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Abstraet. It is shown that, in theories of exactly localized observables, of the
type proposed by Arakr and Haag, the reaction amplitude for two particles giving
two particles is polynomially bounded in s for fixed momentum transfer ¢ << 0.
The proof does not need observables localized in space-time regions of arbitrarily
small volume, but uses relativistic invariance in an essential way. It is given for
the cage of spinless neutral particles, but is easily extendable to all cases of charge
and spin. The proof can also be generalized to the case of particles described by
regularized products

So@y, .o 2) dy(@ — ) o b — x)day .. . dw,

of WrcHTMAN or JAFFE fields.

Introduction

This paper studies two-particle reaction amplitudes in a theory of
local observables of the type proposed by Araki and Haac [1-4]; it
shows that, for fixed momentum transfer { < 0, such amplitudes are
polynomially bounded functions of s (square of total energy in centre-
of-mass system). In ordinary field theory, the proof of this well-known
result uses in an essential way the assumption that the vacuum expec-
tation values of the fields behave polynomially at infinity. Although
this assumption seems very reasonable, and is believed to be verified
in renormalizable theories, it is satisfactory that the result can be derived
from the independent hypotheses of the Araki-Haag theory. Such a
theory could exist without fields in the ordinary sense, but it can also
be considered as underlying any conventional field theory where local
observations are possible (perhaps as a consequence of the self-adjoint-
ness of some smeared field operators). The framework of a theory of local
observables can be briefly described as follows:

1. The physical state vectors are elements of a Hilbert space 5 in
which operates a unitary, weakly continuous, representation of the
Poincaré group Z ! denoted by (a,4) — U (a,4), with U (@, 1) = exp ia,Pm.
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The momentum operators P* are supposed to have their spectrum in
V™, the closure of
VE={peR,p*>|pl}=-TV".

There is a vector £2 (with || = 1), unique up to a phase factor,
such that, for all (a, A4) €21, U(a, ) Q2 = Q (vacuum); all state vectors
orthogonal to £ have masses larger than a certain strictly positive
minimum mass m, > 0.

2. To each! open set @ in R* (== Minkowski space = space-time) is
associated a von Neumann algebra &7 (0), consisting of bounded opera-
tors acting in 5%, with the following properties

a) if 0, C 0,, then & (0,) C 7 (0,);

b) if ¢, and O, are spacelike separated (i.e., if 2, € 0; and z, € 0,
= (2 — )% < 0), then &7 (0,) and o7 (¢,) commute;

¢) for every open 0 and every (a,A) € 21,

Ula, A) £(0) Ula, ) = o (a + A0)
oL (0) 0

d U
© bounded

is dense in 7.

These algebras are called “algebras of local observables”. An operator
belonging to &7 (0) with @ bounded is called a local operator and is said
to be localized in 0.

A local AraRI-Haaa field will be defined, in this paper, as a function
x — A (x) from R* into .Z (5) such that

A@) = Uz, 1) 4(0) Uz, 1)1

and 4 (0) € & (0) for some bounded open 0.

3. The representation U is reducible. In particular there are four
closed subspaces ¢; of 2, with projectors E;(1 < j < 4), invariant
under U, such that the restriction of U to ##; is irreducible, with mass
m; > 0 and spin zero. #; is associated with a neutral? stable particle
labelled j(I < § < 4). We assume that there are four local Araxi-Haaa

fields {4,}; << 4 such that:
(2, 4;000 ) =0;  B;4;0) 2+0; (18 A4;(0) 2

has a mass spectrum = M; > m;.
Remark. Note that these conditions imply that the states of the form

E; [y(a, 4) U(a,A) 4,(0) 2 dadA

1 Actually, it would be sufficient to ascribe an algebra of local observables to
each element of a collection ¥ of open sets such that: 0¥ = a+ A0€F for
all (a, A4) € 2} and containing some bounded open sets.

2 We consider neutral spinless particles for simplicity, but the generalization
to arbitrary charge and spin offers no difficulty.
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where y is a € function with compact support on #1, (dA being an
invariant measure on L1) are dense in J#, (since any vector is cyclic
for an irreducible representation).

Starting from these assumptions, it is possible [1] to apply the
Haaa-RUsLLE collision theory, and to define asymptotic states and
asymptotic fields ¢;i, and ¢;qy for the particles j(1 < j < 4). Under
these conditions, the § matrix is LORENTZ invariant ([1]).

In particular the reaction amplitude for

particle 3 with momentum — p, particle 1 with momentum p,
+ particle 4 with momentum — p, + particle 2 with momentum p,

is an invariant distribution 7'(p,, Py, P4, P4) defined in
4
{pupz, P m:,Z; pi=0pf=mf, (1<j=4)peVT,
je==

P €V, P €V, py € V‘}

and it can be computed by means of a reduction formula [1]:

j=1

4 4
T(pl,pz,pmm)_]]lf,-(pj) = [H(p? - m,-z)] 71 (Prs - o5 Do)
=

where
525

: 1 i1 234” ~
r(p) 6 Z,; p:i) =er =J= Py, g, 3, ) d2y - . . dy
i=

fy(x) = ; o [0(2f — aby) O (s — 2bs) O(ahs — 2%4)]
X (£2, [[[A1 (1), Apa(pa)], Aps(zpa)]s AP4(xP4)] Q).

The summation is over all permutations P of 2, 3, 4. The presence of
the function « (defined in Section I) is due to the fact that, for technical
reasons, we use regularized step functions in this paper. It is not necessary
to do so in a theory of local observables, and the reader can banish «
from his mind for the moment.

The ‘“retarded function” r, is actually a tempered distribution
defined on

4
{p P Z; p;= 0} .
§ ==
The fact that
4
i (p) = [,171 (r} — m?)] " (p)
j=

can be restricted to the mass-shell manifold {p:pf=mZ,1 < k < 4} is
one of the most important results of the asymptotic theory. But it can
also be understood by studying the analyticity properties of r;. The
18+
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latter is indeed the boundary value of a function H’, holomorphic in a
certain domain. This domain (the full extent of which is yet unknown)
is the same in a theory of local observables and in a Wightman, or
L.S.Z., field theory. (In particular, it is invariant under the complex
Lorentz group, even though r{ and H’ are not invariant and have no
simple covariance properties.) As a consequence, all the analyticity
properties which, in ordinary field theory, can be obtained by geometrical
means (Lehmann ellipses, cut plane in s for fixed ¢, ete.) remain valid
here. There is, however, an important difference: while in ordinary
field theory, H' is polynomially bounded, at least in the initial domain
where it is given, in the case we consider here, it grows exponentially
in complex directions.

The second important difference with ordinary field theory is the
occurrence of the “intrinsic wave functions” f; in the left-hand side of
the reduction formulae. They are defined on the hyperboloids {p;: p? = m?}
and given by

(D) = (2, 43 (p) 4,00 @) for p >0,
fi(p) = (2, 4;(0) afin(— p) 2)  for p*<0.

It is well known, [2, 5], that they have analytic continuations on the
whole complex hyperboloids {k; ¢ C*:k# = m?}. Because they can be
shifted by applying real Lorentz transformations to the operators 4;(0),
it is clear that their zeros do not introduce singularities in 7. However
they are the source of one of the difficulties in finding the growth pro-
perties of 7.

We now describe briefly and heuristically the contents of this paper;
the reader who is not interested in technicalities can read this outline,
the conclusion and Appendix 3, and dispense with the rest.

Let F (s, f) be the expression of 7'(py, ..., p,) on the mass shell in
terms of the invariant variables s = (p; + p,)? and £ = (p; + p,)?. It has
been shown in [6] that, for ¢ < 0, F (s, f) is analytic in s for Ims == 0
and |s| > R(t), ie., in a cut plane with the exclusion of a large, but
finite disk. We first follow the proof of the corresponding analyticity for
H’, and try to find bounds on the growth of this function at each step.
A good part of the effort is devoted to circumventing a totally unessen-
tial difficulty: because the retarded functions are distributions, and not
smooth functions, the function H’ grows, at finite distances, like an
inverse power of the distance to the boundaries of this domain. The
remedy is to use, instead of H’, a high order primitive of this function,
which is continuous at the boundaries, but, at the end, we have to
redifferentiate it to obtain bounds on H'. How to obtain such primitives
is explained in Sections I and II. Just as in [6], we study the restrictions
of H' to a certain submanifold ¥ () (defined in Section IT). This restriction
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is analytic and obeys exponential bounds in certain tubes contained in
¥ (t). It is first necessary to obtain the bounds satisfied by H' in the
domain obtained by applying complex Lorentz transformations to these
tubes; this question is answered in Appendix 2. The estimates then pro-
ceed in a rather pedestrian way and the outcome is the following.

We consider the restrictions of H' and f;(p;) to a certain submanifold
of the complex mass shell (in which, in particular, ¢ is fixed) and denote
G (w) and ¢;(w), respectively, the expressions of these restrictions in

terms of a variable w = s+ %Q -+ b(t). We find that G is analytic in
{w:Im w > 0, |w| > R"(t)} and that (omitting growth near the boundary
at finite distance), for some ! > 0,

1. |G(w)|~ c(t) &I at infinity;

2. |G(w)| is polynomially bounded in a half strip along {w real,
w > R" ()}

We study the “intrinsic wave functions” f; and conclude that for
a proper choice of 4;(0), @;(w) is an entire function of w such that,
(for a certain I’ > 0), |g;(w)] < ¢'(t) &' ™', Using the possibility of
replacing the fields A4,(x) by flelds 4;(x;A4) = U(x, A) 4;(0) U (z, A)1
(for real A ¢ L1), we then prove that T (w) [the expression of F (s, )
in terms of w, for fixed t] is tempered along the real axis. Let

4
@) = I 9;()
j=
and (for sufficiently large L)

E(w) = T(w)

wk T(w')dw
T 2ai f wE(w — w)
%
% being the contour following the real axis for |w|> R"”(t) and the
semi-cirele {w:|w| = R (), Imw = 0}.
Then Z is an entire function as well as ¢ (w) £ (w). But
T(w) dw

G (w) — 2mi) twl @(w) WEW —w) above €,
@(w) B(w) = ¢ o
—~ (2ai)Lwl g (w) f%ﬁ:})—% under ¥ .
%
80

lp(w) B (w)| < O (t) el 101",

Now, by theorem A 3.1 of Appendix 3, if the quotient of two entire
functions of order 1/2 is an entire function, then it is also of order 1/2.
Hence % is of order 1/2. But £ is polynomially bounded along the real
axis, so that, by the Phragmén-Lindelof theorem, it is polynomially
bounded everywhere, i.e., it is a polynomial. Hence T is polynomially
bounded.
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I. Generalized Retarded Functions
1. Definition
Let A,(0), 45(0), A;(0), 4,(0) be four bounded operators in 5#

belonging to the algebra of local observables attached to the following
region of Minkowski space:

{w:[2% + [ </2}
We define the “Araki-Haag fields” 4;(z) by
Aj@)= Uz, 1) 4;00) Uz, 1)1 (=1,2,38,4).
The Wightman functions associated with these fields are defined by
"//713(90) = (2, Apy(@py) - . . Apy(apy) Q)

where P is any permutation of 1, 2, 3, 4. They are bounded and contin-
uous. Their Fourier transforms %", (p) are given by

4 4 ~
3( Z o)W =@arre [ [ewi 2 pa| Fp v,
j=1 i=1
or
. 3 —
W p(p) = (2a) 12 f [expzzl (5 — %) p,] W @) A (g — ). .. (=)
i=
The generalized retarded functions (g.r.f.) will be defined with the help
of a fixed set of regularized step functions (chosen once and for all in
this paper and independent of the choice of the 4;) by the following
rule:
in the usual definition of the g.r.f. (formal in the case of a Wightman
theory, legitimate in the case of Araki-Haag fields) each gr.f #5(») is
obtained as

P @usian = X 25,2(") W p ()

where the sum extends over all permutations of 1, 2, 3, 4, and the yq p
are the characteristic functions of certain open sets (these open sets
are the intersections of finitely many half spaces); they depend only on

the time components zf — 2.
In the definition to be used in this paper, each yg, p will be replaced

by its regularized o« * ¥, p
S (x) = § (o * y5p(2°)) W p (@) (1)
ax x5, p(2) = [ op(@f — @1%) . . . o (2] ~ 2%) x5, p(27°)

dx%dz; dag®dx,® (2)
where o, € Z(IR) is chosen once and for all and: 0 < oy < 1; o, (f)
= otg(— 1); supp o = [— /2, 4,/2]; [ oy(t) d¢ = 1. In all that follows,
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l; is to be regarded as a numerical constant, never to be changed; nor
will the function « be changed. On the contrary 7, and the choice of the
operators A, (x) will vary.

Note. — If y is of the form y,y, where ¥, and y, are characteristic
functions, note that o  y == (o % y;) (x * x,). However, we have

supp (« * x) = suppox + suppy = supp« + (suppy; N Suppy,)
C(suppo + suppyy) N (Suppa + supp x)
= supp {(@ * x7) (@ * x2)} -

This remark is of some help in finding the support of the g.r.f.

By following the argument leading to the support of the usual g.rf.
(see for example [7]) it is easily found that, for any permutation 4, %, I,
m of 1, 2, 3, 4, one has (in the notations of [7, 8]):

support of @, (=741 k1 11 m) = — support of 7,
={z:w, — @, € 17+—c,'r=7',k,l};

support of @, ;(=7 Lkt 11 m) = — support of 7,; (3)
={wxy—2, €V —c,0,— 2, €V —c, 2, — 2, €V — ¢}

Uiz, — 2 €V —c,a— 2, €V —c, 2, —a; € VT — ¢}

where ¢ = (2,0,0,0) and a = 9(1, + 1,).

