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Polynomial approximations for bivariate aggregate claims

amount probability distributions

P.O. GOFFARD, S. LOISEL and D. POMMERET

September 14, 2015

Abstract

A numerical method to compute bivariate probability distributions from their
Laplace transforms is presented. The method consists in an orthogonal projection
of the probability density function with respect to a probability measure that belongs
to a Natural Exponential Family with Quadratic Variance Function (NEF-QVF). A
particular link to Lancaster probabilities is highlighted. The procedure allows a quick
and accurate calculation of probabilities of interest and does not require strong coding
skills. Numerical illustrations and comparisons with other methods are provided. This
work is motivated by actuarial applications. We aim at recovering the joint distribu-
tion of two aggregate claims amounts associated with two insurance policy portfolios
that are closely related, and at computing survival functions for reinsurance losses in
presence of two non-proportional reinsurance treaties.

Keywords: Bivariate aggregate claims model, bivariate distribution, bivariate Laplace
Transform, numerical inversion of Laplace transform, natural exponential families with
quadratic variance functions, orthogonal polynomials.

1 Introduction

In insurance and in reinsurance, some common events may cause simultaneous, correlated
claims in two lines of business. For example, in third-party liability motor insurance,
an accident may cause corporal damage and material damage losses. These parts of the
same claim are then handled by different claim managers and reserving is most often also
done separately, which makes it necessary to study the joint distribution and not only
the marginals or the distribution of the sum (except when one loss dominates the other
one, which makes correlation of secondary importance). The study of the sum may be
reduced to a one-dimensional problem, see [3]. Similarly, a reinsurer who accepts two
stop-loss treaties from two customers operating on the same market is exposed to the sum
of two excesses of aggregate losses, which contain in general some independent part and
some common shock part, arising from events that generate claims for the two insurance
companies at the same time. To compute the Value-at-Risk of the reinsurer’s exposure, or
to compute the probability that the reinsurer looses more than certain risk limits, we need
the bivariate distribution of the aggregate claims amount of the two insurers. In addition to
classical couples of independent aggregated losses drawn from compound distributions, one
needs to study the common shock part of the bivariate loss vector. We define a bivariate
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collective model with common shock by

(
S1

S2

)
=

N∑

j=1

(
U1j

U2j

)
+

( ∑N1

i=1 Vi∑N2

i=1Wi

)
, (1.1)

=

(
X1

X2

)
+

(
Y1
Y2

)
, (1.2)

where S = (S1, S2) denotes the aggregate claims amount of two non-life insurance portfolios
over a given time period. An event may be associated to a unique claim incurred simultane-
ously in the portfolios. The number of such events is modeled through a counting random
variable N . These events cause losses that are positively correlated and represented by a se-
quence of independent and identically distributed (i.i.d.) random vectors {(U1j , U2j)}j∈N∗ .
We are interested in bivariate distributions that allow dependence between U1j and U2j .
An event may also cause several losses in the two portfolios. The number of claims are
then correlated and modeled by two counting random variables N1 and N2. The vector
N = (N1, N2) admits a bivariate distribution allowing dependency between N1 and N2.
The claim sizes are sequences of i.i.d. random variables {Vi}i∈N∗ and {Wi}i∈N∗ . The
model (1.1), proposed in the work of Jin et al. [14], enables one to include dependency
among both the claim sizes and the claim frequencies. Aggregate claims are governed
by compound distributions. These distributions, in the univariate case, are already dif-
ficult to study because closed formulae for the probability density function are available
in only a few cases. The cumbersome computation time induced by Monte Carlo simu-
lations to obtain accurate values of probabilities motivates the use of numerical techniques.

Recursion based methods have been designed to cope with bivariate aggregate claims
distributions, they can be viewed as extension of the so-called Panjer’s algorithm. The dis-
tribution of the vector X = (X1, X2) is recovered through a recursion procedure in [4, 24],
whereas the distribution of the vector Y = (Y1, Y2) is studied in [12, 24, 26]. Recursion
based techniques rely on the existence of recurrence relationships between the probabilities
of the claim frequencies which limits their use to certain kind of distributions. The Fast
Fourier Transform is a procedure that permits one to inverse the discrete Fourier transform
of the aggregate claim distribution. A multivariate extension is derived and applied to re-
cover the distribution of Y and S in [13, 14]. The authors provide a numerical comparison
of the two procedure. The required arithmetization of the claim amounts distribution re-
mains the main drawback of these methods. One may be interested in methods that do
not start with a discretization of the claim size distribution.

In this paper, we develop an effective method to compute bivariate Probability Density
Functions (BPDFs) from the knowledge of their bivariate Laplace transforms or equiv-
alently from the moments of the distribution. First, we choose a reference distribution
that belongs to a NEF-QVF. Then, we express the BPDF with respect to this reference
measure as an expansion in terms of orthonormal polynomials. The polynomials are or-
thogonal with respect to the reference probability measure. When we aim at recovering a
BPDF on the positive quadrant of the plane, as it is the case within the frame of aggregate
claims amount distribution, our method looks like a well established method called the
Laguerre method. The similarity is due to the fact that we choose a Gamma distribution
as reference distribution associated with Laguerre polynomials to ensure the validity of the
expansion. We refer to [1] where an effective variant of the Laguerre method is presented.
The same authors also work out a multivariate extension, see [2]. The main contribution of
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our work lies in the possibility of choosing the parameters of the reference distribution to
enhance the performance of the method. A great body of the applied probability literature
is dedicated to the numerical inversion of the Laplace transform of univariate PDF but to
the best of our knowledge only a few attempts have been made in a multivariate context.
A Fourier series based method is presented in [6] motivated by applications in queueing
theory. The desired function is recovered from the Fourier series coefficients of a periodic
version of the function constructed by aliasing. The inversion formula involves integral
computations that are completed using a trapezoidal rule justified by Poisson summation
formula. It also implies truncation but not a simple one: Euler summation formula for
alternating series is employed consequently to the neat replacement of the original infinite
serie by an equivalent alternating one. Interesting applications are allowed because of the
possibility of recovering BPDFs of couples of random variables formed by a discrete and a
continuous one. Recently, a moment-recovered approximation has been proposed in [20].
The stable approximants for the BPDF and the joint survival function are derived. A very
interesting feature of this method is that the approximation can be turned into a statisti-
cal estimation as there exist empirical counterparts of the aforementioned approximants.
The expansion we propose is also well adapted to empirical estimation. The empirical
estimation of BPDF when data are available will be at the center of a forthcoming paper.
Finally, one key aspect of the method is that once the parameters have been chosen and
the coefficients computed, approximations for the joint probability density and survival
functions are available in an explicit form.

