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Abstract: This paper surveys results concerning the quantization approach to the Jacobian Conjecture
and related topics on noncommutative algebras. We start with a brief review of the paper and its
motivations. The first section deals with the approximation by tame automorphisms and the Belov–
Kontsevich Conjecture. The second section provides quantization proof of Bergman’s centralizer
theorem which has not been revisited for almost 50 years and formulates several related centralizer
problems. In the third section, we investigate a free algebra analogue of a classical theorem of
Białynicki-Birula’s theorem and give a noncommutative version of this famous theorem. Additionally,
we consider positive-root torus actions and obtain the linearity property analogous to the Białynicki-
Birula theorem. In the last sections, we introduce Feigin’s homomorphisms and we see how they help
us in proving our main and fundamental theorems on screening operators and in the construction of
our lattice Wn-algebras associated with sln, which is by far the simplest known approach concerning
constructing such algebras until now.

Keywords: deformation quantization; polynomial automorphisms; generic matrices; centralizers;
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1. Introduction

The goal of this review is to compile and condense findings related to the quantization
approach to the Jacobian Conjecture.

As of the time this text was written, O.-H. Keller’s Jacobian Conjecture remains an
unresolved and seemingly insurmountable problem. The Jacobian Conjecture has been
studied from a variety of perspectives, leading to the accumulation of a sizable amount
of literature, while the development of many aspects of modern algebra and algebraic
geometry was partially sparked by the search for an appropriate framework in which the
Jacobian Conjecture could be investigated. This has led to a situation in which there is
circumstantial evidence both for and against this conjecture’s validity.

The study of infinite-dimensional algebraic semigroups of polynomial endomorphisms
and groups of polynomial automorphisms as well as mappings between them is one of the
most well established reasonable approaches to the Jacobian Conjecture. The foundation
for this approach was laid by I.R. Shafarevich [1]. During the last several decades, the
theory was vastly developed and enriched by the works of Anick, Artamonov, Bass,
Bergman, Dicks, Dixmier, Lewin, Makar–Limanov, Czerniakiewicz, Shestakov, Umirbaev,

Mathematics 2022, 10, 4214. https://doi.org/10.3390/math10224214 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10224214
https://doi.org/10.3390/math10224214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2235-5588
https://orcid.org/0000-0002-3864-0068
https://orcid.org/0000-0002-1371-7479
https://orcid.org/0000-0001-8557-1862
https://doi.org/10.3390/math10224214
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10224214?type=check_update&version=2


Mathematics 2022, 10, 4214 2 of 36

Białynicki-Birula, Asanuma, Kambayashi, Wright and many others. In particular, the
outcomes of Anick, Makar–Limanov, Shestakov and Umirbaev connected the combinatorial
and geometric properties (stable tameness, approximation) of the spaces of polynomial
automorphisms as well as its associative analogues.

Recently, Belov-Kanel and Kontsevich [2] and, independently, Tsuchimoto [3] proved
the stable equivalence between the Jacobian Conjecture and the Dixmier conjecture on
the endomorphisms of the Weyl algebra. A specific mapping (also known as the anti-
quantization map) from the semigroup of Weyl algebra endomorphisms (a quantum object)
to the semigroup of the corresponding Poisson algebra’s endomorphisms is the basis of this
very unexpected property (the appropriate classical object). Given this, it appears logical
to assume that research into the quantization of spaces of polynomial mappings and the
characteristics of the accompanying quantization morphisms will provide new knowledge.

A series of Kontsevich’s conjectures on the equivalence of polynomial symplectomor-
phisms, holonomic modules over algebras of differential operators and automorphisms
of such algebras provide one of the more significant milestones in this field. The relation-
ship between the quantization method and universal algebra is another somewhat crucial
feature of it.

We review some of our most recent discoveries with regard to quantization and the
Kontsevich Conjecture. We discuss some of our most recent findings on approximation
by tame automorphisms and its symplectic version (Section 2), deformation quantization
approach on the new proof of Bergman’s centralizer theorem (Section 3), torus actions on
free associative algebras (Section 4) and Lattice Wn-algebras (Sections 5–7).

The last sections of this review paper are dedicated to the occasion of the 68th birthday
anniversary of Boris L. Feigin.

2. Approximation by Tame Automorphisms and the Belov–Kontsevich Conjecture

The lifting problem has its origins in the context of deformation quantization of the
affine space and is closely related to several major open problems in algebraic geometry
and ring theory. Finally, let ϕ be a polynomial automorphism of C[x1, . . . , xn] and let Oϕ be
the local ring generated by the coefficients of ϕ and with maximal ideal m. If the sequence
of tame automorphisms ψ1, ψ2, . . . converges to ϕ in the formal power series topology, then
the coordinates of ψk converge to the coordinates of ϕ in the m-adic topology. A similar
result is established for the symplectomorphisms of Pn(C).

The n-th Weyl algebra Wn(K) over K is by definition the quotient of the free associative
algebra K〈a1, . . . , an, b1, . . . , bn〉 by the two-sided ideal generated by elements

biaj − ajbi − δij, aiaj − ajai, bibj − bjbi,

with 1 ≤ i, j ≤ n. One can think of Wn(K) as the algebra K[x1, . . . , xn, y1, . . . , yn] with two
sets of n mutually commuting generators (images of the free generators under the canonical
projection) which interact since [yi, xj] = yixj − xjyi = δij. However, unless the context
necessitates clarification, we would like to denote the Weyl algebra henceforth by Wn(K)
in order to avoid confusion with K[X]—notation reserved for the ring of polynomials in
commuting variables.

The polynomial algebra K[x1, . . . , xN ] itself is the quotient of the free associative
algebra by congruence that makes all its generators commutative. When N = 2n is
even, the algebra A2n carries an additional structure of the Poisson algebra—namely, a
bilinear map

{ , } : K[x1, . . . , xN ]⊗K[x1, . . . , xN ]→ K[x1, . . . , xN ]

that turns K[x1, . . . , xN ] into a Lie algebra and acts as a derivation with respect to the
polynomial multiplication. Under a fixed choice of generators, this map is given by the
canonical Poisson bracket

{xi, xj} = δi,n+j − δi+n,j.
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We denote the pair (K[x1, . . . , x2n], { , }) by Pn(K). In our discussion, the coefficient
ring K is a field of characteristic zero and for later purposes, we require K to be algebraically
closed. Thus, one may safely assume K = C in the sequel.

Throughout, we assume all homomorphisms to be unital and preserve all defining
structures carried by the objects in question. Thus, by a Weyl algebra endomorphism, we
always mean a K-linear ring homomorphism Wn(K) into itself that maps 1 to 1. Similarly,
the set EndK[x1, . . . , xn] consists of all K-endomorphisms of the polynomial algebra, while
End Pn is the set of polynomial endomorphisms preserving the Poisson structure. We will
call elements of the group Aut Pn polynomial symplectomorphisms, due to the fact that they
can be identified with polynomial one-to-one mappings A2n

K → A2n
K of the affine space A2n

K
which preserves the symplectic form

ω = ∑
i

dpi ∧ dxi.

Any endomorphism ϕ of K[x1, . . . , xN ], Pn(K) or Wn(K) can be identified with the
ordered set (ϕ(x1), ϕ(x2), . . .) of images of generators of the corresponding algebra.
For K[x1, . . . , xN ] and Pn(K), the polynomials ϕ(xi) can be decomposed into sums of
homogeneous components. This means that the endomorphism ϕ may be written as a
formal sum

ϕ = ϕ0 + ϕ1 + · · · ,

where ϕk is a string (of length N and 2n, respectively) whose entries are homogeneous
polynomials of total degree k (we set deg xi = 1). Accordingly, the height ht(ϕ) of the
endomorphism is defined as

ht(ϕ) = inf{k | ϕk 6= 0}, ht(0) = ∞.

This is not to be confused with the degree of endomorphism, which is defined as
deg(ϕ) = sup{k | ϕk 6= 0} (for Wn the degree is well defined, but the height depends
on the ordering of the generators). The height ht( f ) of a polynomial f is defined quite
similarly to be the minimal number k such that the homogeneous component fk is not zero.
Obviously, for an endomorphism ϕ = (ϕ(x1), . . . , ϕ(xN)) one has

ht(ϕ) = inf{ht(ϕ(xi)) | 1 ≤ i ≤ N}.

The function
d(ϕ, ψ) = exp(− ht(ϕ− ψ))

is a metric on EndK[x1, . . . , xN ]. We will refer to the corresponding topology on End (and
on subspaces such as Aut and TAut) as the formal power series topology.

2.1. Tame Automorphisms

We call an automorphism ϕ ∈ AutK[x1, . . . , xN ] elementary if it is of the form

ϕ = (x1, . . . , xk−1, axk + f (x1, . . . , xk−1, xk+1, . . . , xN), xk+1, . . . , xN)

with a ∈ K×. Observe that linear invertible changes of variables, that is, transformations of
the form

(x1, . . . , xN) 7→ (x1, . . . , xN)A, A ∈ GL(N,K)

are realized as compositions of elementary automorphisms.
The subgroup of AutK[x1, . . . , xN ] generated by all elementary automorphisms is the

group TAutK[x1, . . . , xN ] of so-called tame automorphisms.
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Let Pn(K) = K[x1, . . . , xn, p1, . . . , pn] be the polynomial algebra in 2n variables with
Poisson structure. It is clear that for an elementary automorphism

ϕ ∈ AutK[x1, . . . , xn, p1, . . . , pn]

to be a symplectomorphism, it must either be a linear symplectic change of variables, that
is, a transformation of the form

(x1, . . . , xn, p1, . . . , pn) 7→ (x1, . . . , xn, p1, . . . , pn)A

with A ∈ Sp(2n,K) a symplectic matrix, or an elementary transformation of one of the two
following types:

(x1, . . . , xk−1, xk + f (p1, . . . , pn), xk+1, . . . , xn, p1, . . . , pn)

or
(x1, . . . , xn, p1, . . . , pk−1, pk + g(x1, . . . , xn), pk+1, . . . , pn).

Note that in both cases we do not include translations of the affine space in our
consideration, so we may safely assume the polynomials f and g to be at least of height one.

The subgroup of Aut Pn(K) generated by all such automorphisms is the group TAut
Pn(K) of tame symplectomorphisms. One similarly defines the notion of tameness for the
Weyl algebra Wn(K), with tame elementary automorphisms having the exact same form as
for Pn(K).

The automorphisms which are not tame are called wild. It is unknown at the time of
writing whether the algebras Wn and Pn have any wild automorphisms in characteristic
zero for n > 1; however, for n = 1 all automorphisms are known to be tame [4–7]. On the
other hand, the celebrated example of Nagata

(x + (x2 − yz)x, y + 2(x2 − yz)x + (x2 − yz)2z, z)

provides a wild automorphism of the polynomial algebra K[x, y, z].
It is known, due to Kanel-Belov and Kontsevich [2,8], that for K = C the groups

TAut Wn(C) and TAut Pn(C)

are isomorphic. The homomorphism between the tame subgroups is obtained by means
of non-standard analysis and involves certain non-constructible entities, such as free
ultrafilters and infinite prime numbers. Recent effort [9,10] has been directed at proving
the homomorphism’s independence of such auxiliary objects, with limited success.

2.2. Approximation by Tame Automorphisms

A classical theorem in [11] gives that every endomorphism of K[x1, . . . , xn] with
invertible Jacobian is a limit of a sequence of tame automorphisms in the formal power
series topology. The first main result of [12] is a slightly modified proof of this theorem
with an automorphism with Jacobian equal to 1 as a limit. We study the problem of lifting
polynomial symplectomorphisms in characteristic zero to automorphisms of the Weyl
algebra by means of approximation by tame automorphisms. We also prove the possibility
of lifting a symplectomorphism to an automorphism of the power series completion of the
Weyl algebra of the corresponding rank. The use of tame approximation is advantageous
due to the fact that tame symplectomorphisms correspond to Weyl algebra automorphisms.

Let ϕ ∈ AutK[x1, . . . , xN ] be a polynomial automorphism. We say that ϕ is ap-
proximated by tame automorphisms if there is a sequence ψ1, ψ2, . . . , ψk, . . . of tame
automorphisms such that ht((ψ−1

k ◦ ϕ)(xi)− xi) ≥ k for 1 ≤ i ≤ N and all k are sufficiently
large. Observe that any tame automorphism ψ is approximated by itself—that is, by a
stationary sequence ψk = ψ.
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In [12], we get a special case of a classical result of Anick [11] (Anick proved approxi-
mation for all étale maps, not just automorphisms), which we reproduce here.

Theorem 1 ([12]). Let ϕ = (ϕ(x1), . . . , ϕ(xN)) be an automorphism of the polynomial algebra
K[x1, . . . , xN ] over a field K of characteristic zero, such that its Jacobian

J(ϕ) = det

[
∂ϕ(xi)

∂xj

]

is equal to 1. Then, there exists a sequence {ψk} ⊂ TAutK[x1, . . . , xN ] of tame automorphisms
approximating ϕ.

Theorem 2 ([12]). Let σ = (σ(x1), . . . , σ(xn), σ(p1), . . . , σ(pn)) be a symplectomorphism of
K[x1, . . . , xn, p1, . . . , pn] with unit Jacobian. Then there exists a sequence {τk} ⊂ TAut Pn(K) of
tame symplectomorphisms approximating σ.

We give here a slightly simplified sketch of the proof suitable for our context. The sec-
ond theorem is essential in our approach to the lifting problem in deformation quantization.