The corresponding tubes of analyticity in momentum space as well
as the Steinmann identities and the coincidence conditions in momentum
space are the same as in the usual case. If we assume that each field 4;
describes the particle labelled §, the scattering amplitudes are yielded
not by the #° themselves but by

4
d;rcy(x) = H(Dz, + mg) i ()

r=1

4
aj () = [T (Og, + mf) 4;() (4)

y=1

ete. Also denote
4

Wp(x) = T (Dae + m) #Wp (@) .

r=1
The cotncidence conditions are
ap; (p) — apn(p) =0 it pf < M7 }
Ap;(P) — 11 (@) =0 if (p;+ p}) < M7,
and conditions obtained by exchanging a and r

Stevnmann identites:

| Qg Qi = Py Ty (6)
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We recall that each g.xr.f. »§ (vesp. #'%) is the boundary value of a
function analytic in a tube Z 5. All these holomorphic functions are
branches of a single analytic function H (resp. H') with

4
H' (k) =j]71(7€72 — mf) H (k).

We also recall [6—8] that, using the local edge-of-the-wedge theorem,
one finds that H’ is holomorphic in a primitive domain which is star
shaped with respect to 0 and contains 0. It can also be shown (by purely
geometrical means) that the envelope of holomorphy of the primitive
domain is schlicht, i.e., one sheeted, and moreover tnvariant under the
complex Lorentz group. This fact was of great importance in [6] and is
equally important for this paper.

2. Regularization in Momentum Space by Division in x Space

The contents of this subsection will not be directly used in the rest
of the paper. However, the analogous operation for a set of Wightman
functions and g.r.f., in two-dimensional space-time will be used. This
subsection is intended to make the meaning of the procedure clearer
and to stress its generality.

Our purpose is to give a definition of
4

[(xy — ) — A2]17V#S, where #5(x) = [] ([0, + mZ) 7S(x)
r=1

and 75 is any one of the g.r.f., the definition being such as to preserve
all the “linear properties” of the #S: support properties in x space,
coincidence properties in momentum space, Steinmann identities. (Here
A?is a real number > 0.)

Let f and v be two multi-indices and D#, D” the corresponding diffe-
rentiation monomials in the variables a4(j=1,...,4; u=0, 1, 2, 3).
Denote

(@) = I (DPocx i, 5(7) D'W p(@) .

An examination of the proof of the support properties of the 75
shows easily that the 7§, (x) have the same x space supports as the 75
and that this property only uses the coincidence properties of the various

Dy »(x) In z space, i.e., the domain of analyticity of their common
analytic continuation DYw(z). This domain is left unaffected if we
divide D¥w (z) by [(2; — 25)* — A%]¥. Indeed the manifold {z: (2, — z,)*= 4%}
does not intersect the tube {z:Im(z, — 2,) € V*} nor any of its images
under a complex Lorentz transformation. Now the initial tube of ana-
lyticity of any w p is contained either in {z:Im(z, — z,) € V*} or in
{#:Im(z; — 2,) € V"} and, hence, is not intersected by the manifold in



Polynomial Behaviour of Scattering Amplitudes 265

question. If two permuted Wightman functions DY W pand DY # p have
their tubes of analyticity in {z:Im(z; — 2,) € V*} their region of coin-
cidence is unaffected by the multiplication by [(z, — 2,)% — 42]~¥ since
the latter has the same boundary values in either of their tubes. If their
tubes are contained in {z:Im(z, — 2,) € P} and in {z:Im (2, — 2,) € V7},
respectively, then their region of coincidence is contained in {x: (&, — ®,)?
< 0} where [(2, — 2,)% — 4%]¥ is ¥#*. {We have in fact reobtained the
well-known result: the domain of analyticity of w(z) (and of D*w(z)) is
contained in the complement of {z:(z; — 2;)2 € R™} for any pair i <+ j).]
Hence, if we define

[(zg — )% — Az]—Nﬁgr (x) = ‘1;1 (DPo % xp, 5(2°)

(= @) — AV DY p(a)
()
these distributions have, in x space, all the linear properties of the
75 (x). The same holds true for

R¥ (@) #5,(@) = [ — ) — A1V [(@, — 2y)? = 4%]¥
[l = 2 — ATV 7, (@)

defined in this way and for K¥ (x) #5(x) defined by appropriate linear
combinations of the K¥ (z) 7§, (x).

To see the effect of this operation in momentum space, we now
study

RY@) W p(@) = R¥ (@) [T (g + md) #p(a).
114

B (2) = [(2g — 25)° — A2 [(z — 20)% — AP (2y — 2,)? — A°]7
is analytic in the tube of analyticity of # p: {z =2+ 4y:yp; — ¥pi—p €V,
j =2, 3, 4} and satisfies the required conditions to coincide in this tube
with the Laplace transform of a tempered distribution Kp(p) with
support in the cone

Sp= {p5Z’P4 €V, Pps+ Ppa € v, Pp1 € V+}

On the other hand #"p being analytic in the same tube, its Fourier
transform % p(p) has its support in the same cone Sp. More precisely

supp. #pC8p = {p:pbs > M3y, Dy < 0; (Pps + Pps)?

> Mpaypsy» PPy + 23 <05 phy > My, Py > 0}.
Thus
supp # p + SpC 8p
hence
supp (Kp ¥)¥# pC8p .
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We have thus shown that (Kp#)¥#”(p) has the same support
properties as ¥ (p) Using this fact and following the usual argument
yielding the coincidence properties of the #'S(p) (in momentum space),
it is easy to see that the (K *)¥7'S(p) [as we shall denote, by abuse of
notation, the Fourier transforms of the K¥(x) #'5(x)] have the same
coincidence regions, in momentum space, as the 7' ¥, namely (5).

In fact we have

Kp(p) = — Apet(&101; A) Aper(e3P2; A) ARet(E:s P+ pe); 4)

K¥(p) = (— I)Ndﬂﬁ(slpl, )ARet(Ezpz’ Ret(gs(ﬁ +p5);4).

Where DAY a — erediy
Ager(p; 4) = (2)7* lim, fm,

neEvT
Apet (p; A) has its support in ¥+ and satisfies the equation

(Op + A2 Age(p; 4) = d(p) .
A% (p; A) = @m)~4(— 1)¥ limof et e [(x — in)? — A" Vdix
77'-)
satisfies nev+
(O, + A2 A% (p; 4) = AFFV(p; 4) for N>1

Standard computations show that, for ¥ > 2, A%% (p; 4) is a continuous
function (in the whole space) with support in V*; for N = 2 it is a
function multiplied by 6(p° 0 (p?). For N = 2 we have

iARet(p: A)I = ARet(p’ )
= [8a(N — 2)1 (N — 1)! 4¥-2]-10(p°) O (p?) p* @ -2.

4y BP0 067 | Ty (4 |77
AXp; A) = Toravar — b1 Ay

and Jy_,(2)/z¥ 2 is an entire function of z? which, for real z, satisfies
[ y-2(2)/2" % = limo (Jy-2(2)2 %) .

In fact

It follows that, for N = 8, A (p; A) is a 2 N-5 times continuously
differentiable function (this is not true in two-dimensional space-time;
see Section II), with polynomial behaviour at co. Hence (Kp #)¥ # 5 (p)
is for sufficiently large N, a 2 N-¢ times continuously differentiable
function with the same support as #'p. (For a detailed proof see [7]
[9].) We have, for any multi-index § such that [‘3[ 2N —gq,

DK )Y W ()] < 0[1 by 2 ) ] .
=1
Hence, for any ¢ € 2(IR12) mtes
‘(1 + X (- ab) )‘“’“”’2 {[R¥(x) %" ()] * § ()}

178
0=pxs

=0 [l [1 + X (p’;)z]’" dpy...dp,.
1<7<3

0=p=<3
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If we restrict ourselves to functions ¢ with support in a fixed compact,
the last quantity can be reexpressed in terms of lﬁr!nsszx | DP @ ()| Since
=4am

K% () #S(x) is of the form ¥ DFf y,(x) K¥ Dy p(x), a similar estimate
holds for it and we conclude that, in p space, (K «)¥7'S(p)is 2N — ¢
times continuously differentiable. It is easy to see that its analytic
continuation, the Laplace transform of K¥(x) #5(x), is bounded, in the
tube where it is initially defined, by

0 4
(K #)YH'(p + iq)| < const (1 + |p + iq]?) exp 7,;2; 199

[Here H'(p + 7q) denotes the common analytic continuation of all the
r'S(p) and (K *)¥H' denotes (symbolically!) the common analytic
continuation of all the (K *)¥r"S(p).] Note that

H'(p) = (— Oy, — AV (= Oy, — AWV (= Opytp, — ANV (K 5)YH' (p) .

We have given a very sketchy account of this subject here since the
corresponding properties for two-dimensional space-time (the only ones
actually used in this paper) are explained in detail in Section IL. It can
be proved that the division process can also be applied to any set of
(possibly “sharp”) g.r.f. defined (by any means) in a Wightman theory.
This proof will be given elsewhere.

II. Restriction to a Submanifold

It was shown in [6, 8] that it is possible to restrict the function H’
to certain tubes of a certain submanifold ¥#7(¢). The latter is defined,

for real negative ¢ < 0, as the set of complex points &, ..., k&, (With of
4
course ) k; = O) , such that
i=1
k 7 ! (mg—mi—1),0
1 ( 1> 2V_—_‘—t 3 1 ’ )
1
k2 = ( 22 21/———_t (m% - mz + ), 0)
40 .
k3= (— T 97 (ml - mg - t),O)
1
ky = (— g, 2= (m? — m§ + t),O)

where 7, = (n?, #}) and 7, = (n3, 7d) are arbitrary complex two-vectors.
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The eight tubes + &7, + &', + &, + B’ are defined by
A = {m:Im(m, + m,) €V, Ima, € V7}
A = {m:Im(7wy — ) € V', Immy € VF}
= {m:Im(m, + 7,) € V¥, Imm, € V}
B = {m:Im(m, — m) €V, Imm, € V7).
They consist of points of analyticity of H’. Since we want to obtain

some estimates on the restriction of H' to these tubes, we shall not use
the purely geometric methods of [6, 8], but proceed in two steps.

1. First Step

The distributions #"S(p) can be regarded as continuous functions of
the two last components of the momenta, {pj }u = 2,9 With values in the
tempered distributions in the variables pf, p}.

To prove this well-known property, one may introduce, for j =1,
2, 3, 4, the notation

p; = (m;, r;), with ;= (7'[7 s ﬂy) = (p;; > b5 7), and
75 _(7'}2=7 )= (p]’p])

Similarly, in « space, we denote by &; the two-vector («, «}).

Consider now, for example, the distribution a,(p) = a,(m, r) and
define

dy (&, 1) = (2n)“6f{exp — 1 2’ [rF(a? — af) + r} (@} — xg)]}
i=1

3
y(w) [T d(af — 2f) d(a} — 2) .

i=1
For fixed &, the domain of integration is given by

(@f — @] + (o} — a)? = (of — 2f + @) — (2} — a})?.

Hence
Jees]

3
(22)3 ”A”]YI(I“JI + 2)—1 [(x? - 96’2 + a‘)z - (xyl - x‘})z]l 2
ji=

|Dgdy (2, )] =

4
where | A| stands for J7 [[4,(0)| and Dz = D> D> Dy,
B=1
In particular

3
|4y (2, )] = 8~1(27)3] 4] ]71 (@ — 2} + @)® — (a} — @})?]
=
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and similar inequalities hold for the other #5 defined by
3
P&, 1) = (2ﬂ)‘6f{eXP — 1 Z [1F (2F — af) + 1} (+F — xi)]}
( ) ]]ld(xy - .704) d(x] - 964)
f

Let ¢ be a function in & (IR¢) and

P (&) = f{expz 2 (& — &) ”a}?’(ﬂ) APy Py d? oy

We find i=1
3
|f ¢ (=) ay(m, r) dm] = (27)~¢ £) d (2, r) {] 2(£; — &)
3
< 23(27) 2] 4] [y PO (] = o2 s = 20}
2f—al +a > |o}—a} j=
3
= 7% (2m) 12 A4 | ¢ (#) .H(%(') - 952 +a+ 1)4”L=(17d2(5cj—:e‘)>

{_ J @ +a+t 1)—4d§°d§1}3/2
V+—e
where the last inequality uses ScHEWARZ’s inequality.

The integral in the curly brackets is equal to 1/3. Going back to
momentum space we find:

'/(p(ﬂ) ay(m, vy ¥, . . . dPmy

and

< 2}/3)-2*2m)-¢| 4]

]](za—;-?——l— 1+a)4<p(7t)

i=1

I*dm)

< @2)/3)-2(2n)-%]4|

@(7) ay(m, 1) d?my . . . Py

3
: {7ﬂ(i—a%+a+ 1)4}kg<p%— m}) ()

e

L¥(d =) )

The other g.r.f. have similar bounds. The vacuum expectation values
of the “multiple commutators’ are linear combinations of appropriate g.r.f.

(for example [1, [2,13, 4]]] =3 +1721387 4) and therefore also obey
!

gimilar inequalities. Finally the permuted Wightman functions # p are
obtained as linear combinations of expressions of the type (f * x; (p°) C; (p)
where O;(p) is a “multiple commutator’ v.e.v.; y; is the characteristic
function of a certain open subset of the space of the components p{;
B is a € function with compact support and it can be chosen once and
for all in a way depending only on the spectral masses of the theory.
Thus we see that there exists a constant €, depending only on the masses
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of the theory, such that

with
D

o
»

pr(n, r) @) dzw) < C’OHAPIi ISZl'zll(l + @)t 2D ()] s gy

FLA % 9%

"R @)% (% + PD)=

The preceding considerations allow us to define, for any real { <0,

distributions

as the restrictions of

7'29(7'5): ’t's (), #p, 1 (7), W;D,t(”)

rS(m, v), ' S(m, 1), Wp(n, 1), Wp{m, 1)
to the manifold defined by fixing

= (7= = mt = 0, 0)
= (= tmd = mi+0,0) o
)

1
Taz(ﬁ—_—t(m%'—‘mg—t,o

1
r4=(2—vtj(mg—mg+t),o).

The distributions we obtain possess all the linear properties of the
set of g.r.f. and Wightman functions of a theory defined in two-dimen-
sional space-time, provided we replace m; by u;, M; by #;, M;, by

M, where

1
T4t

a7 [+ mg) = 1] [my — m)* — 1],

(m§ — m} — )2

1
=m§ — 7 (md — mf + t)?

11 [(mg + my)® — ] [(mg — my)® —£],

1
M = MF = (mF—m — 02,

H

1
M = M5 — o (m] —mi —1)?,

1
M= ME — 7 (mf —mi — 1),

1

MP = MT — 5 (m§ — mf — 1)?,

1
MYy = My = MFy — 5 (m§ — m§ — m3 + mj)?,

2 2 2
jlz—‘/ﬂzfi"—Ml‘i—

t
LI

7 (mi — mE + md — mj)?,

-ﬂ%;g:-/%%‘i:M%g‘t.
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We also define, for future use
My =min { A7, #3} and MA,=min{ Ay, H;}.
We have
(&) = Z' {o % 25, p (&)} #p, 1 (2)

N3
[
PR
R
=
tg ~

(Oz, + uf) 7@,

]=1
A 4 A
V) = I Qiy+ 1) V(@)
j=

with evident notations; the Dalembertians are two-dimensional.