In Section 2, we introduce a BPDF expansion formula based on orthogonal projec-
tion within the frame of NEF-QVF. In Section 3, the expansion for bivariate aggregate
claims amount distributions is derived along with conditions to ensure the validity of the
polynomial expansion. Section 4 presents the link established between our expansion and
Gamma-Gamma Lancaster probabilities. Section 5 is devoted to numerical illustrations
and examples of application. A comparison to the moment-recovered method is also pro-
posed.

2 Expression of the joint density

2.1 Orthogonal polynomials associated with NEF-QVF

Let F = {Fθ, θ ∈ Θ} with Θ ⊂ R be a Natural Exponential Family (NEF), see [5],
generated by a probability measure ν on R such that

Fθ(X ∈ A) =

∫

A
exp [xθ − κ(θ)] dν(x)

=

∫

A
f(x, θ)dν(x),

where A ⊂ R, κ(θ) = log
[∫

R
eθxdν(x)

]
is the Cumulant Generating Function (CGF), and

f(x, θ) is the density of Pθ with respect to ν. Let X be a random variable Fθ distributed.
The mean of X is

µ = Eθ(X) =

∫
xdFθ(x) = κ′(θ),

and its variance is

V(µ) = V arθ(X) =

∫
(x− µ)2dFθ(x) = κ′′(θ).
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The application θ → κ′(θ) is one to one. Its inverse function µ → h(µ) is defined on M
= κ′(Θ). With a slight change of notation, we can rewrite F = {Fµ, µ ∈ M}, where Fµ

has mean µ and density g(x, µ) = exp {h(µ)x− κ [h(µ)]} with respect to ν. A NEF has a
Quadratic Variance Function (QVF) if there exist reals v0, v1, v2 such that

V(µ) = v0 + v1µ+ v2µ
2. (2.1)

The Natural Exponential Families with Quadratic Variance Function (NEF-QVF) include
the normal, Gamma, hyperbolic, Poisson, binomial and negative binomial distributions.
Define

Pn(x, µ) = V n(µ)

[
∂n

∂µn
g(x, µ)

]
/g(x, µ), (2.2)

for n ∈ N. Each Pn(x, µ) is a polynomial of degree n in both µ and x. Moreover, if F is
NEF-QVF, {Pn}n∈N is a family of orthogonal polynomials with respect to Pµ in the sense
that

< Pn, Pm >=

∫
Pn(x, µ)Pm(x, µ)dFµ(x) = δnm||Pn||2, m, n ∈ N,

where δmn is the Kronecker symbol equal to 1 if n = m and 0 otherwise. For the sake of
simplicity, we choose ν = Fµ0

. Then, f(x, µ0) = 1 and we write

Pn(x) = Pn(x, µ0) = Vn(µ0)

[
∂n

∂µn
g(x, µ)

]

µ=µ0

. (2.3)

We also consider in the rest of the paper a normalized version of the polynomials defined
in (2.3) with Qn(x) = Pn(x)

||Pn||
. For an exhaustive review regarding NEF-QVF and their

properties, we refer to [23].

2.2 Bivariate probability measures and their Laplace transform

Let (X,Y ) be a couple of random variables, governed by a bivariate probability measure
FX,Y . We also assume that (X,Y ) admits a joint probability density function with respect
to a bivariate measure denoted by λ, such that

dFX,Y (x, y) = fX,Y (x, y)dλ(x, y). (2.4)

Its bivariate Laplace transform is defined as

f̂X,Y (s, t) =

∫ ∫
esx+tyfX,Y (x, y)dλ(x, y). (2.5)

We consider the bivariate NEF-QVF generated by

dν(x, y) = dν1(x)× dν2(y), (2.6)

where ν1 and ν2 are two probability measures that belong to NEF-QVF absolutely contin-
uous with respect to λ. With the notation of Section 2.1, the probability density function
associated with ν is

fν(x, y) = fν1(x)fν2(x), (2.7)

where fνi denotes the PDF of νi for i = 1, 2. Let Qν
k,l(x, y) = Qν1

k (x)Qν2
l (y), k, l ∈ N be a

bivariate orthonormal polynomial system in the sense that

< Qν
k,l, Q

ν
i,j > =

∫ ∫
Qν

k,l(x, y)Q
ν
i,j(x, y)dν(x, y)

< Qν
k,l, Q

ν
i,j > = δkiδlj .

We denote by L2(ν) the set of square integrable functions with respect to ν.
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Proposition 1. Assume that
dFX,Y

dν ∈ L2(ν), we have the following expansion

dFX,Y

dν
(x, y) =

+∞∑

k=0

+∞∑

l=0

〈
dFX,Y

dν
,Qν

k,l

〉
Qν

k,l(x, y) (2.8)

=
+∞∑

k=0

+∞∑

l=0

E
[
Qν

k,l(X,Y )
]
Qν

k,l(x, y). (2.9)

Applying Proposition 1 yields an expansion of the probability density function

fX,Y (x, y) =

+∞∑

k=0

+∞∑

l=0

[∫ ∫
fX,Y (x, y)Q

ν
k,l(x, y)dxdy

]
×Qν

k,l(x, y)fν(x, y). (2.10)

We have

Qν
k,l(x, y) =

k∑

i=0

l∑

j=0

qi,j(k, l)x
iyj , (2.11)

where qi,j(k, l) is expressed in terms of the coefficents of Qν1
k and Qν2

l . Reinjecting the
expression of Qν

k,l given in (2.11) in the probability density function (2.10) gives the two
following representations of fX,Y

fX,Y (x, y) =
+∞∑

k=0

+∞∑

l=0

k∑

i=0

l∑

j=0

qi,j(k, l)

∫ ∫
xiyjfX,Y (x, y)dxdy ×Qν

k,l(x, y)fν(x, y)

=
+∞∑

k=0

+∞∑

l=0

k∑

i=0

l∑

j=0

qi,j(k, l)

[
∂i+j

∂si∂tj
f̂X,Y (s, t)

]

s=0,t=0

Qν
k,l(x, y)fν(x, y)

.
=

+∞∑

k=0

+∞∑

l=0

ak,lQ
ν
k,l(x, y)fν(x, y).