The proof of Theorem 1 consists of several steps each of which amounts to composing
a given automorphism ϕ with a tame transformation of a specific type—an operation that
allows one to dispose of ϕ(xi) (1 ≤ i ≤ N) in terms of total degree greater than one and less
than a fixed integer k. Thus the approximating sequence of tame automorphisms is con-
structed. As was mentioned before, we disregard translation automorphisms completely:
all automorphisms discussed here are origin-preserving, so the polynomials ϕ(xi) have
zero free parts. This of course leads to no loss of generality.

The process starts with the following straightforward observation [12].

Lemma 1 ([12]). There is a linear transformation A ∈ SLN(K) (x1, . . . , xN) 7→ (x1, . . . , xN)A,
such that its composition ϕA with ϕ fulfills ht(ϕA(xi)− xi) ≥ 2 for all i ∈ {1, . . . , N}.

Using the above lemma, we may replace ϕ with ϕA (and suppress the A subscript for
convenience).

Lemma 2 ([12]). Suppose that ϕ ∈ AutK[x1, . . . , xN ] is identity modulo square terms. Then,
there exists a set ρ1, . . . , ρm of tame automorphisms of degree two such that the composition
ρm ◦ · · · ◦ ρ1 ◦ ϕ = ϕm is identity modulo cubic terms.

Lemma 3. Suppose that, given an automorphism ϕ with unit Jacobian, we can, by composing it
on the left with tame automorphisms, transform it into the automorphism ϕm: ϕm(xi) = xi + Qi,
ht(Qi) ≥ m + 1. Then we can find a tame automorphism ρ such that ρ ◦ ϕm(xi) = xi + Si,
ht(Si) ≥ m + 2.

The last lemma concludes the proof of Theorem 1.
Once the approximation for the case of symplectomorphisms has been established, we

can investigate the problem of lifting symplectomorphisms to Weyl algebra automorphisms.
More precisely, one has the following

Proposition 1. Let K = C and let σ : Pn(C) → Pn(C) be a symplectomorphism over complex
numbers. Then, there exists a sequence ψ1, ψ2, . . . , ψk, . . . of tame automorphisms of the n-th
Weyl algebra Wn(C), such that their images σk in Aut Pn(C) approximate σ.

A few comments are in order. First, the deformation quantization of elementary
symplectomorphisms is a very simple procedure: one need only replace the xi and pi by
their counterparts x̂i and p̂i in the Weyl algebra Wn. Because the transvection polynomials f
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and g (in the expressions for elementary symplectomorphisms) depend, as has been noted,
on one type of generator (resp. p and x), the quantization is well defined.

Second, as the tame automorphism groups TAut Wn(C) and TAut Pn(C) are isomor-
phic, the correspondence between sequences of tame symplectomorphisms converging to
symplectomorphisms and sequences of tame Weyl algebra automorphisms is one to one.
The main question is how one may interpret these sequences as endomorphisms of Wn(C).

Our construction shows that these sequences of tame automorphisms may be thought
of as (vectors of) power series—that is, elements of C[[x̂1, . . . , x̂n, p̂1, . . . , p̂n]]2n.

The main problem, therefore, consists in verifying that these vectors have polynomial
entries in generators—that is, that the limits of lifted tame sequences are Weyl algebra
endomorphisms.

We have developed a tame approximation theory for symplectomorphisms in formal
power series topology. By virtue of the known correspondence between tame automor-
phisms of the even-dimensional affine space and tame automorphisms of the Weyl algebra,
which is the object corresponding to the affine space in terms of deformation quantization,
we have arrived at the lifting property of symplectomorphisms. This line of research may
yield new insights into the endomorphisms of the Weyl algebra, the Dixmier Conjecture
and the Jacobian Conjecture.

2.3. Jacobian Conjecture, Dixmier Conjecture and Belov–Kontsevich Conjecture
2.3.1. Jacobian Conjecture

One of the most well known unsolved problems in the theory of polynomials in several
variables is the so-called Jacobian Conjecture, formulated in 1939 by O.-H. Keller [13]. Let K
be the main field and for a fixed positive integer n are given n polynomials

f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

of n variables x1, . . . , xn. Any such system of polynomials defines a unique image endomor-
phism of the algebra K[x1, . . . , xn]

F : K[x1, . . . , xn]→ K[x1, . . . , xn],

F ↔ (F(x1), . . . , F(xn)) ≡ ( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn).

The K-endomorphism F of polynomial algebra is determined by its action on the set
of generators. Let J(F) denote Jacobian (the determinant of the Jacobi matrix) of the map F:

J(F) = det


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

· · · ∂ fn
∂xn


The Jacobian Conjecture is as follows.

Conjecture 1 (The Jacobian Conjecture, JCn). Let the characteristic of the base field K be equal
to zero. Then, if the Jacobian J(F) of the endomorphism F is equal to a nonzero constant (that is, it
belongs to the set K×), then F is an automorphism.

An elementary exercise is to verify the statement that automorphisms of polynomial
algebras always have a nonzero Jacobian constant. Conjecture 1 is thus a partially inverse
statement of this property. It is also easy to see that if a polynomial endomorphism F is
invertible, then the inverse will also be a polynomial endomorphism.

The Jacobian Conjecture is trivial for n = 1. On the other hand, when the field K has
a positive characteristic, the Jacobian Conjecture formulated as Conjecture 1 is incorrect
even in the case of n = 1. Indeed, if charK = p and n = 1, we can take ϕ(x) = x− xp. The
Jacobian of such a mapping is equal to unity, but it is irreversible.
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Despite the apparent simplicity of wording and context, the Jacobian Conjecture is
one of the most difficult open questions of modern algebraic geometry. This problem has
become the subject of numerous studies and has greatly contributed to the development of
related fields of algebra, algebraic geometry and mathematical physics, which are also of
independent interest.

The literature on the Jacobian Conjecture, its analogues and related problems are
extensive. A detailed discussion of the results established in the context of the Jacobian
Conjecture is beyond the scope of this work. Below, we give a brief overview of some results
directly related to the Jacobian Conjecture (i.e., for the algebra of polynomials in commuting
variables). Among studies of topics similar to the Jacobian Conjecture in associative algebra,
it is worth noting the work of W. Dicks [14] and Dicks and J. Lewin [15] on an analogue of
the Jacobian Conjecture for free associative algebras, the proof by U.U. Umirbaev [16] of
an analogue of the Jacobian Conjecture for the free metabelian algebra, as well as the deep
and extremely significant work of A.V. Yagzhev [17–20] (see also [21]).

2.3.2. Ind-Schemes and Varieties of Automorphisms

One of the essential areas of algebraic geometry, the development of which was
motivated by the Jacobian Conjecture is the theory of infinite-dimensional algebraic groups.
The main reference is the seminal article of I.R. Shafarevich [1], in which he defined concepts
that allowed one to study questions about some natural infinite-dimensional groups—for
example, the group of automorphisms of an algebra of polynomials in several variables—
using tools from algebraic geometry. In particular, Shafarevich defines infinite-dimensional
varieties as inductive limits of directed systems of the form

{Xi, fij, i, j ∈ I},

where Xi are algebraic varieties (more generally, algebraic sets) over a field K and the
morphisms fij (defined for i ≤ j) are closed embeddings. The inductive limit of a system
of topological spaces carries a natural topology and therefore the natural questions about
connectivity and irreducibility arise, which were also studied in [1].

Following generally accepted terminology, we will call the direct limit of systems of
varieties and closed embeddings an Ind-variety and the corresponding limits of systems of
schemes and morphisms of schemes an Ind-scheme.

The Jacobian Conjecture has the following elementary connection with Ind-schemes.
Since the algebra of polynomials K[x1, . . . , xn] can be endowed with a natural Z-grading
in total degree deg, which is defined as the appropriate monoid homomorphism by the
requirement deg xi = 1, we can define as the degree of endomorphism ϕ: namely, if
ϕ = (ϕ(x1), . . . , ϕ(xn)) defined by its action on algebra generators, then the degree deg ϕ is
the maximum value of degree on the polynomials ϕ(x1), . . . , ϕ(xn). It defines an increasing
filtration End≤N K[x1, . . . , xn], N ≥ 0 on the set EndK[x1, . . . , xn] of endomorphisms
of the polynomial algebra. Points End≤N K[x1, . . . , xn] are endomorphisms of degree at
most N. It is easy to see that the algebraic sets End≤N K[x1, . . . , xn] are isomorphic to
affine spaces of appropriate dimension. The coordinates of the point ϕ are the coefficients
of the polynomials ϕ(x1), . . . , ϕ(xn), and for EndK[x1, . . . , xn] these coordinates are not
connected by any relations.

The total degree filtration also enables endowing the sets of automorphisms with the
Zariski topology as follows (see also [1]): if ϕ is a polynomial automorphism, then consider
a set of polynomials (ϕ(x1), . . . , ϕ(x1), ϕ−1(x1), . . . , ϕ−1(xn)), the images of generators
under the action of the automorphism and its inverse. The coefficients of these polynomials
serve as coordinates of ϕ as a point of some affine space.

Define the subsets

Aut≤N K[x1, . . . , xn] = {ϕ ∈ AutK[x1, . . . , xn] : deg ϕ, deg ϕ−1 ≤ N}
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as sets of automorphisms such that all coefficients of polynomials in the presentation above
for degrees greater than n are zero.

The sets Aut≤N K[x1, . . . , xn] are algebraic sets. Indeed, the identities that define the
points Aut≤N are derived from the identity ϕ ◦ ϕ−1 = Id and, it is easy to see, are specified
by polynomials.

Now let J≤N denote a subset of End≤N K[x1, . . . , xn], whose points are endomor-
phisms with a Jacobian equal to a nonzero constant. Then, Conjecture 1 can be clearly
reformulated as follows ∀ϕ ∈ J≤N ⇒ ϕ ∈ AutK[x1, . . . , xn], ∀N, for charK = 0.

2.3.3. Dixmier Conjecture and Belov–Kontsevich Conjecture

J. Dixmier [22] in his seminal study of Weyl algebras found a connection between the Ja-
cobian Conjecture and the following Conjecture. Let Wn,K denote the n-th Weyl algebra over
the field K defined as the quotient algebra of the free algebra F2n = K〈a1, . . . , an, b1, . . . , bn〉
of 2n generators by the two-sided ideal IW , generated by polynomials aiaj − ajai,
bibj − bjbi, biaj − ajbi − δij (1 ≤ i, j ≤ n), where δij is the Kronecker symbol. The
Dixmier Conjecture states:

Conjecture 2 (Dixmier Conjecture, DCn). Let charK = 0. Then, End Wn,K = Aut Wn,K.

In other words, the Dixmier Conjecture asks whether every endomorphism of the
Weyl algebra over a field of characteristic zero is in fact an automorphism.

The Dixmier Conjecture for n variables, DCn, implies the Jacobian Conjecture JCn for
n variables (see, for example, [23]). Significant progress in recent years in the study of Con-
jecture 1 has been achieved by Kanel-Belov (Belov) and Kontsevich [2]—and independently
by Tsuchimoto [3] (also see [24])—in the form of the following theorem.

Theorem 3 (A.Ya. Kanel-Belov and M.L. Kontsevich [2], Y. Tsuchimoto [3]). JC2n implies
DCn.

In particular, Theorem 3 implies the stable equivalence of the Jacobian Conjecture and
the Dixmier Conjecture—i.e., the equivalence of conjectures JC∞ and DC∞, where JC∞
denotes the conjunction corresponding conjectures for all finite n.

Theorem 3 laid the foundation for the research into the Jacobian Conjecture based on
the study of the behavior of varieties of endomorphisms and automorphisms of algebras
under deformation quantization. The principal reference in this direction is an article
by Kanel-Belov and Kontsevich [8]; in it, several conjectures concerning Ind-varieties of
automorphisms of the corresponding algebras are formulated. The main Conjecture is
called the Kontsevich Conjecture and is as follows.

Conjecture 3 (Kontsevich Conjecture, [8]). Let K = C be the field of complex numbers. The
automorphism group Aut Wn,C of the n-th Weyl algebra over C is isomorphic to the automorphism
group Aut Pn,C of the so-called n-th (commutative) Poisson algebra Pn,C:

Aut Wn,C ' Aut Pn,C.

The algebra Pn,C is by definition the polynomial algebra

C[x1, . . . , xn, p1 . . . , pn]

of 2n variables, equipped with the Poisson bracket—a bilinear operation { , }, which is
a Lie bracket satisfying the Leibniz rule and acting on generators of the algebra in the
following way:

{xi, xj} = 0, {pi, pj} = 0, {pi, xj} = δij.

Endomorphisms of the algebra Pn are endomorphisms of the algebra of polynomials that
preserve the Poisson bracket (which we sometimes call the Poisson structure). Elements
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of Aut Pn,C are called polynomial symplectomorphisms. The choice of name is due to
the existence of an (anti-) isomorphism between the group Aut Pn,C and the group of
polynomial symplectomorphisms of the affine space A2n.

The Kontsevich Conjecture is true for n = 1. The proof of this result is a direct
description of automorphism groups Aut P1,C and Aut W1,C, contained in the classical
works of Jung [4], Van der Kulk [7], Dixmier [22] and Makar–Limanov [5,6]. Namely,
consider the following transformation groups: the group G1 is a semi-direct product
SL(2,C)oC2, whose elements are called special affine transformations and the group G2
by definition consists of the following “triangular" substitutions:

(x, p) 7→ (λx + F(p), λ−1 p), λ ∈ C×, F ∈ C[t].

Then the automorphism group of the algebra P1,C [4] is isomorphic to the quotient
group of the free product of the groups G1 and G2 by their intersection. Dixmier [22] and,
later, Makar–Limanov [5] showed that if in the description above one replaces the commut-
ing Poisson generators with their quantum (Weyl) analogues, one obtains a description of
the group of automorphisms of the first Weyl algebra W1,C.