We can now apply to the functions 7% the process of “multiplication”
by K¥(#) KE(#), sketched in Section I, for the four-dimensional case,
with

Ky (8) = [(&, — &)* — AP]71 [#, — &,)* — 4°]°!
By (&) = [(8 — &)* — 471
By abuse of notation we denote
K, (#)N K, (£)L75(2), ete.,
the distributions obtained by the “multiplication’ as defined at the
beginning of 1.2. and by
(K, )Y (K, )Lr{S(7), ete.,
their Fourier transforms. The common analytic continuation of all the
(K %)Y (K, #)Lr,S will be denoted (K, #)¥ (K, )L H; .

We shall now make a detailed study of the behaviour of (K, *)¥
(K, *)EH] in the initial tubes where it coincides with the Laplace trans-
forms of the various K¥ K¥#S.

a) Bound for RKYKEDY W p,,

We have seen in Section I. 2 that (K, *)¥ (K, #)2# p,, is in effect
the convolution: (K, p *)¥ (Kyp %)X % p ¢, i€,

(K %)Y (K3 )2 (W p, ()
= - f éftgs(ﬁ (7t — ﬂ{)? A) ARet ('92 - ﬂé)? A)

A% (eo (g + 705 — 7y — )5 A) A7 7/P,t(ﬂ') APy AP d? (g 4 713)
where g;,= + 1 (j=1,2,0); ¢ depend only on P. Agei(m; 4) is the
retarded function in two-dimensional space-time given by

Aoyl 4) = = (@)= lim [ e=#72[(& — in)? — 4%]1d%
nev
A¥A (m; A) = (— 1)¥ (2m)—2 lir% [ e ind (& — in)? — A2]-Vd2g.
n—>

nev+
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The range of integration is contained in the compact set:
{ﬂ}nt EV s apy+apy €V smp €V
Npa— Wps €V 3 ps+ Wpy — Apy — Apy € V3 70py — wpy € V.
This compact set (of volume 871 7%, 7%, (mps + 7p,)?) is itself con-
tained in the set defined by

4 4
|7t70 - yz;i(’[ = 2 lngl; |7T;°l = 2 [7[2| for 7=1,2,3,4;
k=1 . k=1
|7 + 7 — 7}® — a1%| = k21 || and |7%+ m0 = Z |7f)

forall 747,
as can be verified by straightforward computations.
Hence, the range of integration is contained in the following set

4
& (m ~ my) € v, [81(7z1 - 7‘10)! 2 [7‘2]

&5y — 713) € Ve, |82(7Zz - 7z2°)| 2 l” l

4
&3(my + 7y — 7y — my) € v, &3(n) + 7§ — 71° — 75:;0) =2 lﬂgl .
E=1
In this set
4 [7]
= Sp) " e < St) s ote
On the other hand, detailed calculations show that if 7% 4 =l = u,
70 — 7l = v,

ors g(u) 6(?)) ¥ ~1—rpN-1-s
Frr Axdi (s A)) = 5= N —7r~ I (N —5— 1)

The expression in the right-hand side is the exact value for 4 = 0. The
derivatives (in the sense of distributions) are actually functions conti-
nuous in the whole space, with support V', provided N —~r —s —~1 = 0,
N—r—-2=20,N—-3s—2= 0. We can also write

or+ 6(750) 0(7-[2 nz(zv‘ —1—r— ")(2710 r+a
Eerd A8 4) = 2FLN — ¢ — DI(N —s — 1)1
Hence, if « is a bi-index and
g% + o
Dcc

and if N — || = 1 = 0, (|| = & -+ o) we have

7] (ﬂO) 7] (ﬂz) 2 (¥ —1—lal) (4 no) 3]

IDO‘ARet( )| = 228 -1(N — o] — DI(N — [of — 1)1

e(nO) g(ﬂZ) 4Ia|(nn)2(N—1)—!oc!
=TTRFA[N — o - DI
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Combining this information with our bound for #7, ,, we easily see
that there exists a constant C;, depending only on L and N and on the
spectral masses of the theory, such that, denoting

4
T= 2 \nil
k=1
taking as our independent variables z;, 7, and 7, = 7, + n5, we have:
|D%, D%, DR, (Ky )N (K )2 (" # p, 4(70))]
< | 4| TV-9+ ¥ —DtAL=D—inl=inl—nl[] 4+ (1 4+ a) T2 (9)

for N—-|n—-13Z0,N—|r—-13=Z0,L—|r|—-13=20.

One also finds that (K, #)¥ (K, )X (n? # p,,) has continuous deriva-
tives of orders ] S N — 14, || = N — 14, || £ L — 14,

The Fourier transform of that function is therefore a tempered
distribution which, when regularized by convolution with any test
function in &, decreases at co. The same is true for the #;S which are

obtained from the % p,+ by multiplication with standard #* functions
and linear combinations. Coming back to momentum space, we can
infer from this regularity properties for the functions (K, *)¥ (K, #)Lr; S
and (K, *)¥ (K, x)LH;. We now proceed to do this in detail.

b) Bounds for KY K78

Let & =& — &, £, =40, — &, & =&, — £, be our independent
variables in « space and denote ny, = (7, + 7,). Since

an.'l 2 &y

j=1 £=0,1,2
(When Z,'l ;= 0) , 7y, 7y and st are the conjugate variables to &, &,

and &,.
Let ¢ be a function in & (IR¢) and

2
i3 &y
¢(§1’ 529 50) = f € 7=0 (p(ﬂl, 752, 7[0) d2ﬂ1d2ﬂ2d2no.

It follows from (9) that

[ EpEp &L ¢ (&) RYREDY W p, 1(8) d2 6,028, d2& |
= (27| [ @ () D2, D1z, D (Ky )Y (Ky ) o W p, o (70) d2 v, @20, dP |
< Oyl 4] @) [ TWI=0 H4E =D 2= D=inl=rl=Inl [T(1 4 @) + 12

X |p(m)idn,
‘where

T — 2 s [(1+ @) T+ 172 < 2901 + (1 + )2 T22)

19 Commun. math Phys ,Vol.13
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Defining 82 = J3' |#}*>+ [n?[z we find: 7' < 4 8 so that the expression
i=1,2,0
under consideration is bounded by

Oi“AH f Slvi—9+ A(N~=1) 4 2(L—1) — [ry] —|ra| =t [1 4 (1 4 a)m,glz] ]‘P(ﬂ)l dn’
(Oi — 4Iy| + 8+ 4(N—1) + 2(L—1) (2n)301) .

This is again majorized by
Or 1 A] [8%(1 + S22 (L + (1 + @)28™] @[ 1221 7,0y 02 7
= O7[4] {851 + 8@ pram + | 8B 2L + 82 (1 + 0)2 @l g} »
where By = [y| —~ 9+ 4(N — 1)+ 2(L — 1) ~ |n| — |ry] — |r]
CY =01 |f (1 + 8842 A2y d? o [1/2.
Let 82 denote the differential operator

o 2 22 a2
Br=— 2 (@ar *+ @ar)

then the last bound can be rewritten

O @n)=3[ 4] {|87 (1 + 822¢ | 1z ey + (1 + @) SB+32(1 4 S22 1)}
Since the K¥ KE# 5 are sums of terms of the form
2e(8) REREDY W p, (&)

where |y| < 8 and the functions y, are ¥ functions defined once and
for all, [in particular, independent of @ and of the choice of the fields
A;(2)], with derivatives bounded in the whole space, there exists a
constant C, depending only on N, L and the masses of the theory,
such that:

] (@)Y By (£)2775(2) G (&) (1 + &2 (1 + [&12)7 (1 + 1 &o]2)* dé]
= 02||A|| + 4t + 1) {ﬂ + Sz PNHLL @ s
+ (1 + a)2](1 + S22¥+i+5g) )

This bolds for 27 < N — 13, 2k < L — 13. It is important to note that
the norms on ¢ occurring in this formula are invariant under trans-
lations.

We now choose {once and for all) a function § of one two-vector
§ € 2(R?%), with support contained in {£:|2° + |2*| <4}, and §(£)
= [ e~ "%y (n) d®m, with g(0) = 1. For any ¢ >0, ¢ < 1, define §,(&)
= 1/e?j(#e), and g.(n) = g(em). For 0 <e = 1, 0 <y = 1, we define
two functions on R® by

gs,n(&) = ge(él) g‘s(EZ) gn(fo) )
Ge,n(7) = g(emy) glemy) g (ny).
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We compute an upper bound for

U EPEREr RY (&) RE (&) #5(%) §o, (& — &) d2E1d2E3d2 &G

~|f T T O IR R e

- RY @) RE(&) #5(%) §o, o (& — &) dE|,

where |og| < 27 — 4, o) £ 27 — 4, |og| = 2k — 4 (for future purposes).
Each derivative of a given order of

%L+ &%) (L + €)1 + [ &ol®)~
has its modulus bounded by a constant multlphed by
Jeol
L I+ DEl T+ ey TR

Moreover, when & — £’ is in the support of §, ,, there is a constant »,
independent of ¢ and % such that

A+ &1 = w1+ |&]H.

Hence there is a constant (', depending only on the masses of the theory,
on N, L, and g, such that

ey f§ “RY (&) REE) #S(E) §o, (& — &) dEAELDE)
= Ol 4] (1 + a)2(1 + pf + ud)* (‘élii .*_%)
foo] o] leo]

N 1 L I O A L R (N A Dl

with R =4N + 2L 4 10.
This will enable us to estimate

DDz ge, () D3y (Ko %) (K g )2 Hy ()

in the initial tubes. For this purpose, we must first estimate, ¢n each of
these tubes:

expi 2 ;85

ji=1

sup
Z esupp? 5 + supp g,
or, equivalently

sup ( 2 #; Im n,)

iesuppf,"g+suppﬁe‘n i=1

4
= sup (— 2 & Im n,-)+ sup ( Zx,Imn,).
# ¢supp# ;S j=1 & esuppf, j=1

19+
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We first consider the first term. It is sufficient to consider two
special cases:

i) #8=di(=1124314)
supp dg = {£:8;, — 2, € V' —¢,j=1,2,3}.
In the corresponding tube, Im 7; € V* for 7’ =1,2,3 and

4
——kzloﬁkIm =— Z,‘l & —E)Imam < ¢ ZImn,m— ): [Im 7|
= ]_

i) 75 =dl (=14213%4)

The support is the union of two parts

1°) {8:8, — £, €V —c, 8 — £, €V —c, 8y~ 8,V —¢}.
Writing
4
— X & Immy = — (&5 — £,) Im 7, — (&, — £,) Im (7 + 7,)

— (£, — &) Im =,

we see that if Im s, E V*, Im(m; + 7w5) € VT and Imyt1 € V", we have
4
- Y& Imm, < a(Imad + Imad) = 2 [Im 7)) .
k=1 2 =1

2°) The other part of the support is obtained by exchanging £, and &,
and yields again 4 P
- X & Inm, =5 3 [Imnf].
k=1 F=1

Let us consider now the expression 24,' — &4 Imm,, when & €supp §., ,
and 7 is in one of the initial tubes. W: ;gve
kﬁ; — & Imm, = — & Ima — & Ima, — & Ima,
and since in—each of the tubes Ims; ¢ 4- V+,j =1, 2,0, we find:

4 2
kzlaf;k Imm, < ' [Imaf|(|&0)+ &) < el ([Imal| + [Imad)) + 5l Im x|
= i=0

Putting together these bounds we obtain:

Lemma 1. If || < N — 17, |o,| < N — 17, |l £ L — 17, there
exists a constant Cy, depending only on the masses of the theory, on N, L
and g, such that

D3 DSy (em) g (emy) g (y10) D32 (K %)Y (Ky )2 H, () o
< Oyl (1 + a2+ i+ 9 (5 + )

a/2k§:1 [tm 7] + el ([Tm 29| + | I #§]) + n?, |Im af)

(where R = 4N + 2L + 10), tn any of the initial tubes.
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In particular, let g, > 0 be such that [[z] < &= |g(n)] > 1/2 and
set 7 = &y/(&q + |75]|) in the formula of Lemma 1, We obtain

ID:ZD:‘,:g(eﬂl) g{em,) D;‘;(Kz *)N (&, «) L H{ (”)!
el 12 2, ,ou| L ll7o \B
= 20, 4] eh(L+ af2 (1 + i+ )t [ + (1421

o
a2 2, Jtm ) + o1y (1m o8] + [1m =)
e = .

2. Second Step: Restriction to ¥ (t)
Let
V() = DRDZig (em) g (e7ws) (Ko %)Y (Ky #)EH (7).
¥ (t) is defined by: m; + 75 = 0. To find bounds on ¥ in the tube &7 C ¥~
defined by
& = {mw: Im (7w, + 75) € V¥, Imm, €V}

we consider the restrictions of ¥ to the two tubes

{m:Im (7, + 7,) € V¥, Ima, € V-, Im (o, + 71,) € V)
and

{m:Im(my + 775) € V", Ima, € VF, Im(, + 7,) € V*}.
If we fix 1, and ;, such that Im(m, + m,) € V¥, Tma; € V™, we have
to solve an edge-of-the-wedge problem: the restriction of ¥ to the two
tubes yields two functions of 7, + 73 = 7, respectively analytic in

{my:Imm, € V*}
and
{mo:Immy € V7, Im(my — my) € V*}

(see Fig. 1).