Remark 1. The probability density function takes the form of an expansion. The coeffi-
cients are expressed in terms of the moments and equivalently in terms of the derivative
of the bivariate Laplace transform. The expression of the probability density function is
therefore a Laplace transform inversion formula.

Approximations of the bivariate probability density function are obtained through trun-
cations of the infinite series

fK,L
X,Y (x, y) =

K∑

k=0

L∑

l=0

ak,lQ
ν
k,l(x, y)fν(x, y),

where K and L denote the order of truncation of the approximation. In view of future ap-
plications, we are interested in getting approximations of cumulative distribution functions,
which are obtained through integration of the approximated density

FK,L
X,Y (x, y) =

∫ x

−∞

∫ y

−∞
fK,L
X,Y (u, v)dλ(u, v) (2.12)

=

K∑

k=0

L∑

l=0

ak,l

∫ x

−∞

∫ y

−∞
Qν

k,l(u, v)f(u, v)dλ(u, v). (2.13)
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The goodness of the approximation lies in the decay of the sequence defined by the coeffi-
cients of the expansion. Note that from

dFX,Y

dν ∈ L2(ν), a Parseval type relation holds

∫ ∫
f2
X,Y (x, y)dxdy =

+∞∑

k=0

+∞∑

l=0

a2k,l < +∞. (2.14)

Relation (2.14) implies that the sequence {ak,l}k,l∈N decreases towards 0 with respect to k
and l. The choice of the NEF-QVF and its parameters depends on the problem, and are
discussed in the next section.

3 Application to a bivariate aggregate claims amount distri-

bution

3.1 General formula

Aggregate claims amount are modeled by non-negative random variables. The only contin-
uous NEF-QVF having support on R+ is generated by the Gamma distribution, according
to the classification given in [23]. The two other continuous NEF-QVF distributions are
the normal and the hyperbolic ones which have support on R. The Gamma distribution
admits a probability density function with respect to the Lebesgue measure defined as

f(x) =
xr−1e−x/m

Γ(r)mr
. (3.1)

The orthogonal polynomials associated with the Gamma distribution are the generalized
Laguerre polynomials

Qk(x) =
(−1)kLr−1

k (x/m)√(
k+r−1

k

) , (3.2)

where Lr−1
n (x) =

∑n
i=0

(
n+r−1
n−i

) (−x)i

i! , see [25]. The random vector (S1, S2), defined in (1.1),
is divided into two parts that are considered separately. The first part,

(
X1

X2

)
=

N∑

j=1

(
U1j

U2j

)
, (3.3)

is governed by a bivariate compound distribution. The bivariate probability measure asso-
ciated with (X1, X2) is divided into a discrete part with an atom at (0, 0) with a probability
mass equal to p0 = P (N = 0) and a continuous part that is absolutely continuous with
respect to the bivariate Lebesgue measure. Thus we have

dFX1,X2
(x1, x2) = p0δ{x1=0,x2=0}(x1, x1) + dGX1,X2

(x1, x2), (3.4)

where δ{x1=0,x2=0}(x1, x2) is the Dirac measure equal to 1 at (0, 0) and 0 otherwise. We aim
at expanding the continuous part using Proposition 1. The defective density probability
function of dGX1,X2

is denoted by gX1,X2
. We define a bivariate NEF-QVF probability

measure as in Section 2 by

ν(x1, x2) = ν1(x1)× ν2(x2), (3.5)

where ν1 and ν2 are Gamma distributions with parameters (m1, r1) and (m2, r2) respec-
tively. Orthogonal polynomials with respect to ν are defined as

Qν
l,k(x1, x2) = Qν1

k (x1)×Qν2
l (x2), (3.6)

6



where {Qν1
k }k∈N and {Qν2

l }l∈N are orthogonal polynomial systems with respect to ν1 and

ν2 respectively, and defined as in (3.2). If
dGX1,X2

dν ∈ L2(ν), applying Proposition 1 yields

gX1,X2
(x1, x2) =

+∞∑

k=0

+∞∑

l=0

ak,lQ
ν
k,l(x1, x2)fν(x1, x2), (3.7)

where f is the BPDF associated to the probability measure ν.

Remark 2. The Laguerre series method in [2] is related to our approach with a particular
parametrization that is m1 = m2 = 2 and r1 = r2 = 1.

We know from the Parseval type relation (2.14) that the sequence of coefficients of the
expansion is decreasing towards 0. But how fast does it actually decrease?

We address this problem using generating function theory just like what is done in [2].
The interesting fact is that the generating function of the coefficients of the expansion is
linked to the bivariate Laplace transform of the expanded probability density function. We
start from the expression given in (3.7). By taking the bivariate Laplace transform, we get

ĝX1,X2
(s1, s2) =

∫ +∞

0

∫ +∞

0
es1x1+s2xgX1,X2

(x1, x)dx1dx2

=

+∞∑

k=0

+∞∑

l=0

ak,l

√(
k + r1 − 1

k

)(
l + r2 − 1

l

)

×
(

1

1− s1m1

)r1 ( 1

1− s2m2

)r2 ( s1m1

1− s1m1

)k ( s2m2

1− s2m2

)l

=

(
1

1− s1m1

)r1 ( 1

1− s2m2

)r2

B

(
s1m1

1− s1m1
,

s2m2

1− s2m2

)
, (3.8)

where

B(z1, z2) =

+∞∑

k=0

+∞∑

l=0

bk,lz
k
1z

l
2 (3.9)

is the generating function of the two-dimensional sequence {bk,l}k,l∈N. The coefficients of
the expansion follow from

ak,l =
bk,l√(

k+r1−1
k

)(
l+r2−1

l

) . (3.10)

The generating function B is derived from the bivariate Laplace transform after a simple
change of variable in Equation (3.8):

B(z1, z2) = (1 + z1)
−r1(1 + z2)

−r2 ĝY1,Y2

(
z1

m1(1 + z1)
,

z2
m2(1 + z2)

)
. (3.11)