Remark 1. The theorems of Jung, van der Kulk, Dixmier and Makar–Limanov also mean that all
automorphisms of the polynomial algebra of two variables and the first Weyl algebra W1 are tame
(we provide the definition of the concept of tame automorphism, which plays a significant role in this
study, in the sequel). Moreover, Makar–Limanov [6] and A. Czerniakiewicz [25,26] proved that all
automorphisms of the free algebra K〈x, y〉 are tame.

In view of these circumstances, the case of two variables is to be considered exceptional.
However, the Jacobian Conjecture is a difficult open problem even in this case.

Recently, Kanel-Belov, together with Elishev and Yu, suggested proof of the general
case of the Kontsevich Conjecture [10,27]. Independent proof of a closely related result
(based on a study of the properties of holonomicD-modules) was proposed by C. Dodd [28].

In contrast to the Jacobian Conjecture, which is an extremely difficult problem, in the
study of the Kontsevich Conjecture, there are several possible approaches. First of all, in [8],
Kanel-Belov and Kontsevich formulated several generalizations of Conjecture 3. In [2,3],
which is devoted to the proof of Theorem 3, the construction of homomorphisms

ϕ : Aut Wn,C → Aut Pn,C

and
ϕ : End Wn,C → End Pn,C

involved in the construction, from a counterexample to DCn, of an irreversible endo-
morphism with a single Jacobian, was presented. A straightforward strengthening of
Conjecture 3 is the statement that the homomorphism ϕ realizes the isomorphism of the
Kontsevich Conjecture. Moreover, namely, in Chapter 8 of [8], an approach to solve the
problem of the lifting of polynomial symplectomorphisms to automorphisms of the Weyl
algebra (i.e., constructing a homomorphism inverse to ϕ) was discussed. Conjecture 5 of [8],
along with Conjecture 6, which is a weaker form of Conjecture 3, make up the essential
contents of the construction proposed in [8]. To solve the problem of the lifting symplec-
tomorphisms in the sense of these conjectures, it is necessary to study the properties of
D-modules, (left) modules over the Weyl algebra. The work of Dodd [28] is based on this
approach.

2.4. Tame Automorphisms and the Kontsevich Conjecture

Dodd’s constructions are deep in content and, apparently, prove the Kontsevich
Conjecture on the correspondence between Lagrangian varieties and holonomic modules
(more precisely, its essential part). On the other hand, starting from the Theorem of Dodd,
we cannot immediately arrive at the general case of Conjecture 3. The proof of Conjecture 1
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of [8] requires a solution to the lifting problem of symplectomorphisms to automorphisms
of the corresponding Weyl algebra.

One of the main results of [8] was the proof of the following homomorphism properties

ϕ : Aut Wn,C → Aut Pn,C

constructed in [8] and [3]. First, let ϕ be an automorphism of the polynomial algebra
K[x1, . . . , xn]. We call ϕ elementary if it has the form

ϕ = (x1, . . . , xk−1, axk + f (x1, . . . , xk−1, xk+1, . . . , xn), xk+1, . . . , xn).

In particular, automorphisms given by linear substitutions of generators are ele-
mentary. Denote by TAutK[x1, . . . , xn] the subgroup generated by all elementary auto-
morphisms. Elements of this subgroup are called tame automorphisms of the algebra of
polynomials. Non-tame automorphisms are called wild automorphisms.

Tame automorphisms of the algebra Pn,K are, by definition, compositions of those tame
elementary automorphisms which preserve the Poisson bracket. Tame automorphisms of
the Weyl algebra are defined Wn,K similarly.

The following theorem is proved in [8].

Theorem 4 (A. Kanel-Belov and M.L. Kontsevich, [8]). The homomorphism

ϕ : Aut Wn,C → Aut Pn,C

restricts to the isomorphism

ϕ|TAut : TAut Wn,C → TAut Pn,C

between subgroups of tame automorphisms.

In particular, due to the tame nature of automorphism groups of Weyl and Poisson al-
gebras for n = 1, the homomorphism ϕ gives an isomorphism of the Kontsevich Conjecture
between Aut W1,C and Aut P1,C.

It is not known whether all automorphisms of the Poisson and Weyl algebras are
tame for n > 1, or even stably tame (an automorphism is called stably tame if it becomes
tame after adding dummy variables and extending the action on them by means of the
identity automorphism). For the algebra of polynomials in three variables, the Nagata
automorphism

(x, y, z) 7→ (x− 2(xz + y2)y− (xz + y2)2z, y + (xz + y2)z, z)

is wild (the famous result due to I.P. Shestakov and Umirbaev [29,30]).
Nevertheless, tame automorphisms turn out to play a significant role in the context

of the Kontsevich Conjecture and the Jacobian Conjecture, due to the following reason.
Anick [11] showed that the set of tame automorphisms of the algebra of polynomials
K[x1, . . . , xn] (n ≥ 2) is dense in the topology of formal power series in the space J of
polynomial endomorphisms with nonzero constant Jacobian. In particular, for any au-
tomorphism of a polynomial algebra there exists a sequence of tame automorphisms
converging to it in this topology—in other words, Anick’s theorem implies the existence
of approximations of automorphisms, or approximations by tame automorphisms (and in
general, endomorphisms with nonzero constant Jacobian). In view of Anick’s theorem, the
Jacobian Conjecture can be formulated as a problem of invertibility of limits of sequences
of tame automorphisms (this is discussed in the conclusion of [11]). This formulation
of the Jacobian Conjecture can be directly generalized to the case of a field of arbitrary
characteristic, see more below as well as in [31].
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Anick’s results, together with Theorem 4, suggest the idea of solving the lifting problem
of polynomial symplectomorphisms to automorphisms of the Weyl algebra (an alternative
construction to that proposed in [8]). Namely, if there is a symplectic analogue of Anick’s
theorem—that is, if there is an approximation of polynomial symplectomorphisms by tame
symplectomorphisms—then, taking a sequence of tame symplectomorphisms converging
to a given point, we can take the sequence of their pre-images under the isomorphism
ϕ|TAut and try to prove that its limit exists and is an automorphism of the Weyl algebra.
The symplectic analogue of Anick’s theorem was proved in [12]. The application of approx-
imation theory to the lifting problem constitutes the main idea of the proof of Conjecture 3
in [27].

However, the direct application of the main result of [12] to the solution of the lifting
problem does not achieve the desired result, since the homomorphism ϕ does not preserve
the topology of formal power series (due to commutation relations in the Weyl algebra). In
this connection, the naive approximation approach needs some modification. It turns out
that such a modification is possible (see [27]). The nature of this modification is significant
and is connected with the geometric properties of Ind-schemes of automorphisms of the
corresponding algebras. Therefore, the study of the geometry of Ind-schemes of automorphisms is
justified in the framework of the Kontsevich Conjecture.

3. Quantization Proof of Bergman’s Centralizer Theorem

This section is a relatively independent part of the thesis and only sketches proofs
with classical tools, while the following sections will focus on the new proof of Bergman’s
centralizer theorem.

We demonstrate the direct relationship between Bergman’s theorem and Kontsevich’s
quantization in a classic way. The proof of the theorem has been broken into multiple steps.

A generic matrix is a matrix whose entries are distinct commutative indeterminates
and the so-called algebra of generic matrices of order m is generated by associative generic
m× matrices. In [32], we use the fact that when we come to the quantization of generic
matrices, those matrices are allowed to commute but have no other relations.

It is shown that any two commuting elements in the free associative algebra also
commute in some algebras of generic matrices. They also prove that if A is a free-associative
algebra, then there is no commutative subalgebra with a transcendent degree greater than
or equal to 2 of A. It is seen that two commuting generic matrices f , g with tr.deg( f , g) = 2
do not commute after quantization.

Let X be a set of noncommuting variables, which may or may not be finite and F be a
field. Let X∗ denote the free monoid generated by X. An element of X (resp. X∗) is also
called a letter (resp. word) and X is called an alphabet. Let F〈〈X〉〉 and F〈X〉 denote the
F-algebra of formal series and polynomials in X, respectively. So an element of F〈〈X〉〉 is in
the form a = ∑ω∈X∗ aωω, where aω ∈ F is the coefficient of the word ω in a. The length
| ω | of ω ∈ X∗ is the number of letters appearing in ω. For example, if X = {xi} and
ω = x1x2

2x1x3, then | ω |= 5. Now, we define the valuation

ν : F〈〈X〉〉 → Z>0 ∪ {∞}

as follows: ν = ∞ and if a = ∑ω∈X∗ aωω 6= 0, then ν(a) = min{| ω |: aω 6= 0}. Note that if
w is constant, then ν(ω) = 0 and ν(ab) = ν(a) + ν(b) for all a, b ∈ F〈〈X〉〉. The following
fact is easy to prove.

Lemma 4 (Levi’s Lemma, [33]). Let ω1, ω2, ω3, ω4 ∈ X∗ be nonzero with |ω2| ≥ |ω4|. If
ω1ω2 = ω3ω4, then ω2 = ωω4 for some ω ∈ X∗.

The proof is trivial by backward induction on |ω2| since ω2 has the same last letter as
ω4. The next lemma extends Levi’s lemma to k〈〈X〉〉 and we state the result as follows.
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Lemma 5 ([34], Lemma 9.1.2). Let a, b, c, d ∈ k〈〈X〉〉 be nonzero. If ν(a) ≥ ν(c) and ab = cd,
then a = cq for some q ∈ k〈〈X〉〉.

An interesting consequence of Lemma 5 is the following result:

Corollary 2. Let a ∈ 〈〈X〉〉. Then, b ∈ C(a;F〈〈X〉〉) if and only if a, b are not free, i.e.,
f (a, b) = 0 for some nonzero series f ∈ F〈〈x, y〉〉.

Lemma 6. Suppose that the constant term of an element a ∈ F〈〈X〉〉 is zero and
b, c ∈ C(a;F〈〈X〉〉) {0}. If ν(c) > ν(b), then c = bd for some d ∈ C(a;F〈〈X〉〉).

3.1. Centralizer Theorems

With the help of the preceding lemmas, we can state and prove this well known
centralizer theorem of k-algebra of formal series by Cohn.

Theorem 5 (Cohn’s Centralizer Theorem, [35]). If a ∈ k〈〈X〉〉 is not a constant, then the
centralizer C(a; k〈〈X〉〉) ∼= k[[x]], where k[[x]] is the algebra of formal power series in the variable x.

Now since k〈X〉 ⊂ K〈〈X〉〉, it follows from the above theorem that if a ∈ k〈X〉 is not
constant, then C(a; k〈X〉) is commutative because C(a; k〈〈X〉〉) is commutative. The next
theorem is our main goal which shows that there is a similar result for C(a; k〈X〉).

Theorem 6 (Bergman’s Centralizer Theorem, [36]). If a ∈ k〈X〉 is not constant, then the
centralizer C(a; k〈X〉) ∼= k[x], where k[x] is the polynomial algebra in one variable x.

We will not fully restate the original proof of Bergman’s centralizer theorem since this
is not the main idea here. However, we do use a result in his original proof [36] which
helps us to finish the proof of the fact that the centralizer is integrally closed. This will be
shown in Section 3.4.

First of all, we need to emphasize that the proof of Cohn’s centralizer theorem is
included in the proof. Here is a sketch of the proof.

For simplicity, we denote by C := C(a; k〈X〉) the centralizer of a which from now
on is not a constant. Recall that the centralizer C is also commutative. Moreover, C is
finitely generated, as a module over k[a] or as algebra. Then, since k〈X〉 is a 2-fir (free
ideal ring, cf. [36], Lemma 1.5) and the center of a 2-fir is integrally closed, we obtain
that the centralizer of a is integrally closed in its field of fractions after using the lifting to
k〈X〉 ⊗ k(x) (where x is a free variable). Then, our aim is to show that C is a polynomial
ring over k. In order to obtain this fact, we shall study homomorphisms of C in polynomial
rings. By using “infinite" words, we obtained an embedding from C into polynomial rings
by lexicographically ordered semigroup algebras, which completes this sketch of the proof.
Indeed, any subalgebra not equal to k of a polynomial algebra k[x] that is integrally closed
in its own field of fractions is of form k[y] (by Lüroth’s theorem).

An analogue of Bergman’s centralizer theorem for free group algebras was considered
by N. Miasnikov in his very interesting paper (cf. [37]). He proved

Theorem 7 ([37]). Suppose that u ∈ A is not supported on a cyclic group. Let C be the centralizer
of u. Then, C is the affine coordinate ring of the complement of a k-point in a proper nonsingular
curve over k.

We finally restate a conjecture by Miasnikov [37] as follows:

Conjecture 4. Does every finitely generated subalgebra R 6= k of a free group algebra A over k
admit a k-algebra homomorphism f : R→ k[t, t−1] into the ring of Laurent polynomials of a single
variable k[t, t−1] ∼= k[Z] which is nontrivial in the sense that f (R) 6= k?
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We conclude this section by pointing out that the method of “infinite” words inspires
us to find a possibility to prove Bergman’s centralizer theorem by deformation quantization.
In the next section, we will establish this new approach of quantization for generic matrices.

3.2. Reduction to Generic Matrix

In this section, we will establish an important theorem that gives a relation between
commutative subalgebras in free associative algebra and the algebra of generic matrices. Let
k〈X〉 be the free associative algebra over a field k generated by a finite set X = {x1, . . . , xs}
of s indeterminates and let k〈X1, . . . , Xs〉 be the algebra of n× n generic matrices generated
by the matrices Xν. The canonical homomorphism π : k〈x1, . . . , xs〉 → k〈X1, . . . , Xs〉 is
shown in the last section.