0
4 Imﬂo

Fig. 1. Tubes of analyticity in 7, for fixed s, € V- and 7, + 7, € V+

The boundary values of these functions for real s, coincide when
§ < M7
Ty < 13+
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We define
w=a+al,y,=a—at (=0123,4),
@ = min {My, [Imuy|, Imo,f}.
Then ¥, as a function of s, is analytic in a neighbourhood. of
{uo, vo:Imuy > 0, Imvy > 0, |uy| < 01, [vo] < 01}
U {ug, v:Imuy < 0, Imvy < 0, Juy| < 01, 0] < 01} (10)
U {uy, v: Imug = Imv, = 0, [ug| < oy, || < 01} -

Introducing the new variables wug = log(g; — wg)/(g; + ;) and
vy = log (o, — v,)/(e; + v,) We reduce the problem to the application of
the tube theorem which yields the envelope of holomorphy of the domain;
this envelope contains in particular the following domain:

{uo’ Yo o1+ U o1+ %

T
< ‘4—}
(see Fig. 2) which, in turn, contains the polycylinder
{0, vo:[to| < @ (Y2 — 1), o] < @x(y2 ~ 1)} (11)

I
01— U 01— Y

arg arg

24
<—4“,

Ug-plane vg-plane

Fig. 2. The domain of analyticity of ¥ in m, contains the topological product of
the shaded domains

In (10) the function ¥ is bounded by
CLlA] (1 + @t (1 + i + )t R ot tmat] + )
R
cl =40, (1 + Mg-) ool
¢

[Indeed we have at non-real points of (10)

Imn? < 0; Imm, € V7 Im (g + 27) € V™
50
0<Imnd < —2Imnl; Imn, € V" ; Imm, € V'
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Hence

)é’ Imaf| = 2(Imaf + Imaf) < 4(Imzd| + |[Imxy]).]
k=1

It follows that ¥ is bounded by the same expression B in the poly-
cylinder (11); Cauchy’s inequalities yield:
> B
< =YV
quy ovy Fn )||n =0 ‘fv(l/i_ 1)
so that
|(Dno + Az)LT(n),ng=0 é FLBQ].—zL

(where I'y, depends only on L and A4). This means that
lDﬁiDi‘;g(em) g(emy) (Ko %)Y H{ (n)]no =0

< B’ eb([mag] +|m ) [(Ml)“ 1 Imzll“ + umi 1“]

with b = 2a 4 ely; B' = I'LCy| 4| (1 + a)*¢~%; I';, depends only on L
and 42 Here L = 17.

Let us choose |oy} = 1 and

v

Qulary
(meaning, of course, differentiations at fixed s, and 7). (This choice
forces N = 21 + 4 L. We can take L = 17 so that we must take NV = 89.)
Then, by successive integrations over u, and v;, we find (see Appendix 1):

Lemma 2. Let N = 89, |oy| = 1, |og) = 1. There exists a constant C
depending on N, g, and the masses of the theory, such that when 7 is in
any one of the tubes + o, + ', +- B, + # of ¥ (1),

|D D3 (emy) g (em) (Kp %)Y Hy ()]
< O] (1 + @)34eR(1 4 pf + pf)red (mad] + [Imag)

where b = 2a + ¢l; and R = 4N + 44.
The estimates provided by Lemma 2 are very far from optimal, but
they are of the right form for our purposes.

D} = with I1<2L4+2,1<2L4+2

I11. Exponential Bounds in the Submanifold ¥~

In this section we shall study a function F of two complex two-
vectors, s; and x,, defined and holomorphic in the union of the eight
tubes 4 &7, + ', + B, + B of ¥ and of open sets given by:

+ (A + ') A where A1 is a complex connected neighbourhood of
the real points such that n} < 412, n} < 32,

+ (o — By AN, where A}, is a complex connected neighbourhood of
the real points such that (m, + 7,)% < A%,
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+ (L'~ B'YNA{y where #7, is a complex connected neighbourhood of
the real points such that (m, — 7,)% < A%,

+ (B — BN ANy where A7 is a complex connected neighbourhood of
the real points such that 7§ < #32, a3 < A 2.

‘We know that the envelope of holomorphy of the domain so described
is schlicht and invariant under the complex Lorentz group of two-
dimensional space-time, i.e., the group of all transformations [A] given
by [A] 7 = ([A] =y, [A] r,) and:

[Al 7; = (Au;, A1)
in characteristic co-ordinates (u; = n§ + z}, v; = @y — a}). Here 1 is any
complex number == 0.

Moreover we assume that F is continuous at the boundaries of the

domain just described, and that, in the tubes, it is bounded by

lDaF (751 s 7!2)’ = eb (Im ”gl + |Im ”gl)

for a certain b > 0, and for any « with |«| < 1.
We use the notation m, =75y 4= 7y, w0, = 4y + ty, v = ¥ + 0.

1. Bounds in the Extended Tubes

We first prove the following.
Lemma 3. For every m = (n;, n,) such that, for some complex A+ 0
n = [A] @', &’ belonging to one of the eight tubes + of, + o', + &, + #’,
the following bound holds:
[D*F (7)| < expb(Imu,| + Tmv, |+ Imu_|+ [Imw_|), |/ 1.
A consequence of this Lemma is that F is continuous at the boundaries
of the “extended tubes” zgo [A] , ete.

Proof. We apply Lemma A2.1 of Appendix 2, withn = 2, k; = — 2a,
ky = (m, + 7,), and obtain that, with our previous notations, when

b
|D*F (7)| < exp 5 ((Imu,| + [Imv,| + 2 [Imu| + 2 [Imy,|)

< expb(|Imu,| + Imv,| + |Imv_| + Imu_]).
The last bound clearly remains true if 27 is replaced by any of the eight
tubes.
2. Definition of New Variables and Analytic Completions

We are now in a position to follow step by step the analytic comple-
tions described in [6], and compute bounds for the continuation of F.
Notations:

23 = (m + 7)* = w0,

— R JA — 2
2= Uy = TI}; 29 = UgVy = TT5 .
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Moreover we define
z=2(z — ,“%) + 2(zy — I‘%) -

E= =2y = i~ ) QM +)/=7)

1
8 = 2 + 7 (m§ — m§ + m§ — mj)>

where

— i 2 _m2) = i 2 u?
@~411§Iljl£4 (MF — m3) 4:7.12111’12(.///:, us)

and ]/:; is defined in the cut plane z ¢ R" and Re l/j; =0; M= min M,

lsji<st4

2.1 First Completions

We start by considering points of the form {A] s where 4 =~ 0 and =
is such that
Uy =V, =0 = 0y > (M + MA,) .

For the justification of our subsequent use of these points see [6],
(p- 2562—253). In the case treated here, note that, for fixed 4 & 0,

Fo (A7) = lim F(0] G, & in, 7))
nev*
is a continuous function of #_ and o, holomorphic in z_ in the forward
and backward tubes: + {#: Imu_ > 0, Imv_ > 0}; the boundary values
from these tubes at real sr_ coincide when

(u_+ o) (v + o) < 4 M3,

(. — o) (v_ — o) < 4 M3
Since we need estimates of the continuation of ¥, we do not use the full
Jost-Lehmann-Dyson domain (which is the solution of this edge-of-the-
wedge problem). We first extract from the region of coincidence the real
open set defined by:

(12)

(a+ o) (B+0) < 442, 13
(e —0o')(f—0a")< 4. M2, (
where
4 2 2
a=u. = A=pi—- g,
A
B=v_.—o,
6’=:04_i4L
b1 3
/] D
A* = max |p + ,y%—}—z—)gMz’
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It can be checked that the set (13) is contained in the set defined by (12).
It can further be checked that the region defined by (13) contains the
angular domains # and — %, given by:

R = U {oc p real: [oc—]/o"2 4 A% — p| < psinb,,
ﬂ+Va’2 4 M2 - o] < psinfy}
ie.,

R={o, B:la+ | <[x— f—2)/o'?— 4. .42]sinb}
with

, 2.4
sinfy < ——]/o‘ 4.2, (cos@o = 7,-—) .
[ is the angle defined by the tangents to the hyperbolas
(¢ £0) (B £0")=4.42

at the point ¢ = — f= l/a'2 4 .#2] For ¢ > M+ #,, we have
o' > 2 A and 0% > (u; + p,)? > |4] hence ¢’ = o + |4|/o is an increasing
function of ¢. From now on we restrict our attention to values of o
such that

Y|
a’>a{,,o‘>o‘o,a()=00+~L—l;00>2.//l,00>ulll+e///2.
. ]
We then choose
: 1 g
sinfy < — )/ of — 4 A*
0

in the preceding definition of #.
The first definition of & displays it as the union of a family of squares
(double-cones). To each of these squares we associate the following set D,:

= {a, B:la— /o' = ~ 4 A — o] < gsinby, |+ o'~ 4 .42
+ o] < psinfp} N [{, f:Imo > 0, Im g > 0}
U{e, f:Ima < 0, Im 3 < 0} U R?].

F ([A] ) is holomorphic in sr_ (hence in « and f§) in a neighbourhood
of D,. It is bounded, in D, by

1P ([ )] = expb {[Tmau_| + [TmA-to_| + IIm o(a-))
hence (using |/o’2 — 4 A2 < o) by
|F, ([A1m)| < expb[|d] + [A7H][2 0 + o(sinbp + 1)] . (14)

The envelope of holomorphy of D, contains, (as we have already seen
in Section II.2), the polycylinder P given by

= {o, Bila—)/o'? — 4 M2 - g| < gsinby()/2 - 1),
]ﬂ—i—]/a’z 4 A%+ | < psinf, (‘/é - b},
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As a consequence the bound (14) also holds when 7 € P,.
‘We now show that (for ¢’ = ¢;) the conditions
U, =0, =0,

z=—[o(l+w)+}o'?— 4 M+ o't~ 4 .40,

1 (15)
9>0,lw|<r,0<r<V—§,
£l <2eM,e>0,
imply, for sufficiently small ¢ and 7, («, B) € 4 P,.
From
24 2 2
a+ f=u_+v_ *7—7(21*22~A)=~m,
z=uv_+o?—-2uf—-2u;— P
we deduce
ocﬂ=——A§~z———l—z—a'2+4J{2
?2QM + =72
and
T (e~ pB)R= s - ALz ~2+0"*— 442,

462 2M =22 QM +)—2)
We assume, for definiteness, that Re{e — 8) > 0.
From (15) it follows that

z2=—o(l+w) [o(l +w)+2)o'?—4.47]
and that Rez < 0. We distinguish two cases:

1) 0<po=)d:-4.4°
We have

2] < o(1 +‘t)3+‘r]/a’2 4.4%<8g)d
Re@M+)~2)>2M,
hence
__ 2
G(2M + V-2
1
5 @= B = [l +w) + Vo' = 44

< Bpe,

2202 + ALz
4622 M + " 2) 2 2M 4+ 2)

p et e+ 0+ )T

The denominator has a real part = ]/0’2 — 4 .#?, so this expression is
majorized by

4|
0& +8896V0"2~—4 = = 8¢s+ 16¢¢
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Hence
le — o2 — 447 — o| < p(v + 12¢ -+ 16¢?) ,
[B+Vo'2 — 442+ o] < o(r + 126 + 16¢?) .
2°) o>t — 4.2
2] < (1+7) (3+7)0® <8¢,
Lz | 1]V~ < 3e0,

@M+ =) o

Rep(1 1 —
e v S

|5 = B~ ol +w) + /o7 4 =

14|
o']/a"a — 44

Since 1 —7>1 — 1/V2 > 1/4, and V0’2 4.4° > |A|/5, the expression
is majorized by: ¢(9¢% + 3¢). Finally

!OC—VO"Z-—4.//{2——Q|<Q(‘F—f—38+982),

9822
= 4ol — 1)

+ 3ep

[ﬂ+1/0'2 4‘/{2—!—gl<g(r+ E+96).
Thus, for all values of p > 0:
la — /o't — 4 M2~ g| < o(r+ 126 + 16¢2) ,
|B+Vo'2 — 4l + o] < o(r + 126 + 166?)
and (a, §) € P, provided 7 and ¢ have been chosen so that:

T+ 126 + 1662 < sin@o([/é — 1) .
Let us choose

sin0y(/2 — )=y,  sinf,—

J2+1 _1 1
& 5% £¥ 71000
then 7 + 12¢ + 16£% = 0.212016 < 0.25.
This choice corresponds to

13-2)2 4 .M°

2 — [
cos?f, = 16 s G0 > o -

Finally we see that
Uy =V =0,0 = 0,

[/—z+a’2—4.//{2—1/a’2—4./¢2=Q(1+w),

2M 1
I8l <505 > lel<g, >0
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(with Re}/ —z+ 6’2 — 4.42 > 0) imply (, f) € + P, and, as a con-
sequence

1 .
(121 @) < expb 121+ {77) 20" + o (1 + sindy)
Let @ + ¢y provisionally denote the quantity
+iy=)— z+a’2—4,/ﬂ2—]/o"2—4¢%/2

(the square root being defined with a positive real part). A necessary
condition for z + ¢y to be of the form g(1 + w), o > 0, [w] < 1/5, is that

larg (x + ¢y)| < 0; = Arc smg, Le 0= ]yl < V;‘i tgh, .

This condition is also sufficient; if it is satisfied, we can take g = x/cos?6,,
since

— gin?f; + i%coswl = sin0, .

Tty 1’ =
e
On the other hand, with this choice

@ 1 ; 5
Q=m<m”/—z+o'z—4.///2——l/o‘2—4aﬂ2].

Since
V—2+02—4M2—)o'2 —4 M) < |~ 2+ 02— 4 4>
YT,
we have:
2<—1_l_ z, < 1 !_ 211/2
e cos*f, » @<= "gos? 0, :
Moreover
1 £ sinb, _ V2+1) )
cos? 0, (1 + <2

the subset of the z plane deﬁned by:
larg {)/ — 2+ 0’2 — 442 — /0’2 — 4 M%}| < 0,

contains the subset given by
jarg (— 2)] < 6, -

Collecting our information we get
Lemma 4. F([A] =) is analytic in u_, v_ af the points 7t such that

w, =V, =0 >0y > 2.4 (cosby)"t, with sin60=V2:1,
and O'0>-/%1+'//lz’

2M . . 1
I8l <00 larg(—2)| <6, with sinf =,

and, at these points:
|75 ([A] )| < expb(|Af + [A77)) [2 |22 + 2[2["2] .
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’

By identical arguments, we can estimate F([A'] ') for points n
satisfying
ul. = v = yreal > gy,
larg (- 2)| < 0, (16)
Z]| <2M-10-3.
For such points

P12 < expb (11] + 7o) (20 + 2

Now set
Nulp=2¢, XN W.=20,
Mv=Ju_, N lyv=71%_
which implies:
!, g0 Yy
+ = } Vg = ==—=0}
Vv uVu_ v.. (an
P = ]/u_v_; A= o A.