In [2], the authors compute the coefficients of the expansion through the derivative of
their generating function. They use Cauchy contour integral to express the derivatives as
integrals and approximate them via a trapezoidal rule. In some cases, when the Laplace
transform expression is simple, the derivatives can be calculated directly with a computa-
tional software. The attractive feature of our method lies in the possibility of tuning the
parameters of the Gamma distributions in order to modify the generating function. We
illustrate this fact through the following example:
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Example 1. Let (X,Y ) be a couple of independent random variables exponentially dis-
tributed with parameters δ1 and δ2. The bivariate Laplace transform associated with this
couple of random variables is

f̂X,Y (s1, s2) =
δ1

δ1 − s1
× δ2

δ2 − s2
. (3.12)

We inject the bivariate Laplace transform expression (3.12) in the generating function de-
fined in (3.11) to get

B(z1, z2) =
(1 + z1)(1 + z2)

(1 + z1)r1(1 + z2)r2
× δ1δ2

[δ1 + z1(δ1 − 1/m1)] [δ2 + z2(δ2 − 1/m2)]
. (3.13)

In this case, the parametrization is straightforward. We set r1 = r2 = 1, m1 = 1/δ1 and
m2 = 1/δ2, so B(z1, z2) = 1 which implies that a0,0 = 1 and ak,l = 0 for all k, l ≥ 1.

The Laplace transforms of the distributions considered in the rest of the paper are more
complicated and it is less straightforward to choose the parameters.

We now turn to the study of the second part of the random vector (S1, S2). Recall that

(
Y1
Y2

)
=

( ∑N1

i=1 Vi∑N2

i=1Wi

)
. (3.14)

The counting random variables N1 and N2 are assumed to be independent. Thus the
components of the random vector (Y1, Y2) are also independent which simplifies the model
stated in the introduction. The probability measure of (Y1, Y2) is given by

dFY1,Y2
(y1, y2) = P (N1 = 0)P (N2 = 0)δ{y1=0,y2=0}(y1, y2) + dGY1

(y1)× dGY2
(y2)

+ P (N1 = 0)dGY2
(y2) + P (N2 = 0)dGY1

(y1).

The defective probability measures dGY1
and dGY2

are associated to univariate compound
distribution. The expression of the probability density function are not always available in
a closed form. In that case, we can use a univariate polynomial approximation described
in [10, 9] to recover the probability function.

Finally, the polynomial approximation of the probability measure of (S1, S2) follows
from the combination of the polynomial approximations of the BPDF of (X1, X2) and
(Y1, Y2) through a two-dimensional convolution procedure. In the next Section, we show
how to choose the parameters of the expansion in order to ensure the integrability condition
mentionned in Proposition 1.

3.2 Integrability condition

The polynomial expansion is valid under the following condition:

∫ +∞

0

∫ +∞

0

[
dGX1,X2

dν
(x1, x2)

]2
dν(x1, x2) < +∞, (3.15)

which is equivalent to

∫ +∞

0

∫ +∞

0
gX1,X2

(x1, x2)
2x1−r1

1 x1−r2
2 ex/m1+y/m2dx1dx2 < +∞. (3.16)
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The parameters m1, m2, r1 and r2 of the reference distribution play a key role regarding
the validity of the polynomial expansion.

Let (X,Y ) be a couple of non-negative random variables with a joint PDF fX,Y (x, y).
We define the set

E = {(s, t) ∈ [0,+∞)× [0,+∞); f̂X,Y (s, t) < +∞}, (3.17)

and denote by Ec its complementary. The following result gives us insight on how to choose
the parameters of the reference distribution.

Theorem 1. Let (X,Y ) be a couple of non-negative random variables with a joint PDF
fX,Y (x, y). We assume that E 6= {(0, 0)}. We assume additionally that there exist two
real numbers a, b ≥ 0 such that for all (x, y) ∈ [a,+∞) × [b,+∞), the applications x →
fX,Y (x, y) and y → fX,Y (x, y) are strictly decreasing. Then we have

fX,Y (x, y) ≤ A(s, t)e−sx−ty, ∀(x, y) ∈ [a,+∞)× [b,+∞), (3.18)

where A(s, t) is some real number independent of x and y.

Proof. Let (x, y) ∈ [a,+∞)× [b,+∞), we have

f̂X,Y (s, t) ≥
∫ x

a

∫ y

b
esu+tvfX,Y (u, v)dudv

=

∫ x

a
esu

1

t

[
etvfX,Y (u, y)− etbfX,Y (u, b)

]
dudv

−
∫ x

a
esu
∫ y

b

etv

t

∂fX,Y (u, v)

∂v
dudv

≥
∫ x

a
esu

1

t

[
etvfX,Y (u, y)− etbfX,Y (u, b)

]
dudv

≥ esx+ty

st
fX,Y (x, y) +

esa+tb

st
fX,Y (a, b)

− 1

st

[
esa+tyfX,Y (a, y) + esx+tbfX,Y (x, b)

]
. (3.19)

In order to deal with the part (3.19), we need the following lemma.

Lemma 1. Let f be a continuously differentiable function on R+. Assume that there exist
some a > 0 such that x → f(x) is strictly decreasing for x > a. Assume additionaly that
there exist s > 0 such that f̂(s) < +∞. Then we have

f(x) ≤ A(s)e−sx ∀(x, y) ∈ [a,+∞), (3.20)

where A(s) is some real number independent of x.

Proof. For x ≥ a, we have

f̂(s) ≥
∫ x

a
esyf(y)dy

=

[
esy

s
f(y)

]x

a

− 1

s

∫ x

a
esyf ′(y)dy. (3.21)

≥ 1

s
[f(x)esx − f(a)esa] . (3.22)
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Thus, we deduce that ∀x ≥ a,

f(x) ≤ A(s)e−sx,

where A(s) = sf̂(s) + f(a)esa.