We claim that if we have a commutative subalgebra of rank two in the free associative
algebra k〈X〉, then we also have a commutative subalgebra of rank two if we consider a
reduction to generic matrices of big enough order n. We call two elements of a free algebra
algebraically independent if the subalgebra generated by these two elements is a free algebra
of rank two. Otherwise, we will call them algebraically dependent.

In other words, if we have a commutative subalgebra k[ f , g] of rank two in the free
associative algebra, then we have to prove that its projection to generic matrices of some
order also has rank two; i.e., π( f ), π(g) do not have any relations.

We need the following theorem:

Theorem 8 ([38]). Let k〈X〉 be the free associative algebra over a field k generated by a finite set
X of indeterminates. If k〈X〉 has a commutative subalgebra with two algebraically independent
generators f , g ∈ k〈X〉, then the subalgebra of n by n generic matrices generated by reduction of f
and g in k〈X1, . . . , Xs〉 also has rank two for big enough n.

Recall that the centralizer C := C(a; k〈X〉) of a ∈ k〈X〉 \ k is a commutative subalgebra
of k〈X〉. So from the above theorem, we conclude that if the centralizer is a subalgebra in
k〈X〉 of rank two then the π-image subalgebra of C has also rank two.

However, we prefer discussing this general case of subalgebras instead of just consider-
ing a centralizer subalgebra. Furthermore, we want to prove that there are no commutative
subalgebras of the free associative algebra k〈X〉 of rank greater than or equal to two.

3.3. Quantization Proof of Rank One

By the opinion of most specialists, including E. Rips, there are no new proofs of
Bergman’s centralizer theorem [36] for almost fifty years. We use a method of deformation
quantization presented by Kontsevich to give an alternative proof of Bergman’s central-
izer theorem. In this section, we get that the centralizer is a commutative domain of
transcendence degree one (see [32]).

Let k〈X〉 be the free associative algebra over a field k generated by s free variables
X = {x1, . . . , xs}. Now, we concentrate our proof on the fact that there are no com-
mutative subalgebras of rank greater than or equal to two. From the homomorphism
π : k〈x1, . . . , xs〉 → k〈X1, . . . , Xs〉 and Theorem 8, we change our objective from the
elements of k〈X〉 to the algebra of generic matrices k〈X1, . . . , Xs〉 and we consider the
quantization of this algebra and its subalgebras.

Lemma 7 ([38]). Let Â ≡ A0 + hA1(mod h2) be the quantized image of a generic matrix
A ∈ k〈X1, . . . , Xs〉, where A0 is diagonal with distinct eigenvalues. Then, the quantized im-
ages Â can be diagonalized over some finite extension of k[x(ν)ij ].

Let A, B be two commuting generic matrices in k〈X1, . . . , Xs〉 which are algebraically
independent, i.e., rank k〈A, B〉 = 2. We have the following theorem.
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Theorem 9 ([32,38]). Let A, B be two commuting generic matrices in k〈X1, . . . , Xs〉 with rank
k〈A, B〉 = 2 and let Â and B̂ be quantized images (by sending multiplications to star products by
means of Kontsevich’s formal quantization) of A and B, respectively, by considering lifting A and B
in k〈X1, . . . , Xs〉[[h]]. Then, Â and B̂ do not commute. Moreover,

1
h
[Â, B̂]? ≡


1
h{λ1, µ1} 0

. . .
0 1

h{λn, µn}

 mod h, (1)

where λi and µi are eigenvalues(weights) of A and B, respectively.

To prove this theorem, we need some preparation. It is not easy to directly compute
two such generic matrices with order n. However, if we can diagonalize those matrices,
then the computation will be easier. So first of all, we should show the possibilities. Without
loss of generality, we may assume that one of the generic matrices B is diagonal if we have
a proper choice of basis of the algebra of generic matrices. Now consider the other generic
matrix A which we mentioned above.

Remark 3. The generic matrix A may not be diagonalizable over k[x(ν)ij ], but it can be diagonalized

over some integral extension of the algebra k[x(ν)ij ] with i, j = 1, . . . , n; ν = 1, . . . , s.

Remark 4. Any non-scalar element A of the algebra of generic matrices must have distinct eigen-
values. In fact, by Amitsur’s Theorem [39], the algebra of generic matrices is a domain. If the
minimal polynomial is not a central polynomial, then the algebra can be embedded in a skew field.
Hence, the minimal polynomial is irreducible and the eigenvalues are pairwise different.

Remark 5. Suppose λi and δi, i = 1, . . . , n are algebraically dependent. Then, there are polynomials
Pi in two variables such that Pi(λi, δi) = 0. Put

P(x, y) =
n

∏
i=1

Pi(x, y).

Then, P(A, B) is a diagonal matrix having zeros on the main diagonal, i.e., P(A, B) = 0. This
means that if rank k〈A, B〉 = 2, then λi, δi are algebraically independent for some i.

Let us conclude this section by explaining the whole process of this proof. Recall
that we have the free associative algebra k〈X〉 over a field k; if we have a commutative
subalgebra of rank two generated by a, b ∈ k〈X〉, then we may have a commutative
subalgebra of the algebra of generic matrices k〈X1, . . . , Xs〉 of rank two generated by A, B
(they are images of a homomorphism π : k〈X〉 → k〈X1, . . . , Xs〉). Consider the element
0 = [a, b] of the free associative algebra k〈X〉, homomorphism π and canonical quantization
homomorphism q sending multiplications to star products. Then, we obtain that

0 = qπ([a, b]) = q[A, B] = [Â, B̂]?.

This leads to a contradiction to Theorem 9 which shows that [Â, B̂]? 6= 0. So we obtain
the following result.

Theorem 10. There are no commutative subalgebras of rank ≥ 2 in the free associative algebra
k〈X〉.

The centralizer ring is commutative from our discussion in Section 3.1 and from the
above theorem, it is of rank 1. So it is a commutative subalgebra with form k[x] for some
x ∈ k〈X〉 \ k. We will show it implies Bergman’s centralizer Theorem 6 in the next section.
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3.4. Centralizers Are Integrally Closed

We have shown that the centralizer C is a commutative domain of transcendence
degree one. For us, it was the most interesting part of the proof of Bergman’s centralizer
theorem. However, we have to prove the fact that C is integrally closed in order to complete
the proof of Bergman’s Centralizer Theorem. We showed above that centralizers are com-
mutative domains of transcendence degree one over the ground field of characteristic zero.

However, in this section, our proofs are characteristic-free instead of the deep noncom-
mutative divisibility theorems of Cohn and Bergman.

In our proof, despite the deep noncommutative divisibility theorems of Cohn and
Bergman, the method which we use is characteristic-free. We use generic matrices reduction,
invariant theory for characteristic zero by C. Procesi [40–42] and for positive characteristic
due to A. N. Zubkov [43,44] and S. Donkin [45,46].

By transferring centralizers of non-scalar elements in the free associative algebra
onto the algebra of generic matrices, we first consider the localization of the algebra of
generic matrices.

Theorem 11 ([47]). The algebra of generic matrices is a domain. Its localization as a skew field
coincides with the localization of algebra of generic matrices with traces (for positive characteristic—
with forms).

We then prove the integrally closedness of the algebra of generic matrices.

Theorem 12 ([47]). The algebra of generic matrices with characteristic coefficients is integrally
closed.

3.5. Proof of Bergman’s Centralizer Theorem

Now we can sketch out the proof of Bergman’s centralizer theorem. Consider the
homomorphism from the following Proposition given by Bergman.

Proposition 2 (Bergman, [36]). For C 6= K, a finitely generated subalgebra of K〈X〉, there is a
homomorphism f of C into the polynomial algebra over K in one variable, such that f (C) 6= K.

Because C is the centralizer of K〈X〉, it has transcendence degree 1. Consider the
homomorphism ρ which sends C to the ring of polynomials. The homomorphism has
kernel zero; otherwise, ρ(C) will have a smaller transcendence degree. Note that C is
integrally closed and finitely generated; therefore, it can be embedded into the polynomial
ring in one indeterminate. Since C is integrally closed, it is isomorphic to the polynomial
ring of one indeterminate.

Consider the set of system of C`, `-generated subring of C such that C = ∪`C`. Let C`

be the integral closure of C`. Consider the set of embedding of C` to ring of polynomial;
then, C` are integral closure of those images, i.e., C` = K[z`], where z` belongs to the
integral closure of C`. Consider the sequence of z`. Because K[z`] ⊆ K[z`+1] and degree of
z`+1 is strictly less than the degree of z`, this sequence stabilizes for some element x and it
shows that K[z] is the needed centralizer.

4. Noncommutative Białynicki-Birula Theorem

The study of algebraic group actions on varieties and coordinate algebras is a major
area of research in algebraic geometry and ring theory. The subject has its connections
with the theory of polynomial mappings, tame and wild automorphisms and the Jacobian
Conjecture of O.-H. Keller, infinite-dimensional varieties according to Shafarevich, the
cancellation problem (together with various cancellation-type problems) and the theory of
locally nilpotent derivations, among other topics. One of the central problems in the theory
of algebraic group actions has been the linearization problem, formulated and studied
in the work of T. Kambayashi and P. Russell [48], which states that any algebraic torus
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action on an affine space is always linear with respect to some coordinate system. The
linearization conjecture was inspired by the classical and well known result of A. Bialyn-
icki–Birula; it states that every effective regular torus action of maximal dimension on
the affine space over an algebraically closed field is linearizable. Although the lineariza-
tion conjecture has turned out negative in its full generality, according to, among other
results, the positive-characteristic counterexamples of T. Asanuma, the Bialynicki–Birula
has remained an important milestone of the theory thanks to its connection to the theory of
polynomial automorphisms. Recent progress in the latter area has stimulated the search for
various noncommutative analogues of the Bialynicki–Birula theorem. In [49], we obtain
the linearization theorem for effective maximal torus actions by automorphisms of the
free associative algebra, which is the free analogue of the Bialynicki–Birula theorem. This
statement is the free algebra analogue of a classical theorem of A. Białynicki-Birula.

4.1. Actions of Algebraic Tori

In [49], we consider algebraic torus actions on the affine space, according to Białynicki-
Birula and formulate certain noncommutative generalizations.

We begin by recalling a few basic definitions. Let K be an algebraically closed field.

Definition 1. An algebraic group is a variety G equipped with the structure of a group, such that the
multiplication map m : G× G → G : (g1, g2) 7→ g1g2 and the inverse map ι : G → G : g 7→ g−1

are morphisms of varieties.

Definition 2. A G-variety is a variety equipped with an action of the algebraic group G,

α : G× X → X : (g, x) 7→ g · x,

which is also a morphism of varieties. We then say that α is an algebraic G-action.

Let K be our ground field, which is assumed to be algebraically closed. Let
Z = {z1, z2, . . .} = {zi : i ∈ I} be a finite or a countable set of variables (where
I = {1, 2, . . .} is an index set), and let Z∗ denote the free semigroup generated by Z,
Z+ = Z∗\{1}. Moreover, let FI(K) = K〈Z〉 be the free-associative K-algebra and
F̂I(K) = K〈〈Z〉〉 be the algebra of formal power series in free variables.

Denote by W = 〈Z〉 the free monoid of words over the alphabet Z (with 1 as the
empty word) such that |W| > 1, for |W| the length of the wordW ∈ Z+.

For an alphabet Z, the free-associative K-algebra on Z is

K〈Z〉 := ⊕W∈Z∗KW ,

where the multiplication is K-bilinear extension of the concatenation on words, Z∗ denotes
the free monoid on Z and KW denotes the free K-module on one element, the wordW .
Any element of K〈Z〉 can thus be written uniquely in the form

∞

∑
k=0

∑
i1,...,ik∈I

ai1,i2,...,ik zi1 zi2 . . . zik ,

where the coefficients ai1,i2,...,ik are elements of the field K and all but finitely many of these
elements are zero.

In our context, the alphabet Z is the same as the set of algebra generators; therefore,
the terms “monomial” and “word” will be used interchangeably.

In the sequel, we employ a (slightly ambiguous) short-hand notation for a free algebra
monomial. For an element z, its powers are defined as usual. Any monomial zi1 zi2 . . . zik
can then be written in a reduced form with subwords zz . . . z replaced by powers.

We then write
zI = zi1

j1
zi2

j2
. . . zik

jk
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where by I we mean an assignment of ik to jk in the word zI . Sometimes we refer to I as
a multi-index, although the term is not entirely accurate. If I is such a multi-index, its
absolute value |I| is defined as the sum i1 + · · ·+ ik.

For a field K, let K× = K\{0} denote the multiplicative group of its non-zero elements
viewed as an algebraic K-group.

It is usually denoted by Gm and is the affine algebraic group Spec(K[t, t−1]). An
n-dimensional algebraic torus over K is an algebraic group Tn isomorphic to a finite direct
product K× × . . .×K× which is a type of commutative affine algebraic group.

Definition 3. An n-dimensional algebraic K-torus is a group

Tn ' (K×)n

(with obvious multiplication).

Denote by An the affine space of dimension n over K.

Definition 4. A (left) torus action is a morphism

σ : Tn ×An → An.

that fulfills the usual axioms (identity and compatibility):

σ(1, x) = x, σ(t1, σ(t2, x)) = σ(t1t2, x).

An action σ is effective if for every t 6= 1 there is an element x ∈ An such that σ(t, x) 6= x.

Let us first restrict ourselves to the situation in which an r-dimensional torus
Tr = (Gm)r ' (F∗)r acts on an affine n-space An := SpecF[x1, · · · , xn], where
F[x1, · · · , xn] = F[n] is an n-variable polynomial ring over F. Since the quotient of a
torus by any subgroup is again a torus, we may assume that Tr acts effectively, i.e., that no
proper subgroup of Tr acts neutrally on An.