In these formulae we define ]/u_v_ as a holomorphic function in
{u_v_¢€ C — R~} positive when u_v_ > 0. In this domain, (17) displays
Ay ul, vl and v as analytic functions of 4, 4_, v_, o. From

V=z—0*+ 24+ 24+ D,
o=z — (% — &M+ 2|4))
it follows that, in the set defined by (16),
Reg? < — (02 — 4 .42+ 2|4)) < — (62 — 4.4%) — 2]4],
Rec? < Rez < 0,
Imo? = Imz; |02 > |2f; |0? > 2{4].

Similarly Re(2M +)- z) >Re|/—2>0and |2M + ]/:;1 >m .
We have

- ¢z 24
U_+v_= a(2M+V"——_z) -+ -
hence
A X 22| 24| _
L+ < — < 3 2 .
‘1 +}~ —v|0|I2M+]/——z!+ lovi =10 +f<2

As a consequence

l% <2+]/5 and 'iﬂ<2—}—]/5.
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Lemma 5. For " = v" = ¢ and:
(z — 0%+ 243 + 2% + ®) real > o},
larg (— 2)| < 0y, (sin@1 =%—) ,
IE] < 2M/1000
the boundary values of F ([A] 7) are bounded by:
[F (A1 )| < expBB(A] + |A]77) (4[2['/2 + 2]2|'2 4 4 A) .

We now consider points of the form [4'] ' where A’ & 0, and &’ is
such that

u=—v=)=2>0 (withz <0), 8
up vy = z,real < 0.
Setting z, = (uy -+ u3) (v1 + v3), we have

%3

e VTE W
23 =12+ 2 — 212 (—l—/—ué——-i- V_“’z ) .
2

When ug describes the upper half plane {ug:Imus > 0}, vy describes
{vg:Imw; > 0} and z; describes the whole cut plane {z;3:2; ¢2, + 2,
+ (2 [/z_lg; + R*)}. Thus all values of z, such that Imz, = 0 are obtained
by varying ug in the upper half plane (or in the lower half plane). This
corresponds to values of &’ lying on the boundary of 7, but which are,
in fact, contained in the domain of holomorphy of F, since these points
can be carried into </ by a Lorentz transformation [A],A=1—1i5, 0 <y
sufficiently small. Applying Lemma 3 we get

[F([A'] =)} < expb []Iml’u’_.rl + ’Im% ul |+ {Im%]
We again apply this to the case when
, oy v, o
lu+=lo‘, Fa 1o
VYl — A vl v (19)
Y= =T

We then obtain
[F(12) 2] < expb [[lmAu_] + |Tm 25| + [Tmo] + [Tm 5]

at the points under consideration. At such points, 2, and z, are real and
negative so that

t=2(+2) -2 -2 — @
is real negative and

r<—2pf —2u8 — D= —4.4%+2]4].
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We shall restrict our attention to real values of z and ¢ such that:
Imz; =0, 2z< -—8.4%,
[f] <2Me= 2M[1000 .
These inequalities, and
1
2tz =5+ 442 2[4]],

N S

22M + V-2
imply |z, — 25| < — (2, -+ %), hence z; < 0 and 2, < 0. Any point with such
invariants can be expressed as [A'] #” with A’ <= 0 and conditions (18)

satisfied.
Under these conditions

2 —z=14

l-!u +v]_.~_4___;c._ <.[A_[_ Mg[z{1/2
2= T e ee@M ) —2) lo] lof
lu_v_| = |z — 0® + 442 = 2 |4|| < |2] + [0? + 4.42,
1 |4] Me|zj1ie
tht?l“—"v-l<w+ o] el 2.4,
80 tha
24| | 2Melzpn

lu_| or jo_| < + + [2]2 + |o| + 2.4

lof lo|

and we obtain:
Lemma 6. For any point x such that:

uy=v, =0; Imz+0, (23=07%;
z real < — 8.4%; { real and || < 2Me = 2 M/[1000, one has
2)4 2Me|z|t?
[P () )] < expd (2] + 212 (2lo] + 2Ll + 2L 4 e 2.
Conclusion. We see that
F 2 Al-1 1/2 Va4 4 4] Melz|?
[F([A) )| < expBb (2] + |2]~1) | &[22+ 2[25"2 + 4 A + i+

holds for any complex A and any point 7 such that v, = v, = ¢ and one
of the three following situations is realized:

+

1
) z is real negative < — 8.42;
U 12| < 2Me = 2 M/1000, { real; (20)
[Imzz > 0.
2)
'larg(— 2)| < 0, sinfy = —;7 ;

S

[€] < 2M/1000; (21)

Imz,=0,0> 0.
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3)
|arg (= 2)| < 6,
U;1|C] < 2.M[1000; (22)
zg—2—4 M2+ 2|A| real < — 63 .
Remark. The set described by (21) is not a set where F([A] #) is
analytic in all variables. But every point of this set is the centre of a

polycylinder in which F([A] =) is analytic except where Imz, = 0.
A similar situation holds for (22). This presents no difficulty (see [6]).

2.2 Further Completions
The three sets U,, U,, U, are contained in the topological product:

{23, 2, {:]arg(— 2)| < 0y, |C] < 2M[1000,0 < argz; < 7 + 0,} .

We shall study the behaviour of certain functions in the above domain:
a) The function V— z is defined with a cut along the positive real
axis and is positive along the negative real axis,

]/jz = Vﬂ eiol? o = arg(—z),

S . P 0
Vizl = Re)/— 2=}/ || cos 5 = ]/]?|cos—§1~ .
b) The function — z]/@ is defined with a cut along the negative
imaginary axis, and so as to be real > 0 along the positive imaginary
axis. Hence if 2, = |z,] 2%, — 71/2 < y < 37/2 we have

(-3)

— YT = [afine
in the domain we consider, — 7/4 < y/2 — n/4 < n/4 + 0,/2 hence

Re(— ¢ [/z_é;) > |24[1/2 cos (g + —021-) .
¢) The function 1/— zl/@ is the inverse of the preceding, its real
part is [z5|=1/% cos ()2 — m/4) > [z,| /% cos (/4 + 6,/2).
d) The function l/— z(—- i]/iz3)—1 is given by
s {5 -FF)

%3

with, in the domain we consider, — 0,/2 < ¢/2 < 6,/2 and — 0,/2 — =4
< 74 — 92 < /4, so that cos(p/2 — /2 + n/4) > cos (0, + n/4). (Note
that 0; + n/4 < 7/2.) Hence

Re)/— 2(— i}/izg) > ;;;’1/2 cos (01—1— %) .

20 Commun.math, Phys.,Vol.13
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It is easy to verify that cos(m/4 + 6,/2) > cos(n/4 + 0,) = %and

cos 0,/2 > % Let us define

2i|4]  2Me)/—2
Vize iz

By 25 2) = 5 (2] + I—}”—) [8 V=2 — 4i)fizg+ 4t +

Then we have
le=*EBA F([A] m)| < 1

for any A= 0 and any =z such that v, =v,_ and (2,,2,{) €U, U =T,
v Uyu Us,.

Let us denote

A", a neighbourhood (arbitrarily thin) of U, (in the space of the variables

23,2, )3
A", the intersection of a neighbourhood of U, and {z, z;, { : Tmz,; >0} ;
A5 theintersection of a neighbourhood of U, and {z,2;, { : Im (2, —2) > 0};

andforj=1,2,3, 470 =4 Nn{z,25, {:{=0}.

The analytic completions carried out in [6], Section 5, show that
any function of z; and z analytic in A/ 4§ A has an analytic
continuation in

U0 = oY, {72 50 =0, [z > B(t), Tmzy > 9, |2 + B] <}

where 7, > 0 and R (f) > 0 are certain functions of .

Using the conformal map
, 2Me—1C
{0 =log 5317

to transform the disc {{:({| < 2M ¢} into the strip {{':|Im (| < #=/2},
and following the arguments in [6], it is easy to see that: any function
f (25, 2, §) analytic in A4 v A7, U A7; has an analytic continuation in

U= __U_ {z,2 ) <m, |l > R(), Imzy > 9, | + 2] <}

0<n<n

=00 x {C:]L] <}, o
where 7, >0 is some function of ¢ (wi’oh 7y < 2M[1000; 7, <5~
R(t) > 403 (t))

Let 2 be the manifold {m:u, = v,} (in which we shall use the co-

ordinates u,,u_,v_) and &, = & N {+Imu, > 0}. We denote J the
mapping from %, into C3

(u+> U_, U—) g (zl’ Rgs 23) °
1 1
z3=u2+;z1=~4—(u++u_) (g +v)5 20 = o (g — u) (uy —0),

and J; the map
(21, 295 2g) = (25, 2, )
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defined (and biholomorphic) in the domain
e =2 — p) + 2 — ) - D ¢ R

by the formulae of the beginning of Section ITI.2. Let J = J,J9. . Let
W; be defined with a cut along the positive real z, axis, and such that
Im ]/z_3 > 0.

In ¥, we have

w, ~ Yz

1 1

5 \U_ —}— V_)=—7—1(74 — 2

9 ( ) st ( 1 2)

1 1

g (U —v )= N (2% + 28 4 2§ — 27175 — 22525 — 2252y)

Now let W(u,, (u_+ v_), (u_ — v_)) be a function analytic in J71(A4"
UAN g U y)=E. This domain is invariant under the reflection
7w — wzn defined by: (wn)) = a), (wnr)} = — z} (j=1,2), that is, in
ZLiu_—v_. If W depended on (u_ — v_) only through (u_ — v_)?, it
would define an analytic function of z,, 2, { in A U ANy U AN ;.

It is therefore natural to introduce

W (uo + v_), (u — v_)%)
:_;—{IV(U/—\H (’Uz._ + /U—): (u— - U—)) =+ W(u+’ (u—- + 1)_), (’l)_ - u_))} ’

Wa(uy, (u_ + v), (u_ — v_)?)

= 2(u_1—— v_) {W(u+, (w_+v_), (w_ — ’U_)) - W(u+, (u_+v_), (v_— u_))}

W (m) can be written as f,(z5,2, () and W, (n) as f,(25,%, (), f, and f,
being analytic in A5 v A", U A7y, These functions can be continued
in U. Therefore W = W+ (u_ — v_) W, can be continued into J-1(T).

We have thus proved that:
the envelope of holomorphy of J' (A U A"y U AH;) contains J7H(U).
The same is true if J, is replaced by J_.

We apply this result to the function defined in £, (resp. £_), for
any fixed 4, by

7w — F{[A] ) e Me2h) |

Since this function is continuous at J71 (U, U U, U Uy) and is bounded
there by 1 in modulus, and since J, is open, it is clear that we can choose
N N g, A5 thin enough so that the above function is bounded in
modulus by 1 + ¢ in J 71 (A U ANy U A7), 0 being an arbitrary positive
number. As a consequence, the analytic continuation of this function
in J31(U) is bounded by 1 -+ o for every g > 0, hence by 1, and the
20
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analytic continuation of F([A] =) is bounded by:
|F([A] m)| < eRer@zid) for z ¢ JJTH(O);

the same holds for 7z € J=1(U). We have proved:
Lemma 7. F([A] n) 48 analytic in A and x for any A &= 0 and any =
such that w, = v, and (24, 2, {) € U. At such points it satisfies the inequality:

IP(14] )] < exp5b (12| + TZT) [812172 + 4.0 4 4zyfin
214] . oM n
i 1000 [z ]

Since, in U, |® + 2| < 5y < D, and |z5] > R(t), it is clear that there exists
a constant I (t) > 0 such that, at the points mentioned above:

[ (12] ) < exp5b (|A]+ 5y 4leal + 17 ()]
I (t) depends only on t and on the masses of the theory. Moreover
B (1 )] < exp5b (121 + 77 ) (612 + 161,

Unfortunately we need yet another estimate. Let (s, ;) be a real
point such that: a? = u?, #% = u, =;, 7, € V™. This point can be surroun-
ded by a real cube (or ‘“‘double-cone’) of the form

+ +

{n': | — u < oy (m), [vj — 5] < (), 7=1,2}

lying in the region {n':7m;% < .#},j = 1, 2}; the latter is the region of
coincidence of the boundary values of F(x’) from the tubes

A = {n':Im (] + 73) € V¥, Immy € V7}
and

B={n"Im(n] + m3) € V", Imay € V7}.
In each of these tubes F (x') is bounded by

|F ()] < ebdmmaicl+Imyh

We introduce a new two-vector variable denoted m; = (ng, m}) or, in
characteristic co-ordinates: ug, vs(us = 7 + 7, v; = a2 — x}) and (deno-
ting y the real two-vector with y° = b, 41 = 0) consider the function

Gy, 70y, 705) = [ 797 — F(my, 75) ]
where x > 0.

It is analytic in the two tubes
of = {my, 7y, m: Im (] + ap) €V, Immy €V,

Im (7 — 7w 4 7w1) € V'3,
B = {m}, my, i I ] + ) € V', Ima € V7,

Im (s — 7y + 73) € V*F}.
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It is continuous at the boundaries of these tubes. Its boundary values
from 57 and & coincide at real 7}, ), 7} such that

’uil - u:"' < @1(7'6), }’I)]' - vﬂ'l < Ql(ﬂ)’ 7: 2.
Let us denote, for real &’ = (711, 715, 715):
i j= max {lujl, o]} .
Then the local edge-of-the-wedge theorem (see for example [8]) indicates

that & has an analytic continuation in
{r' = (n}, ®3, 7§) € convex envelope of

A~ A 1 1
[(du &) N {n”: IRen" — 7} < 5 01(7), Imn"i< 350 (n)}]} .
It is easy to see that this domain contains all ' = (71, 7y, @5) such that
’ ’ 1 4 ’ 1
0 < Im(u; + ug); 0 < [Imuy| + [Imug| < Imuy <51 0,();
! 7 ’ ? ! 1
0 <Im(v; + v3); 0 < |[Imwy| + [Imoy| < Imuwy <35 0(7);
) 1
iRen’ — 7} <5 0, () .
This means that F (') is analytic at all n° = (77, 73) such that
, 1 : 1 .
[Reuj — u;| <5 @u(7), [Revj —v| <5 o(n), 7=12;
! ’ ’ ’ 1
0 < Im(u; + up); Tmug] + [Tmuy| <5z 01(7);

’ ’ ! ’ 1
0 <Im(v; + vp); Imoy| + [Imwp| <57 01 (7);
and at such a point

b ’ 14 ’ !
[F(7')| < exp 5 (Imuy| + Imus| + [Imo;| + [Imwg)) .