As f̂(s, t) < +∞, we have

f̂X,Y (0, t) =

∫ +∞

0

∫ +∞

0
etyfX,Y (x, y) < +∞. (3.23)

As y → etyfX,Y (x, y) is a non-negative function, applying Fubini-Tonelli’s theorem yields∫ +∞
0 etyfX,Y (x, y) < +∞ for all x ∈ [0,+∞), and for x = a in particular. We can therefore

apply Lemma 1 to the application y → fX,Y (a, y), which yields

fX,Y (a, y) ≤ A1(t)e
−ty. (3.24)

Using the same arguments, we get that

fX,Y (x, b) ≤ A2(t)e
−sx. (3.25)

Reinjecting inequalities (3.24) and (3.25) in (3.19) yields

fX,Y (x, y) ≤
[
stf̂X,Y (−s,−t)− esa+tbfX,Y (a, b) +A2(t)e

tb +A1(s)e
sa
]
e−sx−ty. (3.26)

Theorem 1 allows us to bound continuous joint PDF when the bivariate Laplace trans-
form is well defined for some positive arguments. We aim at recovering the distribution of
(X1, X2) that admits a singular and a continuous part. We put aside the singular part and
expand the continuous part represented through its defective bivariate defective probability
density function gX1,X2

. Theorem 1 holds for gX1,X2
as for any common bivariate proba-

bility density function that satisfies the hypothesis of Theorem 1. We define E∗ = E ∩Ec,
where E is the closure of E. One can note that for any (s, t) ∈ [0,+∞)× [0,+∞) if there
exist (s∗, t∗) such that s < s∗ and t < t∗ then (s, t) ∈ E. The next result follows from that
last remark.

Corollary 1. We consider a couple of random variables (X1, X2) defined as in (3.3).
Assume that gX1,X2

satisfies the hypothesis of Theorem 1. For all (s∗1, s
∗
2) ∈ E∗, if we

take {1/m1 < 2s∗1, 1/m2 < 2s∗2, r1 = 1, r2 = 1}, then the integrability condition (3.16) is
satisfied.

Corollary 1 will help us greatly in Section 5. Theorem 1 and Corollary 1 show that
the polynomial expansion is valid under the condition that the bivariate Laplace transform
exists. If it is not the case, it is difficult to ensure the good behavior of the coefficients
of the polynomial expansion. It is the case for instance when the claim sizes admit an
heavy tailed distribution. In those cases, the method proposed in this paper might not
applicable. Within the frame of insurance applications, a solution can be to consider
truncated distributions for the claim sizes justified by the existence of a non proportional
reinsurance treaty with a given retention level. The next section links our approach with
Lancaster probabilities.
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4 Downton Bivariate Exponential distribution and Lancaster

probabilities

A classical problem, which has become known as the Lancaster problem, see [18], is to
characterize bivariate distributions with given margins and orthogonal eigenfunctions. Let
ν1 and ν2 be two probability measures with associated orthonormal polynomials sequences
{Q1

n}n∈N and {Q2
n}n∈N respectively. We denote by fν1 and fν2 the PDF of ν1 and ν2.

Exchangeable Lancaster bivariate densities have the form

fX,Y (x, y) =

[
+∞∑

k=0

akQ
ν1
k (x)Qν2

k (y)

]
fν1(x)fν2(y), (4.1)

where {ak}k∈N is a sequence of real numbers with a0 = 1. The Lancaster problem can be
reduced to finding a proper sequence {ak}k∈N such that f is nonnegative and therefore a
BPDF. The characterization of the Lancaster probabilities constructed via NEF-QVF has
been widely studied by Koudou, see [15, 16, 17]. He gave existence conditions and explicit
forms of Lancaster sequences in various cases. In a recent publication, Diaconis et al. [7]
studied the binomial-binomial case which means that the marginal distributions are both
binomial. Characterizations with a more "probabilistic flavor" than the classical one are
given. Recall that the classical way to construct a Lancaster probability consists in consid-
ering the distribution of (X,Y ) = (U+W,V +W ), where U, V,W , are independent random
variables governed by the same distribution. This "random element in common" way al-
lows to construct Lancaster probabilities based on any NEF-QVF distribution. To connect
Lancaster probabilities with our approach, we start by considering our representation of
the BPDF for a couple of nonnegative random variables (X,Y )

fX,Y (x, y) =

{
+∞∑

k=0

+∞∑

l=0

E
[
Qν1

k (X)Qν2
l (Y )

]
Qν1

k (x)Qν2
l (y)

}
fν1(x)fν2(y), (4.2)

where fνi is a Gamma PDF and {Qi
k}k∈N its orthonormal polynomials sequence for i = 1, 2.

In order to get a Lancaster probability from the BPDF defined in (4.2), we need a bi-
orthogonality condition, namely

E
[
Qν1

k (X)Qν2
l (Y )

]
= δklak. (4.3)

Let (X,Y ) be a couple of random variables governed by a Downton Bivariate Exponential
distribution DBV E(µ1, µ2, ρ) introduced in [8]. We apply our method to recover the joint
PDF of this distribution. The bivariate Laplace transform associated with the DBVE
distribution is

f̂X,Y (s1, s2) =
µ1µ2

(µ1 − s1)(µ2 − s2)− ρs1s2
, (4.4)

where µ1, µ2 ≥ 0 and 0 ≤ ρ ≤ 1. We inject the bivariate Laplace transform expression
(5.5) in the generating function defined in (3.11) to get

B(z1, z2) =
(1 + z1)

1+r1(1− z2)
1−r2µ1µ2

[z1(1/m1 − µ1) + µ1] [z2(1/m2 − µ2) + µ2]− z1z2ρ
m1m2

. (4.5)

We set r1 = r2 = 1, m1 =
1
µ1

and m2 =
1
µ2

, so B(z1, z2) =
1

1−z1z2ρ
which implies that

ak
.
= ak,l = ρkδkl. (4.6)

The double sum turns into a simple one, leaving us with the same form as in (4.1) and
yielding the following result:
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Proposition 2. The Downton Bivariate Exponential distribution belongs to Lancaster
probabilities and its PDF admits an infinite series representation of the form

fν(x, y) =

[
+∞∑

k=0

akQ
ν1
k (x)Qν2

k (y)

]
fν1(x)fν2(y), (4.7)

where ak = ρkδkl, fν1 is the PDF of a Γ
(

1
µ1
, 1
)

distribution and fν2 is the PDF of a

Γ
(

1
µ2
, 1
)

distribution.

Historically, the DBVE distribution has been used to capture the joint lifetimes of two
components for reliability purposes. These two components are assumed to collapse after
a random numbers of shocks with exponential inter-arrival times. We therefore have

(
X
Y

)
=

N+1∑

j=1

(
U1j

U2j

)
, (4.8)

where N is a counting random variable governed by a geometric distribution with pa-
rameters ρ. The {Uij}i∈{1,2},j∈N are mutually independent and exponentially distributed
with parameter µi and independent of N . We shed light here on a new way to construct
Gamma-Gamma Lancaster probabilities through geometric compounding exponential ran-
dom vectors.