In [50,51], Białynicki-Birula proved the following results, for F algebraically closed.

Theorem 13 ([50]). Any regular action of Tn on An has a fixed point.

Theorem 14 ([51]). Any effective and regular action of Tn on An is a representation in some
coordinate system.

Theorem 15 ([51]). The action of Tr on An is linearizable in the cases of r = n or r = n− 1,
which means that one can find isobaric elements y1, · · · , yn in F[n] = F[x1, · · · , xn] such that
F[n] = F[y1, · · · , yn].

The term “regular” is to be understood here as in the algebro-geometric context of
regular function (Białynicki-Birula also considered birational actions). The last theorem
says that any effective regular maximal torus action on the affine space is conjugate to a
linear action, or, as it is sometimes called, linearizable.

An algebraic group action on An is the same as an action by automorphisms on
the algebra

K[x1, . . . , xn]

of global sections. In other words, it is a homomorphism

σ : Tn → AutK[x1, . . . , xn].

An action is effective iff Ker σ = {1}.
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The polynomial algebra is a quotient of the free associative algebra

Fn = K〈z1, . . . , zn〉

by the commutator ideal I (it is the two-sided ideal generated by all elements of the form
f g − g f ). From the standpoint of noncommutative geometry, the algebra Γ(X,OX) of
global sections (along with the category of f.g. projective modules) contains all the relevant
topological data of X and various non-commutative algebras (PI-algebras included) may
be thought of as global function algebras over “noncommutative spaces”. Therefore,
a noncommutative analogue of the Białynicki-Birula theorem is a subject of legitimate
interest.

In [49] we establish the free algebra version of the Białynicki-Birula theorem. The latter
is formulated as follows.

Theorem 16. Suppose given an action σ of the algebraic n-torus Tn on the free algebra Fn. If σ is
effective, then it is linearizable.

The linearization problem, as it has become known since Kambayashi, asks whether all
(effective, regular) actions of a given type of algebraic group on the affine space of a given
dimension are conjugate to representations. According to Theorem 16, the linearization
problem extends to the noncommutative category. Several known results concerning the
(commutative) linearization problem are summarized below.

1. Any effective regular torus action on A2 is linearizable (Gutwirth [52]).
2. Any effective regular torus action on An has a fixed point (Bialynicki-Birula [50]).
3. Any effective regular action of Tn−1 on An is linearizable (Bialynicki-Birula [51]).
4. Any (effective, regular) one-dimensional torus action (i.e., action of K×) on A3 is

linearizable (Koras and Russell [53]).
5. If the ground field is not algebraically closed, then a torus action on An need not

be linearizable. In [54], Asanuma proved that over any field K, if there exists a
non-rectifiable closed embedding from Am into An, then there exist non-linearizable
effective actions of (K×)r on An+m+1 for 1 6 r 6 1 + m.

6. When K is infinite and has a positive characteristic, there are examples of non-
linearizable torus actions on An (Asanuma [54]).

Remark 6. A closed embedding ι : Am → An is said to be rectifiable if it is conjugate to a linear
embedding by an automorphism of An.

As can be inferred from the review above, the context of the linearization problem is
rather broad, even in the case of torus actions. The regulating parameters are the dimensions
of the torus and the affine space. This situation is due to the fact that the general form of
the linearization conjecture (i.e., the conjecture that states that any effective regular torus
action on any affine space is linearizable) has a negative answer.

Transition to the noncommutative geometry presents the inquirer with an even broader
context: one now may vary the dimensions as well as impose restrictions on the action in
the form of preservation of the PI identities. Caution is well advised. Some of the results
are generalized in a straightforward manner—the main theorem of this paper being the
typical example, others requiring more subtlety and effort. Of some note to us, given our
ongoing work in deformation quantization (see, for instance, [12]), is the following instance
of the linearization problem, which we formulate as a conjecture.

Conjecture 5. For n > 1, let Pn denote the commutative Poisson algebra, i.e., the polynomial
K[z1, . . . , z2n] equipped with the Poisson bracket defined by {zi, zj} = δi,n+j − δi+n,j. Then, any
effective regular action of Tn by automorphisms of Pn is linearizable.
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It is interesting to note that the context of Conjecture 1 admits a vague analogy in
the real transcendental category (with Pn replaced by an appropriate algebra of smooth
functions, cf., for instance, the work of Zung [55]). Although the instances of the lineariza-
tion problem we consider in [49], as well as the original theorem of Białynicki-Birula, are
essential for the complex algebraic nature, it may be worthwhile to search for analytic
analogues of the real transcendental linearization (however, whether this will give a feasible
approach to Conjecture 5 is unclear, the hurdles being significant and fairly obvious).

4.2. Non-Linearizable Torus Actions and Problems

The noncommutative toric action linearization theorem that we have proved has
several useful applications. In reference [31], it is used to investigate the properties of the
group Aut Fn of automorphisms of the free algebra. As a corollary of Theorem 16, one gets

Corollary 7. Let θ denote the standard action of Tn on K[x1, . . . , xn]—i.e., the action

θt : (x1, . . . , xn) 7→ (t1x1, . . . , tnxn).

Let θ̃ denote its lifting to an action on the free associative algebra Fn. Then θ̃ is also given by the
standard torus action.

This statement plays a part, along with a number of results concerning the induced
formal power series topology on Aut Fn, in the establishment of the following proposition
(cf. [31]).

Proposition 3. When n ≥ 3, any Ind-scheme automorphism ϕ of Aut(K〈x1, . . . , xn〉) is inner.

One could try and generalize the free algebra version of Białynicki-Birula’s theorem to
other noncommutative situations. Another method of generalization lies in changing the
dimension of the torus. It is nonetheless possible that the free analogue of the main result
of [51] exists. We have then the following conjecture.

Conjecture 6. Any effective regular action of Tn−1 on the free algebra Fn(F) is linearizable,
provided that F is algebraically closed.

According to the above results, we are now able to state and prove one of our main
results:

Theorem 17 ([56]). Let F be algebraically closed. Any effective regular action of (the one-
dimensional torus) F∗ on the free algebra F〈z1, z2〉 is linearizable.

Next, we consider positive-root torus actions and prove the linearity property analo-
gous to the Białynicki-Birula theorem.

Theorem 18 ([56]). Any effective positive-root action of Tr on F[x1, . . . , xn] is linearizable.

In order to prove the free-associative version of this theorem, we devise a way to
reduce the positive-root case to the commutative one. To that end, we introduce the generic
matrices and induce the action on the rings of coefficients.

More precisely, we have the following.

Theorem 19 ([56]). Let σ : Tr × Fn → Fn be a regular torus action with positive roots. Then, it is
linearizable.

Next, we study non-linearizable torus actions. The examples of non-linearizable torus
actions, as well as a way to study them, were developed by Asanuma [54]. It is not difficult
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to observe that most of Asanuma’s techniques can be carried to the free-associative case
without loss of generality. As in Asanuma’s case, the existence of non-linearizable torus
actions is tied to the existence of so-called non-rectifiable ideals in the appropriate algebras.
One rather remarkable feature of Asanuma’s technique is the fact that modulo minor details
and replacements may be repeated almost verbatim in the associative category—a situation
similar to the one we have observed in the Białynicki-Birula theorem concerning the action
of the maximal torus.

Definition 5. Two (regular) Tr-actions, ϕ and ψ, respectively, on A and B are equivalent if there
exists a F-homomorphism σ : A→ B such that the diagram

A[T1, . . . , Tr, T−1
1 , . . . , T−1

r ] B[T1, . . . , Tr, T−1
1 , . . . , T−1

r ]

A B

σ⊗Id

σ

ϕ ψ

commutes.

The main problem of interest is the free-associative analogue of the so-called Cancella-
tion Conjecture, as formulated by V. Drensky and Yu [57]:

Conjecture 7. Let R be a F-algebra. If

R ∗ F〈y〉 'F F〈x1, . . . , xn〉,

then
R 'F F〈x1, . . . , xn−1〉.

Asanuma’s results on the Rees algebras allow us to establish a version of the Can-
cellation Conjecture for co-products over a (commutative) F-algebra D. The following
statement holds.

Theorem 20 ([56]). Let D be an integral domain which is a F-algebra and let x be an indeterminate
over D. Assume a non-zero element t ∈ D and monic polynomials f (x) and g(x) in F[x] of degree
greater than 1. Set A = D[x, t−1 f (x)] and B = D[x, t−1g(x)]. If

F[x]/( f (x)) 'F F[x]/(g(x)),

then

A ∗D F〈y〉 'D B ∗D F〈y〉,

where the product R ∗D S is the quotient of the free product R ∗ S over F by the ideal generated
by all elements of the form

r ∗ (ds)− d(r ∗ s).

We have the following conjectures:
One notable example is that we expect the free-associative analogue of the second

Białynicki-Birula theorem to hold and formulate it here as a conjecture.

Conjecture 8. Any effective action of Tn−1 on Fn is linearizable.

Also of independent interest is the following instance of the linearity problem.
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Conjecture 9. For n ≥ 1, let Pn denote the commutative Poisson algebra, i.e., the polynomial
algebra F[z1, . . . , z2n] equipped with the Poisson bracket defined by

{zi, zj} = δi,n+j − δi+n,j.

Then, any effective regular action of Tn by automorphisms of Pn is linearizable.

This problem is loosely analogous to the Białynicki-Birula theorem, in the sense of
maximality of torus with respect to the dimension of the configurations space (spanned
by xi).

On the other hand, there is little reason to expect this statement to hold with further
lowering of the torus dimension. In fact, even in the commutative case the conjecture that
any effective toric action is linearizable, in spite of considerable effort (see [48]), proved
negative (counterexamples in positive characteristic due to Asanuma [54]).

Another direction would be to replace T by an arbitrary reductive algebraic group;
however, the commutative case also does not hold even in characteristic zero (cf. [58]).

It is also a problem of legitimate interest to obtain the proof of Conjecture 5—i.e.,
to resolve the linearization problem of the regular action of the n-dimensional torus on
the group Sympl(k2n) of polynomial symplectomorphisms of the 2n-dimensional affine
space (k is a field of characteristic zero). One could hope to utilize the latter result in
order to obtain a description of the space of Ind-scheme automorphisms of Sympl(k2n)
along the lines of [31]. This space plays a prominent role in the study of quantization of
symplectomorphisms, initiated by Kanel-Belov and Kontsevich [8], where the characteristic
zero isomorphisms between the group of automorphisms of the n-th Poisson and Weyl
algebras has been posed as the main conjecture (Kontsevich Conjecture). Recently, the first,
the second and the fourth named authors have proposed a proof of this conjecture [10,27].

5. Feigin’s Conjecture and the Lattice W-Algebras

Feigin’s homomorphisms were born in Feigin’s new formulation of quantum Gelfand–
Kirillov Conjecture, which came into public view at RIMS in 1992 for the nilpotent part
Uq(n), and are now known as “Feigin’s Conjecture” [59].

In the mentioned talk, Feigin proposed the existence of a family of homomorphisms
from a quantized enveloping algebra to rings of skew-polynomials. These homomorphisms
are becoming very useful tools for studying the fraction field of quantized enveloping
algebra.

5.1. Feigin’s Homomorphisms on Uq(n)

Here, we will attempt to succinctly explain what Feigin’s homomorphisms are and
how they will help us arrive at and demonstrate that the screening operators in quantum
Serre relations are satisfactory.

Let C be an arbitrary symmetrizable Cartan matrix of rank r and n = n+ the standard
maximal nilpotent sub-algebra in the Kac–Moody algebra associated with C (thus, n is
generated by the elements e1, . . . , er, satisfying the Serre relations). As usual, Uq(n) will be
considered the quantized enveloping algebra of n. A = (Aij) = (dicij) will be assumed the
symmetric matrix corresponding to C for non-zero relatively prime integers d1, . . . , dn such
that diaij = djaji for all i, j. Set g as the Kac–Moody Lie algebra attached to A, on generators
ei, fi, hi, 1 ≤ i ≤ n.

For root lattice Λ, let A1 and A2 be Λ-graded associative algebras and define a q-
twisted tensor product as the algebra A1⊗̄A2 isomorphic with A1 ⊗ A2 as a linear space
with multiplication given by (a1⊗ a2) · (a′1⊗ a′2) := q〈α

′
1,α2〉a1a′1⊗ a2a′2, where α′1 = deg(a′1)

and α2 = deg(a2) and invariant bilinear form 〈, 〉 : Λ×Λ→ Z defined by
〈
αi, αj

〉
= diaij.

By this definition A1⊗̄A2 become a Λ-graded algebra.
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Proposition 4 ([60]). Let g be an arbitrary Kac–Moody algebra; then, the map

∆̄ : U±q (g)→ U±q (g)⊗̄U±q (g) (2)

Such that 
∆̄(1) := 1⊗ 1
∆̄(Ei) := Ei ⊗ 1 + 1⊗ Ei
∆̄(Fi) := Fi ⊗ 1 + 1⊗ Fi

for 1 6 i 6 n, is a homomorphism of associative algebras.

Remark 1 ([60]). There are no such maps as U±q (g)→ U±q (g)⊗̄U±q (g) in the case where g is an
associative algebra.