There remains to estimate g, (). One finds
()
2V6 4 4(us + vy) ’

o1 () >

so that:
Lemma 8. If & = (m;, 7,) is real and 7 = u?, 7§ = u3, m € V¥,
7, € VY, then F is analytic at every point n' = (71, 7h) such that

’ 1 , 1
[Re(u}. — u,)| <5 0,(7); Re(v], — v,)] <5 01();
1
0 < Imu <~—2I4 01(7); 0 < Imw, <gro(n);

, 1 , 1
[ul —u_| <5z e (@); vl — v | <5z e (7);

where B
01() = P[2Y P + 4(uy + v,)] L
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At such points
[F (') < exp5 [maJX{Imu+ , [Imu’ |} + max {Imv/, , Imo’_[}].

1V. Application to H;

1. Application of Lemma 7
We apply Lemma 7 of Section III to the case when

const F () = g (emy) g (ems) (Ky %)Y HY () -
Then substituting & = /(e + 2|7, + 2| 7.)), we find:

Lemma 9. There exists a positive integer N, a constant Cy and func-
tions R(t) > 0,n,(t) > 0, n, (¢ ) > 0, all depending only on the masses of the
theory, [wz’thR( ) > 463 (t), 1o (t) < D[2], such that if |1 — AI <1/2,u,=wv,,
L] < (), |zs| > R(2), Imzg > |D + 2|, 1D + 2| < 5y(t), then (K, +)¥ H;
([A] =) @s analytw at this point and

(Ky #)¥ Hy ([A] )| < Cgll 4] (1 + @)®2(1 -+ |z,])2 ¥ +26
- exp25a[6z,/l/2 + 16 /D] .
Our purpose is now to obtain, by differentiation, a bound on Hj itself.
Indeed we have:
H{ (7)) = (O, + 43¥ (0, + AV (K )V H{ (),
4 02 4%
O, = du, 0 ° U, = du,0v, °
At points z of the form z = [A] #’, with «/. = v/, and satisfying the
inequalities of Lemma 9, we can consider u,,v, as functions of
A= u+/V23 = [/u. /v, and of the invariants z;, z and

w=2(z —2y) — 24 =wu,v_+u_v, — 24
and we can write3

2 2 3 N 2
dur = Y oz, T T - aw sz A -
I S S S P
dor — %+ gy, T T -y o4
o _, 0 9
8u_“v“ﬁ+v+aw’
0 0 0

. =% T % Tw
Hence, applying to (K, *)¥H; a monomial of degree =< 4N in the
operators 0/0u . , 0/0v, , one obtains alinear combination of derivatives
of that function with respect to z,, 2, w and 4, multiplied by polynomials
nwu,,v,.,u_,v_,Aand 252 The derivatives are at most of order 4 N.

3 The notation w = 2(z; — z,) — 24 is used only in this section; the letter w
denotes a different variable in the Introduction and Section VI.
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We now try to estimate such derivatives at a point sz such that
U, = v, = ]/z_3, (le, A=1), 2=~ @, =0, by using the Cauchy ine-
qualities. For this purpose we find a polycylinder (in the variables 4,
23, 2, w) lying in the domain of Lemma 9 and centered at the point we
study.

Let ' be such that w/, = A'}/z§, v/, :V%/Z’ and 2’ = 2(z; — uf)
+2(zp — uf) — D; w' =2z ~ 2z) — 24; (z{ = m% 2 = 7*). One can
easily check that the inequalities

, 1 / 4
1A =1 <35 Jw'l < oM T
. 1
[# 4+ @] < min {no(t),—fIm z3} ;

1
|25 — 25] < min {? Tmz,, |z4) — R(t)}

imply that #’ is in the domain of Lemma 9.
Hence, by CaucHY's inequalities and Lemma 9, at the point

(a2)" ()" (&) ()" v st

1 2 %2 1 2 as (10 M N
<atoalaglant 2 (o i) (e * ) (o)
Coll 4] (1 4 a)$4(1 4 2|z5))2¥ +28 exp 25a[9 |z5]/2 + 16 /] .
If R (t)is redefined by adding a constant to the former R (), we obtain:
Lemma 10. There exist positive functions I'(¢), R (t), and a positive inte-
ger N', all depending only on the massesof the theory, such that Hy is analz/tic
al every point m satisfying u, = v, = ]/23, 2 =2, 2y = pZ; |25) > Rt
Imz; > 0; at such a point
N
B} @) < IO 4] (1 -+ a1+ ) (14 1)
- exp25a[9 ]z3[1/2 + 16 1/45] .

2. Application of Lemma 8

Combining Lemma 8 of Section III and Lemma 2 of Section I we
find that, if &z and #’ are as in Lemma 8,

lg (em1) g (ems) (Ko #)Y Hy ()] < Cs [[A]l (1 + @)*te= UN+3D (L + pf + pg)*
- exp (a, + ) (max {Imu)., [Imu” [} + max {Imv’,, [Imv_|}].
Setting e = gy(eq + 2 |71] + 2 ||72]), we get:
|y )V H ()] < C5 4] (L + @)tents(L 4 1 + i)
“(+ &2 ] £ 2 )1V

-expa[max {Imu , [Imu’ |} 4+ max {Imv) , [Imo_[}].
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In order to estimate H, we note that
RP+e T e 3 1P @ 3 1@
dulovPdugovy [au+ + 6u_] [au+ - 3u_]
0 2 1P[ @ d 1@
) [3v+ + av_] [8v+ - av_]
and that

, 4 N 4o .
H. () = (W+A2) (au o A ) (K, +)¥ H] () -
Let ; be such that:

751617 ,ﬂ2€V+,7Z1 ;u%an%:;u%: and

(23
Uy =0, =)/23> 20,(t), u_ —v_>0. )
Let =’ verify:
m? = uf; g —ﬂ2:u+—”+—staReVz3>20'o()
Imzi>0;Re(u’_ —v_)=0. (24)

The conditions (24) imply that
12

' 4 , A2
u_:—T,+[z3—}——,-—2(,u%+,u%)] ’
st
, , A 12
v = V" [23 + = 2(,“1 + ,uz.)] s
where the square root is defined with a positive real part; it then has a
positive imaginary part 5 given by
1 e
7= 5 yz[l/xa + 2+ 2]t
if we denote

A
iy =25+ — 205 + ).

. Y|
iy = (Vz3 IVJ)
we have 0 < 32'/4 < & < 2’ so that
, 4 4 -~ |4

7 <§Im]/x + iy =~3—Im (]/z3 - Vz_)

. 3
and 7 < 2 Im }/z§. Hence

Imu’ | <3Im}/z, [Imov_|<3Im)/zj.
On the other hand

n>Im(x + iy)/?2 = :[sz3 ImV 23

Setting

and

Tmu’ |, Imo” | > (Isz3)( 2M|) Im]/;
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We now assume that ' verifies the following conditions

’ 1 ’ L
[ul —u | <gge@), bl — v | <gga@),
A ’ . (25)
0 <Imul <4z 0 (n), [Reul — u,| <z o0(n).

Then the polycyclinder centered at n':
1
{n”:|u'_' —ul] <5 [Imull], p” ~ o | <5 ]Imv [

! —ul ] < —2—Imu'+, [ — ol <%Imv;}
is in the domain of Lemma 8, and for any z’’ in this polycylinder
0 < Imuy <2Im}/z}, 0 < Imoy < 2Im|/z],
Imu’’| < 6 Im}/z}, [Imo”’| < 6 Im /25 .

Finally, applying the Cauchy inequalities in this polyeylinder, we find
that (23), (24) and (25) imply

[Hi ()] < (N1)tens Oy [ A] (1 + a)f (L + pf + u3)* (1 + 10 /2, 557)1N +44
2N ;
[Az_;_ 144 (I Vi ) ] expl2a Isz3.

Moreover, if 7z satisfies (23) and if n’ satisfies (24), it is easy to see that,
for 0 < v < M2,

(o3 — 23] < 7)== {[u —ul [< —vl| < ,]u+—u+]<L

v se
1/” T Vas
Noting that g, () > D/9 ]/.;:_3 we obtain:

Lemma 11. Let G(zy, ¢; 4, (0), 4,(0), 45(0), 4,(0)) = G'(za,t £4;(0) })
denote the value of H; at a point 7 such that u, = v, =)/25,2, = u?, 2, = U3,
Re(u_—v_)>0.

Then, for every real z; > 403(t), G(z3, t; {A4;(0)}) ts analytic in the half
disc
{23:Imzz > 0, |23 — 25| < 7}

provided 0 < v < @[2500; moreover there exists a positive integer N'' and
a constant Cy > 0, depending only on the masses of the theory, such that,
i this half-disc

(G505 (A O] < O 1] (1 + @ (1 + 2 (14 gar) @205

Remarks on Lemma 11.1°. In case x satisfles u, = v, = ]/—; ,Imzg > 0,
=uZ(j=1,2),Re ]/z3 > 0, we have seen that

(u_ — v_)2=z3+j:,;~ 2(uf + pd) -
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For |zg| > 4], Im(zy + 4%z — 2(uf + p3)) > 0. Hence, imposing Re
(u_ — v_) > 0 defines »_ and v_ as analytic functions of z, for |z,| > |4],
Imz, >0, and G(z5,¢; {4,;(0)}) is holomorphic in z, for |z] > R(¢),
Imz, > 0.

2°. The constant C, is, in particular, independent of the choice of
the operators 4;(0) and of the size, characterized by a, of the space-time
region where the 4,(0) are localized. This freedom of choice will be used
later (Section VI).

V. Properties of the “Infrinsic Wave Functions” of Local Operators

Let ¢, () and ¢; (x) denote Araki-Haag fields describing particle 1,
such that ¢, (0) and ¢;(0) be localized in the region

forlet) + el <3}

The intrinsic wave functions of these fields (considered as describing
particle 1) are respectively given, on the half-hyperboloid {p:9°> 0,
p* = mi}, by

hy (p) = (af'in (p) 2, 4:(0) 2) ,

R (p) = (afin(p) 2, $1(0) Q) ,

where afi,(p) is the creation operator associated with the incoming
field of particle 1. Another definition {2, 5] is the following: assumption 3)
of the Introduction implies the existence of a unitary mapW; of #;=E, #
onto the space L2(d®p/2p®) of square integrable functions on the half-
hyperboloid {p:p° > 0, p* = m?} such that

(W;U(a, A) D) (p) = 7% (W, D) (A~ p)
for every (@, A) €21 and every @ ¢ #;. With these notations
hy= W1 By, (0) 2, k=W Ed(0)2.

In accordance with assumption 3) of the Introduction, we assume that
h; and ki do not vanish identically. It is well known [2, 5], that these
functions are restrictions of functions (again denoted 4; and k;) defined
and holomorphic on the whole complex hyperboloid {k ¢ C*:%? = mZ}.
The purpose of this section is to investigate the growth properties at co
of A, on this complex hyperboloid.

We need a remark on functions holomorphic on {k ¢ C*:k? = m7}.
On this complex manifold the space components of % define local co-
ordinates except where k° = 0. In the neighbourhood of a point where
k° = 0 one can take as co-ordinates £° and the first two space components
of k after having performed a suitable real rotation on the axes. Let ¥
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be holomorphic on the hyperboloid and
F (k) = (F (R0, &) + F(—k°, k),

Fo (k) = 2ko(Fkk F(— 10 E).

In each co-ordinate patch F, (resp. I',) can be expressed as a holomorphic
function of k and this defines a unique entire function of k. We shall
denote it F (k) (resp. F,(k)) by abuse of notation.
Thus,
F (k) = k°F (k) + F (k)

and this provides an extension of F as an entire function on C*.
Let

r(p) = 2n)~* [ €7°(2, [$1%(0), $1(2)] £2) et x 0(2°) dia
a(p) = (27)~* [ €77(2, [$1*(0), ¢1 (2)] Q) [ag % 0(2°) — 1] d*x

where o is the same function as in Section 1. All our considerations will
be identical to those of Sections I, II, III, but applied to the much
simpler case of the two-point function.

Let v (p) = (p? — m3) r(p), &' (p) = (p® — m3) a(p). As was mentioned
in [5], 7' (p) and a’(p) are the boundary values of a single function &',
holomorphic in {k ¢ C4, k2 ¢ M7+ IR+} and the restriction of the func-
tion %’ to the complex hyperboloid {k:%2 = m2} is exactly by (k) b, (k).

We leave it to the reader to verify that, either by applying to the
two-point function the methods used in the preceding sections to study
the four-point function, or (more simply) by using the Jost-Lehmann-
Dyson representation, one obtains the following result:

Lemma 12, There exists a positive integer N''' and a constant K depen-
ding only on the masses of the theory such that, for any complex k € C* with real
ky = py and ky = p,, satisfying k2 = m2, the following mequahty holds

[’ (&)} < K [$10)] |4 (O (1 + &) (L + [K])¥" exp 5 (Imu| + [Imv))
where u =0+ B, o=k — kL0 =1,+ 1.
Note that if k satisfies the conditions of the Lemma, it can be written
k=218, 0+ 0,9 = (mi+1%0, g2 p%), 7 = () + (P°)°.

(Here [£] denotes the usual transformation: v — u, v — {~1v, k? and £°
unchanged.)
If, for any A ¢ LY, we replace ¢,(x) by é,(x, A)= U=, A) ¢,(0)
U(x, A)~1, the same estimate holds provided we replace I, by a length
L(A) such that ¢;(0) and ¢, (0, A) are localized in

{x:]x0| + ] <%l2 (/1)} .
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In the case when A = [1] for some A > 0, it is easy to see that I,([A])
= I, max(4, 1/2) < (A + 1/4) I,. The intrinsic wave function of ¢, (0, 4)
is given by by 4 (p) = h; (A~ p). Finally, we get, for any 4 > 0 and complex
=0,

A1 ([C18) l ([AL] ) < Ky [ 61 (0)] [ 61 (O)] (L =+ [po] 4 [2s))¥ ™ (1E] 4 1 2H
(1 (a4 5)0)" exp (24 5) g VmE (I + [Tmg-)

(where 7 is as above, K, is a new constant).

Since %, ([] p) is an entire function of {, which we assume == 0, for
any ¢ >0, one can find a number 7,1 < 7 < 1+ ¢ such that this
function has no zero on {{:|{| = v} and, for all real 6

B ([ret®] p)| > %> 0.