5 Numerical illustrations

In this section, we aim at recovering the joint distribution of (S1, S2) defined in (1.1). As the
joint probability density and survival functions are not available in a closed form, we assess
the accuracy of the polynomial approximation on well known bivariate distributions. Then,
we propose an example of practical applications by performing computations of quantities
of interest for risk management purposes. Note that we consider a case where no closed
formula of the BPDF is available.

5.1 Approximation of common bivariate exponential distributions

We define the approximation error as the relative difference between the exact function
and its approximation

∆f(x, y) =
f(x, y)− fProxy(x, y)

f(x, y)
, x, y ∈ R+, (5.1)

and we express it in percentages. We propose a two-dimensional graphical visualization.
The color of the surface indicates the level of error at each point located by its coordi-
nates (x, y). We compare the results of the polynomial approximation to the results of
the moments-recovered method when approximating the joint PDF and the joint survival
function of the considered distributions. The approximation of the joint PDF through the
moment recovered method follows from

fα,α′

X,Y (x, y) =
e−x−yΓ(α+ 2)Γ(α′ + 2)

Γ(⌊αe−x⌋+ 1)Γ(⌊α′e−y⌋+ 1)

×
α−⌊αe−x⌋∑

k=0

α′−⌊α′e−y⌋∑

l=0

(−1)k+lf̂X,Y (⌊αe−x⌋+ k, ⌊α′e−y⌋+ l)

k!(α− ⌊αe−x⌋ − k)l!(α′ − ⌊α′e−y⌋ − l)
. (5.2)
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This approximation tends towards the desired function when α and α′ tend to infinity. The
approximation of the joint survival function is given by

Fα,α′

X,Y (x, y) =

⌊αe−x⌋∑

k=0

⌊α′e−y⌋∑

l=0

α∑

i=k

α′∑

j=l

(
α

i

)(
i

k

)(
α′

j

)(
j

l

)
(−1)i+j−k−lf̂X,Y (i, j). (5.3)

The approximation formulas (5.2) and (5.3) are derived in [20]. It is recommended when
using this method to evaluate (5.2) and (5.3) on a grid defined as

(xi, yj) =

[
ln

(
α

α− i+ 1

)
, ln

(
α′

α′ − j + 1

)]
, i = 1, . . . , α, j = 1, . . . , α′.

The final approximation follows from a simple interpolation procedure.

5.1.1 Expansion of the Downton Bivariate Exponential distribution

The Downton Bivariate Exponential distribution - DBV E(µ1, µ2, ρ), introduced in [8],
has been used to capture the joint lifetimes of two components for reliability purposes.
These two components are assumed to collapse after a random numbers of shocks with
exponential inter-arrival times. The joint PDF of a DBV E(µ1, µ2, ρ)-distributed random
vector (X,Y ) is given by

fX,Y (x, y) =
µ1µ2

1− ρ
exp

(
−µ1x+ µ2y

1− ρ

)
I0

[
2
√
ρµ1µ2xy

1− ρ

]
, x, y ∈ R+

2 (5.4)

where I0 denotes the modified Bessel function of the first kind, µ1, µ2 ≥ 0 and 0 ≤ ρ ≤ 1.
The bivariate Laplace transform of (X,Y ) is given by

f̂X,Y (s1, s2) =
µ1µ2

(µ1 − s1)(µ2 − s2)− ρs1s2
. (5.5)

In this particular case, the study of the generating function of the coefficients is of interest to
choose the parameters of the Gamma measures. We inject the bivariate Laplace transform
expression (5.5) in the generating function defined in (3.11) to get

B(z1, z2) =
(1− z1)

1−r1(1− z2)
1−r2µ1µ2

[z1(µ1 − 1/m1)− µ1] [z2(µ2 − 1/m2)− µ2]− z1z2ρ
m1m2

. (5.6)

We set r1 = r2 = 1, m1 =
1
µ1

and m2 =
1
µ2

, so B(z1, z2) =
1

1−ρz1z2
which implies that

ak,l = ρkδkl, (5.7)

along with a good accuracy. For the numerical illustration, we set {µ1 = 1/2, µ2 = 2, ρ =
1/4}. Figure 1 shows the approximation error associated to the polynomial approximation.

An acceptable level of error is reached at almost every points of the bivariate probability
density function with an order of truncation equal to 5. Figure 2 shows the approximation
error of the moment-recovered based method. Increasing values of α and α′ are considered.

The approximation of the moment-recovered based method works quite well too. However,
the polynomial expansion seems to be better suited to the problem due to the geometrical
decay of the coefficients of the expansion. In order to provide a fair comparison, we
perform an approximation of the Marshall-Olkin Bivariate Exponential distribution in the
next subsection.
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Figure 1: Error map for the joint PDF of a DBV E(1/2, 2, 1/4) distribution
approximated by polynomial expansion

5.1.2 The Marshall-Olkin Bivariate Exponential distribution

The Marshall-Olkin Bivariate Exponential distribution - MOBV E(λ1, λ2, λ12) has been
introduced in [19] with reliability interpretations. It aims at modelling the time-to-failure
of a two components system that receives shocks impacting one or both of the components.
Each shock can cause the failure of none, one or both of the components. The definition
implies the possibility that the two components fail at the same time, which means that
the distribution admits a continuous and a singular part. This type of distribution arises
naturally within a two-dimensional framework. The Marshall-Olkin Bivariate Exponen-
tial distribution MOBV E(λ1, λ2, λ12) has been originally characterized through its joint
survival function

FX,Y (x, y) = exp [−λ1x− λ2y − λ12max(x, y)] . (5.8)

The BPDF associated with this distribution is divided into the sum of an absolutely contin-
uous part with respect to the bivariate Lebesgue measure and another part being singular,

14



Figure 2: Error map for the joint PDF of a DBV E(1/2, 2, 1/4) distribution
approximated by the moment-recovered method

defined on the line {x = y}. The BPDF can be written as

fX,Y (x, y) = λ2(λ1 + λ12)FX,Y (x, y)1x>y(x, y) (5.9)