As always, after defining a co-multiplication ∆̄, we extend it by an iteration on the
sequence of maps as follows [61]

∆̄n : U−q (g)→ U−q (g)⊗n, n = 2, 3, . . . (3)

determined by ∆̄2 = ∆̄, ∆̄n = (∆̄⊗ id) ◦ ∆̄n−1.
Now, let C[Xi] be the ring of polynomials in one variable. Then, by equipping it with

the grading structure degXi = αi for any simple root αi, we can regard it as a Λ-graded.
By this grading, there will be a morphism of Λ-graded associative algebras

ϕi : U−q (g)→ C[Xi] : Fj 7→ δijXi. (4)

By following this construction for any sequence of simple roots βi1 , . . . , βik , there will
be a morphism of Λ-graded associative algebras

(ϕi1 ⊗ ϕik ) ◦ ∆̄k : U−q (g)→ C[X1i1 ]⊗̄ . . . ⊗̄C[Xkik ] (5)

(here, the reason for double indexation is the appearance of ijs more than once in the
sequence).

Finally, C[X1i1 ]⊗̄ · · · ⊗̄C[Xkik ] is an algebra of skew polynomials C[X1i1 , . . . , Xkik ],

with Λ-grading Xsis Xtit = q〈αis ,αit〉Xtit Xsis , for s > t. However, let us simplify it as

XiXj = q〈degXi ,degXj〉XjXi, which we will use after now more frequently.
So, very briefly, we constructed the family of Feigin’s homomorphisms from U−q (g)

(the maximal nilpotent sub-algebra of a quantum group associated with an arbitrary Kac–
Moody algebra [62]) to the algebra of skew polynomials and now we can continue to our
construction.

5.2. The Quantum Serre Relations and the Screening Operators

Here in this subsection, we will rediscover the relation between the screening operators
and the quantum Serre relations.

Theorem 21 ([63]). Let Q = q2 and points x1, · · · , xn such that xixj = Qxjxi for i < j. Set
Σx = x1 + · · ·+ xn. If QN = 1 and xN

i = 0 for some natural number N; then, we claim that
(Σx)N = 0.

This is straightforward; it just requires the use of q-calculation.
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sl(3) Case

As we know, M2 =

[
2 −1
−1 2

]
is the generalized Cartan matrix for sl(3). Set

Mq2 =

[
q2 q−1

q−1 q2

]
and call it Cartan type matrix related to M2.

Theorem 22 ([63]). Suppose we have two different types of points xi, namely, (x2i−1)i, which we
will call of type 1 and (x2i)i, of type 2 for i ∈ I = {1, 2} and the following q-commutative relations:

xjxj′ = q2xj′xj if j < j′ and j, j′ ∈ {1, 3} and j = j′

xixi′ = q2xi′xi if i < i′ and i, i′ ∈ {2, 4} and i = i′

xixj = q−1xjxi if i < j and i, j ∈ {1, 2, 3, 4}

Set Σx
1 = Σi∈I x2i+1 and Σx

2 = Σi∈I x2i. We will call these sums screening operators.
Then Σx

1 and Σx
2 satisfy quantum Serre relations:

(Σx
1)

2Σx
2 − [2]qΣx

1Σx
2Σx

1 + Σx
2(Σ

x
1)

2 = 0 (6)

(Σx
2)

2Σx
1 − [2]qΣx

2Σx
1Σx

2 + Σx
1(Σ

x
2)

2 = 0

This is also straightforward; it just requires the use of q-calculation. The following
theorem can be proved by induction on k.

Theorem 23 ([63]). Use notations of Theorem 22 in a general case; i.e., set points Xi ∈ {X1, · · · , Xn}
and Yi ∈ {Y1, · · · , Yn} with the following relations:

XiXj = q2XjXi if i < j
YiYj = q2YjYi if i < j
XiYj = q−1YjXi if i < j

and the screening operators Σx
1 = Σk

i=1Xi and Σy
1 = Σk

j=1Yj.

Then Σx
1 and Σy

1 satisfy quantum Serre relations.

6. Lattice Virasoro Algebra

In this section we are interested in solutions Σ1x of the system of difference equation
XiXj = qXjXi

deg(Σ1x ) = 0
[Σ+∞
−∞Xi, Σ1x ]q = 0,

which will be a generator of the lattice Virasoro algebra and if that happens then we can
extend it to another generator by using the following shift operators:

Σ2x = Σ1x [x1 → x2, x2 → x3, x3 → x4, · · · ] (7)

Σ3x = Σx
2 [x2 → x3, x3 → x4, x4 → x5, · · · ]

...

for Σ1x = Σ1x (x1, x2, · · · , xk).
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6.1. Lattice Virasoro Algebra Associated with sl2

Here, as always, we have the q-commutation relation XiXj = qXjXi, i < j between
the points in sl2. Let us try to find three-point invariants. What this means is that we need
to solve the following system of difference equations:

XiXj = qXjXi

deg(Σ1x ) = 0
(X1 + X2 + X3)Σ1x (X1, X2, X3) = Σ1x (X1, X2, X3)(X1 + X2 + X3).

One can easily find the trivial solutions to the second equation as follows:

Σ11x (X1, X2, X3) = X1 + X2 + X3Σ12x (X1, X2, X3) = X1X−1
2 X3.

However, as is clear, none of the above solutions have zero grading. So we need to find
another solution.

By just continuing to look at them for a while, we can see that by multiplying these
kinds of solutions, one can find a zero grading expression, but there is a problem that does
not satisfy the other two ones in the above set of relations.

Again, we note that for a solution, its inverse is again a solution, so by this remark,
the option which we have is to inverse Σ11x or Σ12x and then multiply it with the other
one. Which will result in the same set of generators except in the first case (inverse of
Σ11x ). Hence, we have that the lattice Virasoro algebra in the first case will be generated by
elements of the form Σix = XiX−1

i+1Xi+2(Xi +Xi+1 +Xi+2)
−1 and in the second case (inverse

of Σ12x ) will be generated by elements of the form Σix = (Xi + Xi+1 + Xi+2)X−1
i Xi+1X−1

i+2.
Noting that our working space is closed under multiplication, these new recently

found generators are the trivial solutions for our system of difference equations. By using
the shift operators (7), we will obtain the set of generators for our lattice Virasoro algebra
associated with sl2.

Now, the claim is that the following generators are the solutions of the above set of the
system of difference equations and hence generate the lattice Virasoro algebra coming from
the two-dimensional representation of sl2.

Lemma 8 ([63]). The following equations satisfy:

1. We have [Σj=+∞
j=−∞xj, (x3 + x4)

−1x4x3(x2 + x3)
−1] = 0.

2. [Σj=+∞
j=−∞xj, (x2 + x3 + x4)

−1(x3 + x4)x2(x1 + x2)
−1] = 0.

3. [Σj=+∞
j=−∞xj, (x2 + · · ·+ xk)

−1(x3 + · · ·+ xk)x2(x1 + x2)
−1] = 0.

Then, by using the shift operators (7), we will have the set of all generators.

6.2. Generators of Lattice Virasoro Algebra Coming from 3 and 4-Dimensional Representation of sl2

Let us suppose the following three-dimensional representation of sl2. The process of
defining this representation is the same as the two-dimensional one. Define:

F = ∂(U+−X3)

H = U+∂U+ + X1∂X1 + X2∂X2 + X3∂X3

E = (U+ − X3)
2∂(U+−X3)

+ (X2
1 + X1X2 + X1X3 + X1(U+ − X3))∂X1

+(X2
2 + X2X3 + X2(U+ − X3))∂X2 + (X2

3 + X3(U+ − X3))∂X3 ,

where U+ = Σ+∞
i=3 Xi. In what comes, for a detailed discussion on the method of construc-

tion, we refer the interested reader to [63].
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It is clear that the following generator, which we call ρ1,5, satisfies the system of
difference equation in Section 6.1 associated with the above representation.

ρ1,5 = X
1
2
1 X−

1
2

2 (X2 + X3)
− 1

2 X
1
2
3 X−

1
2

4 (X4 + X5)
− 1

2 (8)

This is a four-point generator (invariant) of lattice Virasoro algebra, but due to its complexity
we are less interested in it and we still have to look for the simplest one of type ABCD (it is
good to remark that the type ABCD consists of four different parts and it is just restricted
to this paper and it does not exist in the literature related to lattice W-algebras).

So let us define another such generator as proposed and experienced before. For
this reason, we propose the following lemma and interested readers are encouraged to
review [63] for more details on how to construct these kinds of generators.

Lemma 9. The claim is that

ρ1,4,5 = (X4 + X5)
− 1

2 X
1
2
4 X

1
2
2 (X3 + X4)

− 1
2 (9)

should give us the desired four-point invariant for the lattice Virasoro algebra. ρ1,4,5 has degree zero.

Now, to find five-point invariants, we need to consider another representation. For
this reason, suppose the following representation of sl2. Define:

F = ∂(U+−X3−X4)

H = (U+ − X3 − X4)∂(U+−X3−X4)
+ X1∂X1 + X2∂X2 + X3∂X3 ,

E = (U+ − X3 − X4)
2∂(U+−X3−X4)

+ (X2
1 + X1X2 + X1X3 + X1(U+ − X3 − X4))∂X1

+(X2
2 + X2X3 + X2(U+ − X3 − X4))∂X2 + (X2

3 + X3(U+ − X3 − X4))∂X3 ,

for U+ as before.

Claim 1. Then the claim is that

ρ1,5,6 = (X4 + X5 + X6)
− 1

2 X
1
2
4 X

1
2
2 (X3 + X4 + X5)

− 1
2 (10)

should give us the desired five-point invariant for the lattice Virasoro algebra. ρ1,5,6 has degree zero.

6.3. Conclusions

The four-point invariant that comes from the three-dimensional representation of
sl2 is:

[Σ+∞
−∞Xi, (X4 + X5)

−1X4X2(X3 + X4)
−1]q = 0

The five-point invariant that comes from the four-dimensional representation of sl2 is:

[Σ+∞
−∞Xi, (X4 + X5 + X6)

−1X4X2(X3 + X4 + X5)
−1]q = 0

Claim 2. We have the following n-point invariant that comes from the n-dimensional representation.

(X4 + · · ·+ Xn)
−1X4X2(X3 + · · ·+ Xn−1)

−1

Then, by using the shift operators (7), we will have the space of all nontrivial generators
of lattice Virasoro algebra.

We call these kinds of generators, which are the only nontrivial ones:

Generators of type “ABCD"

These (new lattice) algebras are so important and may in principle lead to a new
integrable chain equation that people can hardly provide.
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7. Weak Faddeev–Takhtajan–Volkov Algebras; Lattice Wn Algebras

This section is based on the paper [64]. As mentioned at the beginning of Section 5,
there is an old problem that was considered and introduced by Boris Feigin in 1992. It was
born in its new formulation, concerning quantum Gelfand–Kirillov Conjecture, in a public
talk at RIMS in 1992 based on the nilpotent part of Uq(g), i.e., Uq(n) for g—a simple Lie
algebra—and now this problem is known as “Feigin’s Conjecture” [59].

In the mentioned talk, Feigin proposed the existence of a certain family of homomor-
phisms on the quantized enveloping algebra Uq(g), which will lead us to a definition of
lattice W-algebras.

These “homomorphisms” have been turned into a very useful tool for studying the
fraction field of quantized enveloping algebras.

There have been many attempts to construct lattice W-algebras in Feigin’s sense,
which ensures the simplicity of the construction process of lattice W-algebra. For example,
the best-known articles on the subject have been written by Kazuhiro Hikami and Rei
Inoue, who tried to obtain the algebra structure by using lax operators and generalized
R-matrices [65,66], or Alexander Belov and Alexander Antonov and Karen Chaltikian, who
first tried to follow Feigin’s construction but finally also solved part of the conjecture by
getting the help of lax operators and because of its construction, that made it very difficult
to follow their publication [67,68].

However, here, in [64], we proceeded and introduced the simplest way of constructing
such kinds of algebras by just employing Feigin’s homomorphisms and screening operators
by defining a Poisson bracket on our variables just based on our Cartan matrix [63,69].

We have to note that in [69], Yaroslav Pugai constructed lattice W3 algebras already,
but here we will introduce its weaker version based on our newly defined Poisson bracket,
constructed just based on the Cartan matrix An, which will make our job easier and
more elegant.

As before, to do this, let us set C as an arbitrary symmetrizable Cartan matrix of rank
r and let n = n+ be the standard maximal nilpotent sub-algebra of the Kac–Moody algebra
associated with C. So n is generated by elements e1, . . . , er which satisfy Serre relations [59],
where r stands for rank(C).

In Section 5.1, we proved that screening operators S
X ji

i
=

n
∑

j∈Z
for i fixed

X ji
i ; for X ji

i generators

of the q-commutative ring

Cq[X
ji
i ] :=

C[X ji
i ]〈

X ji
i X jk

k − q〈αi ,αj〉X jk
k X ji

i

〉
and for

〈
αi, αj

〉
= aij the ij’s components of our Cartan matrix C satisfy quantum Serre

relations adq(Xi)
1−aij(Xj).

Here again, as in Section 5.1, we can define
Uq(n) :=

〈
S

X ji
i

, S
X jk

k
| (adq(SX ji

i
))2(S

X jk
k
) = 0

〉
,

and for Cq[X] the quantum polynomial ring in one variable and twisted tensor product ⊗̄,
we can define

Uq(n)⊗̄Cq[X
jl
l ] :=

〈
S

X ji
i

, S
X jk

k
, X jl

l | (adq(SX ji
i
))2(S

X jk
k
) = 0,

S
X ji

i
X jl

l = q2X jl
l S

X ji
i

, S
X jk

k
X jl

l = q−1X jl
l S

X jk
k

〉
such that we have the following embedding

Uq(n) ↪→ Uq(n)⊗̄Cq[X
jl
l ] ↪→ Uq(n)⊗̄Cq[X

jl
l ]⊗̄Cq[X

jm
m ]

where Cq[X
jl
l ]⊗̄Cq[X

jm
m ] = C

〈
X jl

l , X jm
m | X jl

l X jm
m = qalm X jm

m X jl
l [63].