Hence there is a positive function K,(p) such that, for all 1> 0 and
all real 0

[ ([27¢] B)] < Kol) 2 O)] (7 + ) (L+ (o ) B

- exp ? A+AY @@+ ]/m% + 72 [sin 6]
Denoting k = [Ate?%] $, we have (for a suitable choice of ¢)
' (t+ ) (A + A1) [sin g ]/'m1 + 12 < 30 (rl + ) |sin 6| ]/ml + r2
= 60" {Imk'| .

Thus, for all k of the form [{] , { being arbitrary =+ 0,

[y (k)| < K () (1 -+ |[K])¥" 20 Im¥
Note that K4(p), as a function of $, depends only on the two last (real)
components of k. It follows that similar bounds hold for

1

b (k) = 5 2 (B0 k) + Iy (— K9, )]

and

h§ (k) = [y (RO, Fe) — Py (— KO, K)] .

2Ic°

As a consequence, the partial Fourier transforms of 2§ and A¢ with respect
to the variable p! have their support in

{at: |t < 30} .

Since, of course, the above argument could be applied after exchanging
the roles of the various spacelike axes, the supports of the Fourier trans-
forms of A§ and %¢ (in all variables) are contained in {a:|z;| < 3%,
j=1,2,3} and even in {x:|®| < 3b'} since one could have rotated the
axes.
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If we define a new field ¢;" by

1 (@) =@xd(2) = [ @ —2) () da’

where g is infinitely differentiable with support in {x:|2% + |®| < 1,/2}

then the intrinsic wave function Ay’ of ¢, (0) is given by Ay’ = §k, (where

¢ is the Fourier transform of ¢; it can be chosen to have no real zeros).
1 (0) is localized in {x:|a°| + |&| < I,} and

Py’ (k) = hy'* (k) + KRy (K) .

hy's @ are Fourier transforms of € functions with support in{z: || < 5"},
b = 3(l; -+ 21,). For complex K, |h;’* (k)| < const eIl

We can now exhibit an entire function on € which coincides with
hy" on {k:k* = m3} and is the Fourier transform of a € function with
support in {x:|a| < b’}. We first choose an entire function y of one
complex variable z which (for real z) is the Fourier transform of a €
function P with support in {#:|¢| < b"'/2}, with, moreover (0) = 1. For
all complex z, |y (z)| < const exp (b" |2|/2)

The function ¥ defined over C* by

= (k0 + (K2 + miP/2) 4+ (k0 — (k2 + mip/?) — 9 (24°)
is entire in %, equal to 1 for k* = m§. For all &, [¥ (k)| < const ¢"II¥ll,

Let BE(k) = ¥ (k) [h'* (k) + k°h;'*(k)]. For any integer L > 0, there
is a constant (depending on L) such that, for all real p

|5 (p)] < const [T+ (|p°] — V/p* + m)*]-%(p? + mi) =%
< const (p§ + p? + m3)~L

The funetion = has thus been proved to be the Fourier transform of a
%> function £ with support in {z:]z] < b}

If we now convolute the field @i (x) with the function = *(— x),
we again obtain an Araki-Haag field, whose intrinsic wave function is
the restriction to the upper sheet of the real mass hyperboloid of 5*
(k *) E'(k) and is therefore non-negative. We now choose a positive ¢
function g on the real Lorentz group L with support in {4 ¢ L1 :|A| < 2}
such that [ p(A) dA = 1 and that, for every real /1 and every real rota-
tion R, p(RA) = o(A); we define:

V@)= [dAo(A) Uz, A) [ da’ B 5% (2) &3 (") Uz, A)~1

[recall that U(x, A) = U(z, 1) U(0, A); here dA is a Haar measure on
L17. ¢77(0) is localized in {x:|| < 4b"}. Its intrinsic wave function is
the restriction to the real hyperboloid of

[ o(A) Z*(A-1k*) E(A-1k) dA = B,y (k)
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and has no real zero. 5, (k) is the Fourier transform of
[ o(A) B*(A1 (2" — 2)) B(A~12') do’dA = 5, (x) .
Clearly Z, is rotationally invariant. Finally we define

B (@) = [ E,(2" — =) ¢ (&) do’,
B, (0) is localized in {x:|z] < 84"} C{x:|2® + |&| < 16b"}. The intrinsic
wave function of the field B, is the restriction to the upper sheet of the
real mass hyperboloid of an entire function 5, such that Z,;(k) = Z,(— k)
F, (k). Since H; is rotationally invariant, we have Hy (B0, k) = By (— kO, k).
Its restriction to {k:%k? = m2} defines a rotationally invariant entire func-
tion of k. Therefore, by a classical theorem [10] this function can be
written g, (k%) where g, is an entire function of one complex variable.
Moreover for all z,
191 (2)] < const exp 165" |2[¥/%;

for positive real values of its argument, g, is strictly positive and of
rapid decrease at co.

Conclusion. It is possible to construct four Araki-Haag fields B;(z);
(1 < j < 4), with the following properties:

1) for every j, B;(0) is localized in {w:|2% + |&| < »/4}, % being a
certain length > 0;

2) for each 7, (1 =< § < 4) the field B;(z) describes the particle j, with
an intrinsic wave function of the form

(W;E;B;(0) 2) (p) = 9;(p?) -
Here g; denotes an entire function of one complex variable, which
satisfies, for all z € C:
19, < Iy exprefie.
For real z = 0, g,(2) is strictly positive and decreases at infinity faster

than any power of (1 + [z])-1.
We shall denote, for any 4> 0, and anyj = 1,2, 3, 4:

B;(0; ) = U(0, [A]) B;(0) U(0, [A])*

VI. Growth Properties of the Scattering Amplitude

The scattering amplitude has at least the same analyticity domain
as H{ restricted to the mass shell. In particular let 7'(z;) denote the value
taken by the scattering amplitude at a point of #°(t) such that 4, = v,
—ﬁ, 2= p?, 25 = puf, Re(u_ —v_) > 0. Then the remarks following
Lemma 11 (Section IV) show that 7'(z;) is an analytic function of z; in
{23:124| > R(f), Imz; > 0}. For the same reason, for each 4> 0 and j
(1 = j £ 4) we can define a function ¢;(23; 1) analytic in z; in the same
domain: @;(zg; A) is the value taken at the same point of ¥7(t) by the
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intrinsic wave function of B;(0; 2). In other words
h

@125 4) = (% (llvl — —};)2 — Zl_rf_ (m§ — m§ + ,;)2)

and similar formulae for ¢,, @3, ¢,. In particular, for 4, = 1:

1 1 9
Paleas 1) = gy (g (un — 02— 57 (md — 4 117)

Then, with the notations of Lemma 11:

T (z3) H‘Pa(zs’ i) G(z3,t B (0 1)s 2(0322), Ba(OQ)ba); B4(O§ﬂ-4))

and we shall choose 1, = 4;, 4, = A,.

We shall assume, for simplicity that, for the particular value of ¢
to be considered in the following, B;(0) has been so normalized that
g;(— (mf — m; ® + t)2/4t) = 1 (we have denoted m; = mg, my = m,, m3=m,,
my = my). Let & > 0 be such that [{| < ¢ implies

1

2

9, (¢ — 7 Om — mi2 - 13)

Let 7, real, and #n’ be such that u, =wv, = ]/2_3 > 200(8); wyv = ul
= UIVY; Ugly = UG = Ugvy; (u_ —v_)>0; wl =) :]/zé; Imz; > 0;
Re(ul — v ) > 0; |23 — 2] < 7 < D[2500. Then [see (26) in Section IV]

[ug — u1|<v—’|”1 Ul|<l—’|. “2|<V—:|”2 ”21<V~
Let
.y M2
A=14 = and A, =1,= ,uz o
Then
, u |2 1 , , 1 972
191 — _}*i‘. :E [y (v — v1) — vy (g — )[R < e e, + v1l2”g;"
and since
1.~ - 4 -
Jueg + o] =—2—12]/z3-}— u_+ v_[ = ]/z3+ﬁ:—| < 2Vz3,
u1 2 3612 Uy |2 3672

:llvl , and similarly 2,05 — =

I Ay 13

Therefore, with v < 1/6 p;&,, (j = 1, 2), we have

, 1
lps (235 A > 5
Our choice of 1, is such that

1 2]/z3 2z,
21 * ll M1 22 '12 < T 29
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In the formula (Lemma 11) giving a bound for G(z3, ¢; {4,;(0)}) we insert
A;(0) = B;(0; A;). In this case we have

a= 90, + L) < 18(x + 1) (;1: )}zs—ao( )1/23
and applying Lemma 11, we find that
7 5)] < 16 Gy [BY [1+ 2415 [1 4 g (o + ) Vo

1 \N7 128 [— + Vz, Im st
. (l + m) e ( ) .

But, of course, T'(z,) is the expression in the variable z, = (7, + m,)? of
the invariant scattering amplitude (at fixed #). A similar study could
have been carried out in the crossed channel where the role of z; is held
by (7, — 715)% = 2 (uf + ) — #;. Finally [abolishing for the future the
special assumption made about the normalization of B;(0)], we see that:

Lemma 13. T is analytic in

{23:0 < Imz; < 7(t), [Rez| > R(t)}
where it satisfies
7)< S0 (L + )Y (1+

N
eb° Imzg
Imz, :

Here 8(t) > 0 and 7(t) > 0 are certain functions of t; the positive integer
N'"'" and the positive constant by are independent of &.

To find bounds on 7'(z5) in the rest of {z3:]25] > R(¢), Imz; > 0},
we shall apply Lemma 10 of Section IV, choosing A4;(0) = B;(0),
(1 £4 = 4). We have seen that

P1(2s5 1) = g](l (u_ — v_)? %t(m]z_mjrurt)z)

1 4z 2 2 1 2 ’2 2

We use the new variable
AE
wERt

and define
T (w) = T(zs); @;(w) = @;(255 1); G (w) = G(2g, 85 {B;(0)}) .

We note that the mapping 2, — 23 + 422571 maps (biholomorphically)
the domain {z;:|25] > |4|, Imz; > 0} onto {w:Imw > 0}. Since R (t)>2|4],
the domain {z3:Imz; > 0, 25| > R (t)} is mapped biholomorphically onto
a certain subdomain of the upper half plane, containing in particular
{w:Imw > 0, |w| > R(f) + A*R(t)}. Taking into account that Imz; > 0,
|zs] > R(t) imply

2
5 Imz; < (1 — —1%—);) Imz; < Imw < Imz,,
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we see that:
1) T and G are analytic in
A2
{w:Imw >0, lw| > R(t) + R—(t)}
where
’ 1\
6@)] < PO+ )Y (14 g5) expllupr.
Here W(£) > 0 is some function of ¢; I = 1350 (x + ;) is independent of ¢;
2) in the intersection of the above domain with the strip
{w:O <Imw< —zr(t)}
we have
1\ 4,
P < KO O+l (1+ ) 7005 @D
3) @, (w) can be continued as an entire function of w which satisfies
lop; ()] < I (¢) exp ]2
We denote L = 1 4 max(N', N'') and:
w-I T (w) = T (w); w-LG{w) = Gw) .
4
@(w) =‘171¢j(w)
j=
satisfies [for some y(f) > 0]:
lop(w)] < p () el
Let % (¢) be the contour (pictured in Fig. 3) composed of an arc of

a circle {w:|jw| = R(t) + |4]| +¢&, Imw = &} and of the two half lines
givenby {w:Imw = ¢, [w| = B(t) + |4+ ¢}. Here ¢ satisfies 0<e< (3/4)7.

Fig. 3. The contour % (&)

Define
1 dw' &, Ut(w;e) if wisabove €(e),
2mi w—w )= U (w;e) if wis under %(e).

€ (¢)
21 Commun.math, Phys.,Vol.13
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Clearly Ut (w;é¢) and U™ (w; &) are holomorphic in their domains of
definition and U= (w;¢) = U= (w; ¢’) wherever they are both defined.
Hence Ut (w;ée) and U~ (w; €) are respectively restrictions of two func-
tions:

U* holomorphic in {w:Imw > 0, |w| > R() + 4]},

U™ holomorphie in {w:Imw < -il or |w| <R(@)+ 4]+ %T‘} )

In the intersection of these two domains
Ut (w) — U™ (w) = T(w).

Hence i’(w) — U*(w) and — U™ (w) coincide with the same entire func-
tion which we denote E(w). Note that, if 0 <& < 37/8 then Ut (w)
= U*(w; ¢/2) is bounded in {w:Imw = &, |w| = R(t) + |4| + ¢}, while
U™ (w) = U (w:2¢) is bounded in {w:Imw < ¢ or |w| =< R(t) + |4]|+¢}.
We can now estimate the entire function ¢ (w) K (w): there is a constant
{(depending on t) C(t) such that

1) f Imwz 3t/8 and |w|— R(t)— |4| = 31/8,

() B (w)] = |G w) — gw) U )] < () [ 4 ety
2)if Imw =< 3¢/8 or [w| < R(t)+ |4]+ 37/8
lp(w) B (w)] = |@(w) U (w)] < OF) e,

In other words the product of the two entire functions ¥ and ¢ is

bounded by
20(t) exp(l + 4x) [w]/?
while
lop(w)] <y (¢) exp 4 [w['/2.
Applying theorem A3.1 of Appendix 3 we obtain the existence of two
constants €’ (f) > 0 and »' > 0 such that
|B (w)] < O (t) 1",

But since |E (w)| is bounded along the line {w:Imw = 37/8} it follows
from the Phragmén-Lindelof theorem that E is bounded in the whole
complex plane, i.e., K is a constant. Since U* is bounded in {w:Imw = ¢,
lw| = R(f) + |4]| + e}for 0 < ¢ < 37/8, T'is bounded in the same domain.
This, combined with (27) shows that

T (w)] < K’ (8) (L + Jao])2 (1 + ﬁ)L
for
Imw>0 and |w>R(@)+ 4 +§81_
This is easily translated in terms of the variable

1
$ = 2g+ gy (m§ — mf + mf — m3)?
4t
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and we finally obtain

Theorem. In a theory of local observables, the scattering amplitude F (s, t)
is holomorphic, at fixed negative t, in a domain {s:|s| > R(f), Ims = 0}
where it satisfies

1 L
[F (s, t)] < C(t) (L + [s)E (1 + —IImsl) .

Here R(i) and C(t) are certain positive functions of t, and L = 0 is a
positive integer.