+ λ1(λ2 + λ12)FX,Y (x, y)1x<y(x, y) (5.10)

+ λ12e
−λmax(x,y)

1x=y(x, y), (5.11)

where λ = λ1+λ2+λ12. The Laplace transform associated to the MOBVE distribution is

f̂X,Y (s1, s2) =
(λ− s1 − s2)(λ1 + λ12)(λ2 + λ12) + s1s2λ12

(λ− s1 − s2)(λ1 + λ12 − s1)(λ2 + λ12 − s2)
. (5.12)

The distribution is not absolutely continuous with respect to the bivariate Lebesgue mea-
sure, the hypotheses of Proposition 1 are not satisfied. However, we manage to isolate the
singular part. So we can expand the defective probability density function associated with
the continuous part of the distribution and add the singular part to the polynomial expan-
sion in order to recover the entire distribution. The continuous part has a joint defective
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PDF fC
X,Y , which is the sum of (5.9) and (5.10), and admits a Laplace transform of the

form

f̂C
X,Y (s1, s2) =

s2(λ1 + s1)

(λ1 + λ2 + s1)(λ1 + λ12 + λ2 + s1 + s2)
(5.13)

+
s1(λ1 + s2)

(λ1 + λ12 + s2)(λ1 + λ12 + λ2 + s1 + s2)
. (5.14)

The generating function of the coefficients of the expansion is tedious, making it difficult
to choose relevantly the parameters of the expansion. Unlike in the case of the DBVE
distribution, we cannot ensure that the chosen parametrization is the best. Approximations
with different parametrization are compared in terms of accuracy.

• Parametrization 1: {m1 =
1

λ1+λ12
,m2 =

1
λ2+λ12

, ν1 = 1, ν2 = 1}

• Parametrization 2: {m1 =
1
λ1
,m2 =

1
λ2
, ν1 = 1, ν2 = 1}

• Parametrization 3: {m1 =
1
λ ,m2 =

1
λ , ν1 = 1, ν2 = 1}

We set {λ1 = 1/2, λ2 = 2, λ12 = 1}. In view of a future probabilistic application, the
error on the joint survival function is very interesting. Let us see how the polynomial
method performs when it comes to approximating the joint survival function. We also apply
the moment recovered method with the inversion formula dedicated to survival function
approximation. On Figure 3, the relative difference between the exact value of the joint
survival function and its polynomial approximation is plotted for different parametrizations
and an order of truncation equal to 10.

Figure 3: Error map for the joint survival function of a MOBV E(1/2, 2, 1) distribution
approximated by polynomial expansion with different sets of parameters.

The first parametrization seems to be the most suited to the problem as the convergence
towards the exact value is quicker. Figure 4 displays the relative error between the exact
value of the joint survival function and its polynomial approximation with parametrizations
1 and different order of truncation.

On Figure 5, the difference between the exact value of the joint survival function and its
moments approximation is plotted for increasing values of α and α′.
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Figure 4: Error map for the joint survival function of a MOBV E(1/2, 2, 1) distribution
approximated by polynomial expansion with different sets of parameters.

The results are satisfying for both methods, even if it looks like the moment recovered
method does not perform well for x, y ∈ [0, 0.5]. One can note that the polynomial ex-
pansion with the first parametrization performs better than the moment-recovered based
method. However, the moment-recovered based method has been enhanced in recent papers
with the introduction of the scaled Laplace transform, see [21, 22]. These improvements
have been made in the univariate case but might be extended soon to the bivariate case
and comparison would be interesting in the future.

5.2 Approximation of the distribution of a bivariate claim amount dis-

tribution

The main concern of this paper is to deal with the distribution of

(
X1

X2

)
=

N∑

j=1

(
U1j

U2j

)
. (5.15)
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Figure 5: Error map for the joint survival function of a MOBV E(1/2, 2, 1) distribution
approximated by the moment recovered method.

We assume here that the sequence of random vectors (U1i, U2i) is i.i.d. and DBV E(µ1, µ2, ρ)-
distributed. The number of claims is governed by a negative binomial distribution NB(a, p).
In this case, the corresponding bivariate Laplace transform

ĝX1,X2
(s1, s2) =

[
1− p

1− pf̂U1,U2
(s1, s2)

]a
− (1− p)a, (5.16)

exists if f̂U1,U2
(s1, s2) < p−1. In view of Corollary 1, the parameters must be chosen under

the constraints

{m1 < 2s∗1,m2 < 2s∗2, r1 = r2 = 1},

where the couple (s∗1, s
∗
2) satisfies the equation f̂U1,U2

(s∗1, s
∗
2) = p−1. We set {µ1 = 1, µ2 =

1, ρ = 1/4} as parameters of the DBVE distribution and {a = 1, p = 3/4} as parameters
of the negative binomial distribution. In this particular case, if we set

{
m1 =

1

µ1(1− p)
,m2 =

1

µ2(1− p)
, r1 = 1, r2 = 1

}
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as parameters of the reference distribution, the generating function of the coefficients of
the expansion defined in (3.11) takes the form

B(z1, z2) =
1

1 + z1z2 [p2 − ρ(1− p)2 − p]
. (5.17)

The coefficients of the expansion are therefore akl =
[
p2 − ρ(1− p)2 − p

]k
δkl. The geo-

metric decay of the coefficients implies a fast convergence of the approximation towards
the desired function. It is easily checked that

f̂U1,U2

(
1

2µ1(1− p)
,

1

2µ2(1− p)

)
< p,

making the chosen parametrization valid. The exact value of the survival function is
unknown. A benchmark value is derived through Monte Carlo simulations using algorithms
described in [11]. In order to get a good proxy via Monte Carlo techniques, we produce
105 realizations of the couple (Y1, Y2). Figure 6 shows the difference between the values of
the survival function derived by Monte Carlo and by polynomial expansion.

One can see that we get close to the benchmark with an order of truncation equal to 5.
Figure 7 provides a 3D visualization of the joint probability density and survival function
of the distribution.

5.3 Reinsurer’s risk profile in presence of two correlated insurers

We now consider a reinsurer with two customers. We assume that the reinsurer accepted
a stop-loss reinsurance treaty with limit bi in excess of priority ci from insurer i, where
i = 1, 2. This means that if Si is the aggregated claims amount for insurer i, then the
reinsurer must pay Z = min

(
[S1 − c1]

+ , b1
)
+min

(
[S2 − c2]

+ , b2
)
. For risk management

or pricing purposes, the reinsurer is interested in computing P (Z > z) for different risk
limits. To achieve that, one needs the joint distribution of (S1, S2) and it is not enough to
know the distribution of (S1 + S2), which would often be easier to obtain.