Which will ensure the well definedness of our definition of lattice W-algebras.
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7.1. Weak Faddeev–Takhtajan–Volkov Algebras

In 1985, the first example of W3 algebras was introduced by Alexander Zamolodchikov
in the investigation of the possibility of the existence of new additional infinite symmetries
in the context of two-dimensional Conformal Field Theory [70] and as the possible extension
of Virasoro algebra.

Vladimir Fateev and Zamolodchikov [71] found the bosonic representation for W3
algebras and noted some connection with sl3 Lie algebra. In a series of articles [72–74],
Fateev and Lukyanov have shown that there exist W-algebras associated with every simple
Lie algebra and found the bosonic representation of generators in W-algebras. They
discovered that free bosonic representation of W-algebras is given by quantum Miura
transformation, a classical analogue of which was well known in the theory of integrable
non-linear evaluation of Korteweg–de Vries type [75]. In the spirit of reference [76], Virasoro
algebra should commute (in the Feigin–Fuchs representation) with screening operators. As
a matter of fact, this property was given in the works [70,74,77] as the main mathematical
background of such a definition of W-algebras was developed in references [77–79], where
it was shown that W-algebras are the result of quantum Drinfeld–Sokolov reduction of K-M.
algebras. It has been shown that screening operators satisfy the quantum Serre relation, i.e.,
they constitute the nilpotent part of quantum groups. So mathematically speaking we have

W ' InvUq(n+), (11)

where g = n+ ⊕ h ⊕ n− is the Lie algebra associated with W-algebra. In our work, we
describe some variant of lattice analogue of W-algebras, given by Definition 11. The first
example of classical lattice W2 algebra (lattice Virasoro algebra) was found by Faddeev
and Takhtajan in reference [80] in their study of the Liouville model on the lattice. The
Quantum analogue of Faddeev–Takhtajan algebra was obtained by Volkov in 1992. Boris L.
Feigin noticed that the lattice “bosonization” rule for Virasoro algebra can be obtained from
the solution of some kind of difference equations in one unknown f with non-commutative
coefficients composed of functions of n independent variables x1, x2, · · · , xn which do
not contain the unknown function f . At the time of publishing the work by Yaroslav
Pugai [69], no one knew any way to solve similar equations for W-algebras associated with
other simple Lie algebras, but in [63,64] we have shown concerning the examples how the
classical limit consideration can help in finding the right solution. To do this, we defined a
new Poisson bracket based on the Cartan matrix An of sln. For example, in the case of sl2,
we define our Poisson bracket as in the following process.

As mentioned already in Section 5.2, the main tools which we will use are differ-
ence equations, screening operators, Feigin’s homomorphisms, adjoint actions, partial
differential equations and Cartan matrices.

We know that from an abstract view g = slm+1 is an algebra related to the Cartan

matrix (aij)i,j, for aij =


2 if i = j
−1 if |i− j| = 1
0 if |i− j| > 1

and so for sl2 it will consist of just one row

and one column, i.e., we have A1 = (2) and let us denote by C〈X〉 the skew polynomial
ring on generators X = (Xi)i labeled by i ∈ {−∞, · · · − 1, 0, 1, · · · ,+∞} and the defining
q-commutation relations XiXj = q2XjXi for if i ≤ j all with the same color.

Definition 6. Let us define our Poisson bracket as follows in the case of sl2:{
{Xi, Xj} := 2XiXj if i < j
{Xi, Xi} := 0.

(12)

The main problem is to find solutions to the system of difference equations from
an infinite number of non-commutative variables in the quantum case and commutative
variables in the classical case. It is significant that commutation relations (12) depend just
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on the sign of the difference (i− j) and are based on our Cartan matrix. We should try to
find all solutions to the system: {

D
(n)
x / τ1 = 0

H(n)
x / τ1 = 0.

(13)

Let us define our system of variables as follows

...
...

...
...

...
...

· · · X(11)
1 X(21)

1 X(31)
1 X(41)

1 · · ·

· · · X(12)
2 X(22)

2 X(32)
2 X(42)

2 · · ·

· · · X(13)
3 X(23)

3 X(33)
3 X(43)

3 · · ·

· · · X(14)
4 X(24)

4 X(34)
4 X(44)

4 · · ·

...
...

...
...

...
...

Let us equip this system of variables with lexicographic ordering, i.e., jkm i < jkn i if
jkm < jkn and jikm < jikn if ikm < ikn . We need this kind of order because we have different
kinds of sets of variables with proper coloring such that each set has its own color different
from its neighbors. We have τ1 := τ1[· · · , X(11)

1 , X(21)
1 , X(31)

1 , · · · , X(12)
2 , X(22)

2 , X(32)
2 , · · · ], a

multi-variable function dependent on {X(ji)
i }’s for i, j ∈ {−∞, · · · , 1, · · · , n, · · · ,+∞} and

D
(n)
x comes from

{S
X ji

i
, τ1}p = S

X ji
i

τ1 − pdegτ1〈αi ,αj〉τ1S
X ji

i
(14)

where
〈
αi, αj

〉
= aij which is related to our Cartan matrix and S

X ji
i

is the screening operator

on one of our variable sets, i.e., S
X ji

i
= ∑

j∈Z
X ji

i . Then, we will obtain the whole set of

solutions by using the following shift operator:

τ2 = τ1[X
(11)
1 → X(21)

1 , X(21)
1 → X(31)

1 , · · · ],

τ3 = τ2[X
(21)
1 → X(31)

1 , X(31)
1 → X(41)

1 , · · · ] (15)

...

Definition 7. Let us define our lattice W-algebra based on its generators according to [63,69].
Generators of lattice W-algebra associated with simple Lie algebra g constitute the functional

basis of the space of invariants

τi := InvUq(n+)(Cq[X
ji
i |i ∈ Z]) (16)

with additional requirements

H
X ji

i
(τi) = 0 and D

X ji
i
(τi) = 0 (17)

where H
X ji

i
and D

X ji
i

will be specified later.

Equation (15) means that the generators have to satisfy quantum Serre relations and
the first equation in (17) means that they should have zero degrees.
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Here in this paper, we work on the case where g = sln and we use τ
(n)
i instead of τi,

where (n) stands for n in sln.

Lattice W2 Algebra

Let us first consider the sl2 case and to simplify the notations, let us consider our set of

variables as Xi := X ji
i . As shown in [63], it is enough just to work with S

X ji
i
=: SXi =

3
∑

i=1
Xi,

because the other parts for i > 3 and i < 1 will tend to zero. By setting q = e−h, for the
Planck constant h, we will try to find generators of our lattice W2-algebra in the case of sl2.

– First step: find D(2)
X .

To do this and for simplicity, we will skip details here in this review paper and will
refer the interested reader to [64]. We have

D(2)
X = X1(X1 + 2X2 + 2X3)

∂

∂X1
+ X2(X2 + 2X3)

∂

∂X2
+ X2

3
∂

∂X3
. (18)

– Second step: find H(2)
X .

To find H(2)
X , we note that it resembles the degree of our polynomial function. So if,

for example, H(2)
X acts on Xn

1 Xm
2 Xl

3, then we should get (n + m + l). So let us define:

H(2)
X := ∑

i
Xi

∂

∂Xi
(19)

and then we have:
H(2)

X (Xn
1 Xm

2 Xl
3) = (∑i Xi

∂
∂Xi

)(Xn
1 Xm

2 Xl
3)

= ∑i Xi
∂Xn

1 Xm
2 Xl

3
∂Xi

= X1
∂Xn

1 Xm
2 Xl

3
∂X1

+ X2
∂Xn

1 Xm
2 Xl

3
∂X2

+ X3
∂Xn

1 Xm
2 Xl

3
∂X3

= nXn
1 Xm

2 Xl
3 + mXn

1 Xm
2 Xl

3 + lXn
1 Xm

2 Xl
3

= (n + m + l)Xn
1 Xm

2 Xl
3.

Which gives us
H(2)

X (Xn
1 Xm

2 Xl
3) = (n + m + l)Xn

1 Xm
2 Xl

3
and on the other side, we have

(n + m + l)Xn
1 Xm

2 Xl
3 = nX1Xn−1

1 Xm
2 Xl

3 + mXn
1 X2Xm−1

2 Xl
3 + lXn

1 Xm
2 x3Xl−1

3

= X1
Xm

2 Xl
3∂Xn

1
∂X1

+ X2
Xn

1 Xl
3∂Xm

2
∂X2

+ X3
Xn

1 Xm
2 ∂Xl

3
∂X3

= X1
∂

∂X1
+ X2

∂
∂X2

+ X3
∂

∂X3
.

Which gives us
(n + m + l)Xn

1 Xm
2 Xl

3 = ∑
i

Xi
∂

∂Xi
.

This shows that (19) is well defined.

Now the only thing that remains is to find the solutions to the following system of two-linear
homogeneous equations in one unknown τ1[· · · , X1, X2, X3, · · · ]:

(X1(X1 + 2X2 + 2X3)
∂

∂X1
+X2(X2 + 2X3)

∂
∂X2

+ X2
3

∂
∂X3

)τ1[· · ·, X1, X2, X3,

· · · ]= 0,
(X1

∂
∂X1

+ X2
∂

∂X2
+ X3

∂
∂X3

)τ1[· · · , X1, X2, X3, · · · ] = 0.
(20)

The second equation ensures that the solution has degree 0 and also the partial
differentials will give us a multi-variable function dependent on just X1, X2, X3. The system
of PDEs (20) can be solved using the procedure described in Chapter V, Section IV of [81].
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After doing some calculations in Mathematica it becomes clear that system (20) has only
one functional dependent nontrivial solution:

τ
(2)
1 [X1, X2, X3] =

(X1 + X2)(X2 + X3)
X2(X1 + X2 + X3)

=
(∑1≤i1≤2 X(1)

i1
)(∑1≤i1≤2 X(1)

i1+1)

X(1)
2 (∑1≤i1≤3 X(1)

i1
)

. (21)

Again, as before, (2) goes back to 2 in sl2 and 1 is a default index that will be used later to
employ the shifting operator. According to the number of variables, we will have two shifts
and then everything will be in a loop. So here in the sl2 case we have three solutions for our
system of linear equations (20) which belong to the fraction ring of polynomial functions:

τ
(2)
1 [X1, X2, X3] =

(∑1≤i1≤2 X(1)
i1

)(∑1≤i1≤2 X(1)
i1+1)

X(1)
2 (∑1≤i1≤3 X(1)

i1
)

;

τ
(2)
2 [X2, X3, X4] =

(∑2≤i1≤3 X(1)
i1

)(∑2≤i1≤3 X(1)
i1+1)

X(1)
2 (∑2≤i1≤4 X(1)

i1
)

;

τ
(2)
3 [X3, X4, X5] =

(∑3≤i1≤4 X(1)
i1

)(∑3≤i1≤4 X(1)
i1+1)

X(1)
2 (∑3≤i1≤5 X(1)

i1
)

.

(22)

We define our non-commutative Poisson algebra according to the definition of Poisson
brackets given by Poisson himself [82] with the difference that here we work on the q-

commutative ring C[X ji
i ]

X ji
i X jk

k −q〈αi ,αk〉X jk
k X ji

i

, based on the generators which are the solutions of the

PDE system (13).
To do this we use the following bracket:

F(n)
j := {τ(n)

i , τ
(n)
j } = ∑

i

∂τ
(n)
i

∂Xi
∑

j

∂τ
(n)
j

∂Xj
{Xi, Xj}, (23)

where {Xi, Xj} is our previously defined Poisson bracket on our set of variables. For
instance, in the case of sl2 we have

{τ(2)
1 , τ

(2)
2 } =

(∂τ
(2)
1

∂X1

)(∂τ
(2)
2

∂X2
{X1, X2}+

∂τ
(2)
2

∂X3
{X1, X3}+

∂τ
(2)
2

∂X2
{X1, X4}

)

+
(∂τ

(2)
1

∂X2

)(∂τ
(2)
2

∂X2
{X2, X2}+

∂τ
(2)
2

∂X3
{X2, X3}+

∂τ
(2)
2

∂X2
{X2, X4}

)
+
(∂τ

(2)
1

∂X3

)(∂τ
(2)
2

∂X2
{X3, X2}+

∂τ
(2)
2

∂X3
{X3, X3}+

∂τ
(2)
2

∂X2
{X3, X4}

)
=
(∂τ

(2)
1

∂X1

)(∂τ
(2)
2

∂X2
(2X1X2) +

∂τ
(2)
2

∂X3
(2X1X3) +

∂τ
(2)
2

∂X2
(2X1X4)

)
+
(∂τ

(2)
1

∂X2

)(∂τ
(2)
2

∂X2
(0) +

∂τ
(2)
2

∂X3
(2X2X3) +

∂τ
(2)
2

∂X2
(2X2X4)

)
+
(∂τ

(2)
1

∂X3

)(∂τ
(2)
2

∂X2
(−2X3X2) +

∂τ
(2)
2

∂X3
(0) +

∂τ
(2)
2

∂X2
(2X3X4)

)
= 2

X1X2
2X2

3X4(X1 + X2 + X3 + X4)

(X1 + X2)2(X2 + X3)3(X3 + X4)2 .

