a DPTAS for Π.Combining theorems 24 and 25, the following onluding orollary holds.Corollary 3. Unless P = NP, C annot be solved by an asymptoti DPTAS.18 Final remarksFor reasons of size of the paper, we have not extensively disussed approximation results on

k-hromati graphs (the most popular of them being the 3-hromati ones), exept when suhresults are used to produe approximation ratios for the general oloring problem.
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In the ρ-framework, positive results for k-hromati graphs are given in [13, 39℄, while for thespeial ase of k = 3, one an refer to [13, 14, 39℄. Let us note one more that the results in [39℄and [14℄ (ratios of values bounded above by O(|V |1−(3/(k+1)) log |V |) and O(|V |3/14 logO(1) |V |),respetively) are originally guaranteed by randomized PTAAs. These algorithms have beenderandomized in [44℄ in suh a way that they still attain the same performane guarantees.Finally, the stronger inapproximability result for 3-oloring is, to our knowledge, the one of [41℄,where a lower bound of 5/3− ǫ, ∀ǫ > 0, for the ratio of every 3-oloring PTAA is provided.When k is �xed, the results of [14, 39, 44℄ indue that one an legally olor the verties ofa graph in polynomial time with o(n) olors. Then, the di�erential-approximation ratios of theorresponding algorithms are (n − o(n))/(n − k) and tend to 1. In other words, the di�erentialapproximation ratio for 3-oloring is asymptotially equal to 1.Other interesting approximation issues not onsidered in this paper are the approximationof C in random graphs, or in speial lasses of graphs (for example in planar ones). Workabout the former issue, as well as a ertain number of referenes, are presented in [12, 13℄, whileinformation about the latter an be found in [18℄.Aknowledgment. The proofs in appendix 2 have been elaborated together with Olivier Span-jaard, PhD student at LAMSADE, University Paris-Dauphine. Cristina Bazgan and Jér�meMonnot have read the �nal version of this manusript and have made many helpful and perti-nent suggestions. Many thanks to all of them.
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A Proof of the results of setion 2A.1 Proof of lemma 2Sine G is 3-onneted, there always exist appropriate verties v and u. Exeution of line (4)is always possible by BFS sine G′ remains onneted. The oloring-operation in line (6) anbe suessfully ome up sine every vertex to be olored has always less than ∆(G) neighborsalready olored. Finally, onerning w, sine it has two neighbors legally olored with 1, thereexists at least one legal olor for it. All the operations of algorithm 3C_COLOR an be performedin polynomial time.A.2 Proof of lemma 3Exeution of line (3) is always possible by BFS sine G is bionneted, onsequently G[V \ {v}]remains onneted. In line (4) oloring is possible sine every vertex to be olored has lessthan ∆(G) neighbors already olored. Finally, dealing with v, it an be legally olored sine itsdegree is 6 ∆(G) − 1. Obviously, all the operations of 1V_COLOR are performed in polynomialtime.A.3 Proof of theorem 2Let us �rst note that artiulation points and bionneted omponents of a graph an be found inpolynomial time ([1℄). Consequently, given any graph, its blos an be identi�ed in polynomialtime (any edge not ontained in a bionneted omponent is an isthmus).Consider a blo A of G. Then, following the unraveling of algorithm ∆_COLOR, the followingases may our.A.3.1 ∆(G[A]) < 3Let us �rst prove lemma 1. Starting from an arbitrary vertex, we apply a BFS on G byoloring every vertex and its neighbors with distint olors. Sine no vertex has more than ∆(G)neighbors, 1 + ∆(G) olors are largely su�ient to legally olor all the verties of G. BFS-algorithm being polynomial ([1℄), the whole proess is polynomial.Consequently, sine ∆(G[A]) < 3 =⇒ ∆(G[A]) 6 2, following lemma 1, one an olor Awith 3 olors.A.3.2 |A| < ∆(G) + 1Here also, using lemma 1, A an be olored with ∆(G) olors.A.3.3 |A| = ∆(G) + 1Then, sine by hypothesis G[A] 6= K∆(G)+1, it ertainly ontains a vertex of degree ∆(G) − 1.Hene, by lemma 3, A an be olored by algorithm 1V_COLOR using at most ∆(G) olors.A.3.4 G[A] is 3-onnetedBy lemma 2, algorithm 3C_COLOR olors A with at most ∆(G) olors.A.3.5 G[A] is bionnetedConsider an arbitrary vertex x with d◦(x) > 3. Then the following two ases an our.
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G[A \ {x}] is bionneted. We prove by ontradition that there exists a vertex y suh that
d(x, y) = 2. Suppose that, ∀y, d(x, y) < 2. Then, no neighbor of x is linked to a vertexwhih is not neighbor of x also; onsequently, A = x∪Γ(x), in other words |A| = |x∪Γ(x)| 6
∆(G) + 1, a ontradition sine |A| > ∆(G) + 1.

G[A \ {x}] is not bionneted. Consider then two extremal blos B1 and B2 (G[A \ {x}]being onneted and ontaining at least one artiulation point, suh blos always exist)and denote by a1 ∈ B1 and a2 ∈ B2 two artiulation points of G[A \ {x}]. Sine G isbionneted, there exist z1 ∈ B1 \ {a1} and z2 ∈ B2 \ {a2} adjaent to x. Suppose thatone of z1, z2, say z1, does not exist. Then, every path from x to any v ∈ B1 \ {a1}would inlude a1, ontraditing so the bionnetivity of G. Finally, observe that, sine
d◦(x) > 3, G[V \ {z1, z2}] remains onneted.A.4 Construting the �nal oloring in line (29)Let us now show that the union of the olorings obtained (applying some olor-permutations ifneessary) leads to a feasible oloring for G.Observe �rst that any two blos have at most only one vertex in ommon. Let us suppose theontrary, i.e., that there exist two blos B and B′ having two verties, b and b′, in ommon. Ofourse, G[B ∪B′] is not bionneted beause, in the opposite ase, B and B′ would not be blos(reall that blos are maximal). Consequently, at least one of b, b′ is artiulation point. But ifone removes b, G[(B ∪ B′) \ {b}] remains onneted beause G[B] and G[B′] remain onnetedand have b′ in ommon; the same holds if we remove b′, a ontradition.On the other hand, we an always order the blos in suh a way that eah blo has at mostone vertex in ommon with the union of the blos preeding it in the ordering onsidered. Infat, one an onstrut a graph where a vertex represents a blo and an edge links two vertiesi� they represent two blos having a vertex in ommon. Using the maximality ondition in thede�nition of a blo, one an easily see that the graph onstruted is onneted and ayli, i.e., atree. In this tree, we an apply a BFS to obtain the ordering laimed. Finally, when we integratethe verties of a new blo to the existing oloring, i.e., we inrease the subgraph the verties ofwhih have been de�nitely olored, it is always possible to perform a olor-permutation in theblo in suh a way that the ommon vertex (between the subgraph and the blo), if any, has thesame olor in both the blo and the subgraph.
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