As an illustration, we assume that each insurer has to pay some specific claims amount,
which correspond to the two independent components. We also take into account common
shocks arising from events which cause claims for both insurers, like hail or storm episodes:
for example, in the case of a hail episode, it might happen that 1 windshield has to be
replaced for insurer 1 and that 2 windshields have to be replaced for insurer 2. Of course,
for one particular event (the kth for instance) the two claims U1,k (incurred for insurer 1)
and U2,k (incurred for insurer 2) are positively correlated, because they are influenced by
the severity of the event causing the common shock. We therefore consider that the vector
(S1, S2) is described as

(
S1

S2

)
=

N∑

j=1

(
U1j

U2j

)
+

( ∑N1

i=1 Vi∑N2

i=1Wi

)
, (5.18)

and has been defined in the introduction. The number of claims that incurs in the two
portfolios is a counting random variable denoted by N , and governed by a negative bino-
mial distribution NB(a, p). The severities of those claims are modeled through a sequence
of i.i.d random vectors {(U1,j , U2,j)}j∈N, DBV E(µ1, µ2, ρ)−distributed, and independent

19



Figure 6: Discrete error map for the joint survival function of compound distribution
[NB(1, 3/4), DBV E(1, 1, 1/4)]

Figure 7: Joint survival function of compound distribution [NB(1, 3/4), DBV E(1, 1, 1/4)]
with an order of truncation equal to 10
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from N . We set {a = 1, p = 3/4, µ1 = 1, µ2 = 1, ρ = 1/4}. The second part of the
right-hand side of 5.18 represents the claim amounts specific to each insurer. The numbers
of claims are modeled by two independent counting random variables N1 and N2 that are
governed by two negative binomial distribution NB(ai, pi), where i = 1, 2. The sequences
{Vi}i∈N and {Wi}i∈N are formed by i.i.d nonnegative random variables that represent the
claim sizes. We assume that they are exponentially distributed Γ(1, βi), where i = 1, 2.
We set {a1 = a2 = 1, p1 = p2 = 3/4, α1 = α2 = 1, β1 = β2 = 1}. These sequences
are mutually independent and independent from N1 and N2. To recover the distribution
of (S1, S2) using the polynomial technology, we use a bivariate polynomial approxima-
tion to recover the distribution of (X1, X2), and a univariate polynomial approximation
to both of the components of the second part of the right-hand side of (5.18). The poly-
nomial expansion in a univariate context has been presented in a previous work, we refer
the reader to [10]. The joint probability density function of the second part is obtained
by multiplying the marginal PDF due to the independence of the two components. The
BPDF of (S1, S2) is derived by convoluting the polynomial approximations of the different
parts. One must pay attention to the singularities that arise from the non-zero probabil-
ity of having {N = 0}, {N1 = 0} and {N2 = 0}. To expand the common part, we set{
m1 =

1
µ1(1−p) ,m2 =

1
µ2(1−p) , r1 = 1, r2 = 1

}
as parameters of the polynomial expansion

in view of the good results obtained in Subsection 5.2. The PDF of a geometric com-
pound distribution with exponential claim sizes is available in a closed form, so we do not
need to use univariate polynomial expansions. In order to appreciate the accuracy of our
method, we need benchmark values. A sample of 105 Monte Carlo simulations of (S1, S2)
is produced. On Figure 8, the relative difference between the survival function obtained
via Monte Carlo and polynomial expansion is plotted.

The level of error is still acceptable. Figure 9 displays the joint probability density and
survival functions.

As there exists a symmetry between the two portfolios, we assume that the same reinsurance
treaty is proposed to each insurer with the same priority and limit. We set {b1 = b2 =
4, c1 = c2 = 1} . Recall that the reinsurance cost is modeled by a random variable defined
as

Z = min
(
[S1 − c1]

+ , b1
)
+min

(
[S2 − c2]

+ , b2
)
. (5.19)

Figure 10 displays two graphics. On the left-hand side, we plot the survival function of Z
delivered by the two methods. We can see that the two curves overlap. On the right-hand
side, we plot the relative difference between the two approximations to better appreciate
their proximity. Some values of P (Z > z) are given in Table 1.

The results are quite promising. The polynomial expansion seems to be well-suited to carry
out numerical calculations. The operational advantage of numerical methods over Monte
Carlo techniques lies in the gain of computation time that they provide. It is difficult to
quantify it as it varies given the software and the coding skills of the user. Note that, in the
polynomial expansion case, the approximation of the PDF is almost immediate, although
some computation time might be needed to derive survival function for instance.
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Figure 8: Error map for the joint survival function of (S1, S2) obtained by polynomial
expansion

Figure 9: Joint density and survival function of the aggregate claims in the two insurance
portfolios
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Figure 10: Survival function of the reinsurance cost obtained by polynomial expansion
(blue) and Monte Carlo simulations (red) ; Relative difference between the survival
function obtained with Monte Carlo and the one obtained by polynomial expansion

P(Z>z)

z Monte Carlo approximation Polynomial approximation

0 0.90385 0.898808
2 0.73193 0.724774
4 0.44237 0.435013
6 0.24296 0.237576
8 0. 0.

Table 1: Survival function of the reinsurance cost obtained by polynomial expansion and
Monte Carlo simulations
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6 Conclusion

We have considered polynomial expansions of bivariate densities with well defined Laplace
transforms. We have focused our attention on densities on R+ × R+ and have considered
Laguerre polynomials expansions. MOBVE and DBVE distributions have been studied
and numerical illustrations lead to satisfactory results. An application to a bivariate ag-
gregate claims amount distribution with dependence has been proposed. This work is a
numerical step that ensures the efficiency of the bivariate polynomial approach. Interesting
applications follow from the fact that the approximants admit a tractable form. The ap-
proximation of the BPDF can turn into a nonparametric estimation of the BPDF. Indeed,
the coefficients of the expansion can be replaced with their empirical counterparts when
data are available. The statistical extension of this numerical method will be at the center
of a forthcoming paper.
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