So we have

F(2)
2 = {τ(2)

1 , τ
(2)
2 } =

2X1X2
2X2

3X4(X1 + X2 + X3 + X4)

(X1 + X2)2(X2 + X3)3(X3 + X4)2 . (24)
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It is enough to find our brackets just based on the first generator because after that we are
able to find other brackets based on the other generators; so for τ

(2)
3 in almost the same

process, we have:
F(2)

3 = {τ(2)
1 , τ

(2)
3 }

=
(∂τ

(2)
1

∂X1

)(∂τ
(2)
3

∂X3
{X1, X3}+

∂τ
(2)
3

∂X4
{X1, X4}+

∂τ
(2)
3

∂X5
{X1, X5}

)
+
(∂τ

(2)
1

∂X2

)(∂τ
(2)
3

∂X3
{X2, X3}+

∂τ
(2)
3

∂X4
{X2, X4}+

∂τ
(2)
3

∂X5
{X2, X5}

)
+
(∂τ

(2)
1

∂X3

)(∂τ
(2)
3

∂X3
{X3, X3}+

∂τ
(2)
3

∂X4
{X3, X4}+

∂τ
(2)
3

∂X5
{X3, X5}

)
=
(∂τ

(2)
1

∂X1

)(∂τ
(2)
3

∂X3
(2X1X3) +

∂τ
(2)
3

∂X4
(2X1X4) +

∂τ
(2)
3

∂X5
(2X1X5)

)
+
(∂τ

(2)
1

∂X2

)(∂τ
(2)
3

∂X3
(2X2X3) +

∂τ
(2)
3

∂X4
(2X2X4) +

∂τ
(2)
3

∂X5
(2X2X5)

)
+
(∂τ

(2)
1

∂X3

)(∂τ
(2)
3

∂X3
(0) +

∂τ
(2)
3

∂X4
(2X3X4) +

∂τ
(2)
3

∂X5
(2X3X5)

)
=

−2X1X2X2
3X4X5

(X1 + X2)(X2 + X3)2(X3 + X4)2(X4 + X5)
. (25)

We have to note that we are almost done with our Poisson algebra in the sl2 case, but for
further plans, i.e., to find our Volterra system, the differential-difference chain of non-linear
equations 

H = ∑
i
[ln(τi)];

τ̇j = {τj, H} = τj ×∑
i

Γi;
(26)

where Γi stands for τ1,τi
τ1τi

[69], we have to write down the brackets {τ1, τi} in terms of their
decompositions to τj’s for 1 ≤ j ≤ i. So we need to write it as the decomposition of our
generators and this will be done by using the Mathematica coding which is presented in
Appendix A [64] (please see the extended version of these results in [64]).

The result is as follows:
F(2)

2 = {τ(2)
1 , τ

(2)
2 } = 2(1− τ

(2)
1 )(1− τ

(2)
2 )(−1 + τ

(2)
1 + τ

(2)
2 );

F(2)
3 = {τ(2)

1 , τ
(2)
3 } = −2(1− τ

(2)
1 )(1− τ

(2)
2 )(1− τ

(2)
3 );

F(2)
i = {τ(2)

1 , τ
(2)
i } = 0 for |i− 1| ≥ 3.

(27)

This result is weaker than the Faddeev–Takhtajan–Volkov algebra which was men-
tioned in [69] and if we continue this for sl3, then we will again have a weaker version of
what was mentioned in [69].

7.2. Lattice W3 Algebra

In this case, we will use the following defined Poisson bracket based on the Cartan

matrix A2 =

[
2 −1
−1 2

]
. However, to do this according to our previous ordering and list of

variables, let us for simplicity set our variables as follows:
Set X(1i)

i := Xi and X(2i)
i := Yi.
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Definition 8. Let us define our Poisson bracket as follows in the case of sl3:

{Xi, Xj} := 2XiXj if i < j;
{Yi, Yj} := 2YiYj if i < j;
{Xi, Xi} := 0;
{Yi, Yi} := 0;
{Xi, Yj} := XiYj if i > j;
{Xi, Yj} := −XiYj if i ≤ j.

(28)

Instead of (12), we have the following q−commutation relations
XiXj = q2XjXi if i ≤ j;
YiYj = q2YjYi if i ≤ j;
XiYj = q−1YjXi if i ≤ j.

(29)

We obtain the following equations in the same manner as in sl2:
Therefore as in (20) we have the following system of PDEs

(X1(X1 + 2X2 + 2X3)
∂τ

(3)
1

∂X1
+ X2(X2 + 2X3)

∂τ
(3)
1

∂X2
+ X2

3
∂τ

(3)
1

∂X2

−Y1(X1 + X2 + X3)
∂τ

(3)
1

∂Y1
−Y2(X2 + X3)

∂ f
∂Y2
−Y3X3

∂τ
(3)
1

∂Y3
) = 0;

(2X1
∂τ

(3)
1

∂X1
+ 2X2

∂τ
(3)
1

∂X2
+ 2X3

∂τ
(3)
1

∂X3
−Y1

∂τ
(3)
1

∂Y1
−Y2

∂τ
(3)
1

∂Y2
−Y3

∂τ
(3)
1

∂Y3
) = 0;

D(3)
Y = (Y1(Y1 + 2Y2 + 2Y3)

∂τ
(3)
1

∂Y1
+ Y2(Y2 + 2Y3)

∂τ
(3)
1

∂Y2
+ Y2

3
∂τ

(3)
1

∂Y2

−Y1(X1 + X2 + X3)
∂τ

(3)
1

∂Y1
−Y2(X2 + X3)

∂τ
(3)
1

∂Y2
−Y3X3

∂τ
(3)
1

∂Y3
) = 0;

(2X1
∂τ

(3)
1

∂X1
+ 2X2

∂τ
(3)
1

∂X2
+ 2X3

∂τ
(3)
1

∂X3
−Y1

∂τ
(3)
1

∂Y1
−Y2

∂τ
(3)
1

∂Y2
−Y3

∂τ
(3)
1

∂Y3
) = 0.

(30)

In accordance with appendix A (please see the extended version of these results in [64]),
we have the following functional dependent nontrivial solution for the whole system of
PDEs (30)

τ
(3)
1 =

(Σ1≤i≤j≤2 XiYj)(Σ1≤i≤j≤2 Xi+1Yj+1)

X2Y2(Σ1≤i≤j≤3 XiYj)
. (31)

Again, as before, (3) goes back to 3 in sl3 and 1 is a default index which later we will use
to employ our shifting operators. In accordance with the number of variables, we will
have six shifts and then after that, it will be in a loop. So here in the sl3 case, we have six
solutions that belong to the fraction ring of polynomial functions.

τ
(3)
1 [X1, Y1, X2, Y2, X3, Y3] =

X2Y2(X3Y3+X2(Y2+Y3)+X1(Y1+Y2+Y3))
(X2Y2+X1(Y1+Y2))(X3Y3+X2(Y2+Y3))

;

τ
(3)
2 [Y1, X2, Y2, X3, Y3, X4] =

X3Y2(X2Y1+(X3+X4)(Y1+Y2)+X4Y3)
(X2Y1+X3(Y1+Y2))(X3Y2+X4(Y2+Y3))

;

τ
(3)
3 [X2, Y2, X3, Y3, X4, Y4] =

X3y3(X4Y4+X3(Y3+Y4)+X2(Y2+Y3+Y4))
(X3Y3+X2(Y2+Y3))(X4Y4+X3(Y3+Y4))

;

τ
(3)
4 [Y2, X3, Y3, X4, Y4, X5] =

X4Y3(X3Y2+(X4+X5)(Y2+Y3)+X5Y4)
(X3Y2+X4(Y2+Y3))(X4Y3+X5(Y3+Y4))

;

τ
(3)
5 [X3, Y3, X4, Y4, X5, Y5] =

X4Y4(X5Y5+X4(Y4+Y5)+X3(Y3+Y4+Y5))
(X4Y4+X3(Y3+Y4))(X5Y5+X4(Y4+Y5))

;

τ
(3)
6 [Y3, X4, Y4, X5, Y5, X6] =

X5Y4(X4Y3+(X5+X6)(Y3+Y4)+X6Y5)
(X4Y3+X5(Y3+Y4))(X5Y4+X6(Y4+Y5))

.

(32)

where τ
(3)
1 := τ

(3)
1 [· · · , X1, Y1, X2, Y2, X3, Y3 · · · ]. Again, by setting X(1i)

i := Xi and

X(2i)
i := Yi and X(3i)

i := Zi and according to (26), we have to write down the follow-
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ing brackets as a composition of τ
(3)
i s because of the algebra structure, and this will be

done by using Mathematica coding in appendix A (please see the extended version of these
results in [64]).

F(3)
2 = {τ(3)

1 , τ
(3)
2 } = −(1− τ

(3)
1 )(1− τ

(3)
2 )(τ

(3)
1 τ

(3)
2 );

F(3)
3 = {τ(3)

1 , τ
(3)
3 } = (1− τ

(3)
1 )(1− τ

(3)
3 )(τ

(3)
1 τ

(3)
2 + τ

(3)
2 τ

(3)
3 − τ

(3)
2 );

F(3)
4 = {τ(3)

1 , τ
(3)
4 } = −(1− τ

(3)
1 )(1− τ

(3)
4 )

(τ
(3)
1 τ

(3)
2 + τ

(3)
2 τ

(3)
3 + τ

(3)
3 τ

(3)
4 − τ

(3)
1 − τ

(3)
2 − τ

(3)
3 − τ

(3)
4 + 1);

F(3)
5 = {τ(3)

1 , τ
(3)
5 } = (1− τ

(3)
1 )(1− τ

(3)
5 )(τ

(3)
2 τ

(3)
3 + τ

(3)
3 τ

(3)
4 − τ

(3)
2

−τ
(3)
3 − τ

(3)
4 + 1);

F(3)
6 = {τ(3)

1 , τ
(3)
6 } = −(1− τ

(3)
1 )(1− τ

(3)
6 )(τ

(3)
3 τ

(3)
4 − τ

(3)
4 − τ

(3)
3 + 1);

F(3)
i = {τ(3)

1 , τ
(3)
i } = 0 for |i− 1| ≥ 6.

(33)

Lattice Wn Algebra; Main Generator

Here, for sln, we skip writing down all steps which we have done in the previous
sections and we just write down the main generator of the lattice Wn algebra. The functional
dependent nontrivial solution for the whole system of the first order partial differential
equations are as follows:

τ
(n)
1 =

(Σ1≤i1≤i2···≤in−1≤2 x(1)i1
x(2)i2
· · · x(n−1)

in−1
)(Σ1≤i1≤i2···≤in−1≤2 x(1)i1+1x(2)i2+1 · · · x

(n−1)
in−1+1)

x(1)2 · · · x
(n−1)
2 (Σ1≤i1≤i2···≤in−1≤3 x(1)i1

x(2)i2
· · · x(n−1)

in−1
)

. (34)

We should note that x(j)
ij

s are different to each other for any j ∈ {1, · · · n− 1}

8. Concluding Remarks and Some Open Directions

Recall that for a given Cartan matrix C ∈ MI×I(Z), we have three NI-graded bialge-
bras: the quantum enveloping algebra U+ ≡ Uq(n+) (which has a bialgebra structure),
the quantum shuffle algebra F ∗ and the dual Ringel–Hall algebra H∗(Q) [83]. In this
paper, we only considered the first one. For a fixed word w ∈ W, there is a quantum
polynomial algebra Pw associated with the Cartan matrix C and the word w, which is the
Q(v)-algebra generated by t1, . . . , tm subject to the relation t`tk = v(αik

,αi`
)tkt` for k < `.

There are various homomorphisms of algebras between these four algebras which have
been studied extensively due to their connection to quantum groups and cluster algebras
(cf. [84–88]). However, in this paper, in particular, we are interested in the following.

Theorem 24. Fix a word w = (i1i2 . . . im) ∈W. Then, the linear map

Fw : U+ → Pw

Ej 7→ ∑
16k6m,ik=j

tk (35)

is a homomorphism of algebras.

Morphism (35) is called Feigin’s map of type w, and was first proposed by B. Feigin as
a tool for studying the skew-field of fractions of (U+)∗ and it is the main object of study in
this paper.

Very recently, in a paper published in ArXiv, Anton Izosimov and Gloria Marí Beffa,
questioned the reason behind the creation of the lattice W-algebras in [89]. They studied
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the discretization criteria of the Adler–Gelfand–Dickey bracket, both from the multiplica-
tive structure on the algebra of formal pseudo-difference operators (which can also be
interpreted as a Poisson–Lie structure on the extended group of such operators [90]) or
by performing the so-called Drinfeld–Sokolov reduction to a specific symplectic leaf in
the dual of an affine (Kac–Moody) Lie algebra [75]. They showed that both constructions
admit a discretization (a lattice version) and hence there is a well defined notion of a lattice
Wm-algebra. In the process, recovering familiar structures, such as for m = 2, they obtain
the lattice Virasoro algebra of Faddeev–Takhtajan–Volkov [80,91] (known as a cubic Poisson
structure associated with the Volterra lattice [92]) and for m = 3 the construction gives the
lattice W3-algebra of Belov-Chaltikian [68] and finally, they formulate their main theorem
on the coincidence of two definitions of lattice Wm-algebras.

We could follow the opposite direction to that proposed in [89] to find some approaches
to making continuous Wm-algebras based on our lattice W-algebras, which we think will
be a very interesting project and may result in a new Adler–Gelfand–Dickey bracket.

On the other hand, we could do the same constructions done in the An case, for other
classes of Cartan matrices Bn, Cn and Dn, which we believe could open a new direction in
defining integrable chain systems, something which has never been done.

Moreover, we have to remark that our study regarding the lattice Wn-algebras is not
completed and still needs much work to be done. In accordance with (26), we need to write
down the brackets {τ1, τi} in terms of their decompositions to τj’s for 1 6 j 6 i, for i such
that | i− 1 |> n in the case of lattice Wn-algebras and obtain the final algebra structure and
we have to note that this can only be done by using Mathematica or any other computing
software, with the exactly same approach as for lattice W2 and W3-algebras.
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