VII. Conclusion

For certain favourable values of the masses [11], F (s, t) is analytic
in s (for fixed £, {, = t < 0) in a full cut-plane. The theorem just proved
then shows that F (s, f) satisfies a finitely subtracted dispersion relation.
This result is well known to hold (for the same favourable values of the
masses) in a theory where each particle may be described by a Wightman
field [11]. The present paper has thus extended this property to theories
of local observables. It is easy to verify that the methods used here can
be straightforwardly generalized to the case when the fields 4;(x),
instead of being bounded operators, are given by

A4;0) = [y, ..., x) di(y) ... By (y) day . . . da,,

where @; is a test function with compact support, and ¢,, ..., &, are
Wightman fields (or even Jaffe fields) whose vacuum expectation values
have polynomial growth at infinity (in x space).

Thus, all relativistic and “‘strictly local” theories (in which the com-
mutator of two fields exactly vanishes at sufficiently large spacelike
distances) have as a common feature the polynomial behaviour of the
scattering amplitude and its consequences ([12]): number of subtrac-
tions = 2, Froissart bounds, ete.

It is somewhat surprising that the proof given in this paper does
not need operators localized in arbitrarily small space-time regions (as
one might expect from certain examples in potential scattering). This
is due to the fact that, applying Lorentz transformations to a given region
in spacetime, one can render it arbitrarily thin in certain spacelike direc-
tions (without, however, changing its volume!).

Finally, we note that, although we have restricted our attention to
neutral scalar particles, there are no essential complications in the case
of particles with arbitrary spin and charge.

Acknowledgements. We wish to thank Professors H. Araxi, H. BORCHERS,
K. Hzep, Drs. J. Bros, R. Stora, and F. Rianr for very useful discussions. After
the completion of this work, Dr. R. SENEOR informed us that he has independently
obtained similar results by different methods.
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Appendix 1
Lemma Al. Let f, be a function of two complex variables 2, = x, + iy,
and 2, = &y -+ 1Yy, holomorphic in {2, 2,1y, > 0, y, > 0} and such that,
for a certain b > 0,

1 1
IDZ1 lefl zl 22)[ < eb(ilx'*‘yz) ( + yz)

forevery (L, L) with0 =1L, =n+2,0=0l,=<n-+ 2, and
s — (£0 )1 La_)l
Dt = ( 9z, ) ( R
Then, forl, < land 1, < 1
(DRG] S (b4 1209 (2 4 22049) P00,
Proof. Let

g (a1 t22)

e, 20) = T gmare (e 2 -

(A b (L + by 4+t

Saroe (i )
0O=shsn+20=L=n+2).

Wehave, for 0 < ¢, = 1,0 <y, < 1

IDlhlzf(zlﬁ zz)l g

A

1 1
(7' + —n—) ’
Y1 Y2

1 DR o+ i 2y - 6)

F@y + gy, @+ 1yg) = 2 (¥ - 1)k (yp — 1) 1,11,
oslh=n+l 12 bl
0shLs=n+l
s

— &)+l _
+fd51 n +SII))! fd32 (?/(2n +821) D("+2)’("+2)f(xl+i81,£v2+'i82) .
Hence
- "“(s —y)ntt (11
If (21, 20)| = 22"+3+fd81fd82 y1 Z)v]ayz) (s_a'+@)

< 92nt3 L 9
But actually, a similar evaluation yields, for §; £ 1,7, < 1
|DWlf (2, 2,)] = 22m+2 + 2
which is the desired result.
Appendix 2

We consider, in the topological product of » copies of two-dimensional
complex Minkowski-space the two tubes

TE=2{b=(y, ..., k) Imk; €VHj=1,2,..., 0}
and the set _#, of Jost points, given by: ¢, = #Lu _#2
Fr=— F2={lk=(ky,..., k)real:u;>0,v;,<0,§=1,2,...,0n}.
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Here, and in the following, u; =k + k},v; =k — &}, G=1,...,n).
Let

Th= U [A] T+

Ae c

A0

where [4] is the transformation u; — Au;, v; = A"1v;, 1 < § < n.
Lemma A2.1. Let G be a functwn holomorphic in I ;7 v T, and such

that in these tubes

|G (k)| < expl Zn' Imk} (1>0).
i=1

Suppose that the two boundary values of G at the real points, from T,
(in the sense of distributions) coincide in ¢, . Then

1) G has an analytic continuation in I ,,;

2) forany k € .7,

G (k)| < expl 3 max([TmA?), [TmA})
i=1

Proof. The statement 1) is well known [13]. It will be reobtained in
the course of proving 2). To do this, consider, the function G of n + 1
complex two-vectors defined by

GE, &y, .. k) = [ 11 — Gy, . . ., k)]t

This function is analytic in

n
4 ={k: (byyovoky), K:Imk; €V, j=1,...,n;ImK — 2Imk,~€V+}

i=1

n
V] {k,K:ImkjEV—,jz L...,n;ImK+ Y Imk ¢ V+}
j=1

vk K:k¢ g, ImKcV"}

A is a (generalized) semi-tube since: (k, K) €A and (K — K’) real
= (k, K’') ¢ A. Moreover, if (k, K) (A and Im(K — K')¢ V" then
(k, K') € A. Tt follows that the envelope of holomorphy A of A has the
same property. We now proceed to determine A.

For this purpose we introduce redundant variables / ¢ C2, ' € C?,
Zc@(j=1,...,n)and set

k,:C;_C:,” (j:172}"‘:n)7

K= Z(CNLQ )+Z.

We use the “characteristic co-ordinates” uj = [;°+ (!, v/ = [[® — {3,

w' =0+ 5 v =0 — ', (1 £§ < n). We seek the envelope of
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holomorphy of
{¢', ¢ Imu; > 0,Imv; >0, Imu = Imv, =0,1<7<n}

v {¢, ¢ Imu) = Imy) = 0, Imw;” > 0, Imv;’ > 0,1 <§ < n}

U {¢" and " real:uf > 0,9 <0, % <0,v > 0}.

[Clearly, if (£, £') is a point of the envelope of holomorphy of this
set, and if ImZ ¢ V*, then @ is analytic at (&, K) for k; = ¢ — {/, K
= 2 (G + &) +2.]

The above set is transformed into a (flattened) tube by setting

2 = ]ogu]f, w; = — log(—vj),
7 = —log(—u), wj =logy; (j=1,2,...,n).
Here the function log is defined, in the complex plane cut along R,

as having its imaginary part between — 7 and .
The above set becomes:

{Z,w', 2", w0 <Imz <7;0 <Imw <z;Imz’ =Imw; =0}
v {Z, w2, w Tmz = Imw] = 0;0 < Imz <x;0 < Imw <}
v {all real points}.
Its envelope of holomorphy is its convex hull; it is given by
{2, 2" w'"0<Imz <7;0 <Imw <z;0<Imz; <m;0<Imw) <}
N SUg {£,w,2", 0w —0<Imzgf <m—0; — 0 <Imuwj <m—0;
0 —n<Imz <0;0—x<Imw <0}.
That is, in the variables u;, u/’, v/, v’
{w', o, u’, v :Imu >0, Imv,f > 0, Imu;’ > 0, Imy;’ > 0}

N {w', v, w0 : ImAu; > 0, ImA-1v; > 0,
zec
Imi>0
ImAw; <0, ImA-1o]" < 0} .
We have obtained the domain
B AL €T AT TG €T T A T, ZE€T
Imi>0
Using now real points of coincidence where u; < 0, v; >0, w; > 0,
" < 0, one can suppress the restriction ImA > 0. Finally we see that,

for every A # 0, 4 contains

Al={k,K:k,-=C,f— K= 3 (G +8)+2,

j=1

UeTI NI €T N AT, (1sj<n);2 e,/m‘}.
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We now show that A, = A,, with
jlz{k:K:kaéj,—éj”;jzla' s N5 K= 2 C)'*_E;“);
=1
fj, 6'7—+7 C;“ Ej--‘_, Eyl - 57” G[l] ‘7-+}‘
It is obvious that 4, c 4;. To prove that A, C 4,, we consider vectors
&, f,” verifying :
Gegt e §-§cmgt Asj=n),
and try to determine (;, {;’, such that
GEeT AT €T AT
G-8'=¢§— C;',
n
LG G-
j=
If ImA #4 0, we can take as independent unknowns:
Im( —§) =0 Im2 1 - &) =7
We must now find g; and 7, such that:
Iméj + Qj E V+, Imé;, + Q]' E V+,
(2
2 eV
j=1
Im[A1)§ + 7, € VY,
Im[A- & +7€V.

The two first conditions can be satisfied by taking g; € V™ very small;
the two last conditions can be satisfied by taking 7; = — 1/2 Im [1-1]
(& + &'). We have proved:

Lemma A2.2,

n
Z_—_{k,K:k,.: G-4,A=j=n;K= X +&)
i=1
b eTh g eW}m{k, Kk,
(Indeed we have proved that A contains the right-hand side; but the
latter is a domain of holomorphy, since .77, is a domain of holomorphy
in the case of two space-time dimensions [14].)
Let k€T, ki = (u;,v;),(1 = § =< n). The set of K= (U, V) such
that (k, K) ¢ 4 is given by

ImU = Z (yq+y, ; Im ¥V = 2 (5 —{-6")
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where y;, y;', 6}, 6]’ are positive numbers such that y; — y;" = Imu; and
0; — 6; = Imu;.

This is equivalent to

ImU > E Imu,|, ImV > 2 [Ty .
j=1

(These conditions are clearly necessary. To see that they are sufficient,
take y; = Imu,, ;" = 0if Imu; > 0, or y; = 0, ;" = — Imw;if Imu,;<0.)

Lemma A2.3

A= {k K:keT),ImU> ) ¥ [Tmu), InV > 2 |Imv,|}.
7——1

We have thus proved that, if k €77, k) + k} = u;, k) — &} = v;,

ImU > 3 [Imu), Im¥ > )j [Tmo;]) = i@ _ G(k)+ 0
j=1
This implies:
G®) = /5 2, () [Tmas)

For, if the contrary were true, we could find

n n
ImU > ) Imu| and ImV > } |[Imuv,
j=1 i=1
such that |G(k)| = ™™ U+P2 then determine Re(U + V) so that

G(k) = e MU V2, Since
Imu;| + Imv,| = 2 max ((ImkA9|, [ImK}|) ,

Lemma A2.1 is proved.

Appendix 3

Though we need only a theorem about the ratio of two entire functions
of order 1/2, we shall consider a somewhat more general case.

Theorem A3.1. Let E (z) = N (2)/D (z) where B, N and D are entire func-
tions, N and D being of order less or equal to 9,0 =< o < 1. Then E is of
order at most g. If N is of order o and of type Ty, E is either of order less
than p or of order p and type 7y:

o
xedx

‘L'Eé‘L’N m
0

Proof. We remind the reader that the order ¢ of an entire function F
is given by

lim log log M (r)flogr = o, (A3.1)
F—>o0



Polynomial Behaviour of Scattering Amplitudes 313

where M (r) is the maximum modulus of F in |2] < r. If the function is
of order p the type is given by

7 = lim log M (r)[re (A3.IT)

(notice that T may be 0 or infinity).

A function F of order less than unity is of genus 0 [15], i.e., it can
be written as an absolutely convergent product over its zeros. From
now on all the functions we consider have no zeros at the origin and take
the value unity at this point:

FE) =T (1 ~zi) . (A3.IIT)
i=1 ¢

Now we shall need two important inequalities

a) Jensen’s inequality. Define n(r), the number of zeros for |2| < r.
Define

Ny = [HOL (A3.IV)
0
then
log M(r) = N(r). (A3V)

b) We need an inequality which goes in the other direction, i.e., which
controls the maximum modulus when the radial distribution of zeros is
given. Here we assume that n (r) < C'rl—¢, an assumption which is always
satisfied by functions of order strictly less than unity. We can write [16]

log | M(r)] = ié log (1 + —léI) =0f®log (1 + —:,—) dn(r’)

o0

n(r’)y dr’ C>oN(r’) dr’
= 7‘0/‘ m == 7’0 (7" ¥ 7‘)2 . (A3VI)

In the last two steps we have used integration by parts. In that argument
n(r) < Crl—¢ is essential.
Congider now the function

N@DE) = E(),

N, D and E are entire and N and D are of order 0 = ¢ < 1. Then we
are allowed to write

No=-1T(1-5),
D) = 1](1 _ —:—) , (A3.VII)

where, clearly, the 2,’s form a subset of the 2;s.
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It is clear that E (2) is also a function of genus zero since the products
in (A3.VII) are absolutely convergent. Hence the order of E(z) is less
or equal to unity.

Now we define ny(r), ny{r), ng(r), number of zeros of N, D and E
for |2| < r, with ny(r) = ny (r) + ng (7).

Similarly, we have

Ny (r) = Np(r) + Ng(r) .

Let us now apply (A3.VI) to £. It is legitimate to do so even though
we have not yet established that ¥ is of order strictly less than unity.
Indeed E is of genus zero and Ny(r) < Ny(r) which by JENSEN’S ine-
quality and the definition of the order implies

Ng(r)y < Crete
for 7 big enough. So
OoN,,v(r’) dr’ <>oNN(r’) dr’

log IME(T)I = TO "+ = 7'0 T

If we now use JENSEN’s inequality for NV we get
g M)
log [Mp(r)| < r Of S (A3.VIII)
If NV is of order o we have
log | My ()] < ¢,re*e + ¢,

for ¢ positive arbitrarily small, and therefore

log [Mg(r)] < c. Ky .rete+ e, (A3.IX)
where
- z%dx
K= [ Ao - (A3.X)
0

Since (A 3.IX) holds for ¢ arbitrarily small it means that E is of order
less or equal to p.

If, more specifically, we know that N, being of order p, is also of
type Ty, we can make a more accurate statement: then we have

log |My(r)] < (zy +&)re+c.
and hence
log |My(r)| < (zy + &) K,re + ¢, (A8.X1)

where K, is defined by (A3.X).
So if E is of order g, it is of type 7z < K,7y, which concludes the
proof of our theorem.
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In particular, if p = 1/2 (our case)
Ty < 5Ty (A3.XIT)
‘We want now to take this opportunity to extend our considerations to
the case of functions of exponential type (order 1).
Theorem A3.2. If the ratio of two entire functions of order 1, E = N|D,
s an entire function, it is of order 1, at most. If it is of order 1 its type is
majorized by

T
TR = 9 (TN + TD) ’

where Ty and Ty, are the types of the numerator and the denominator.
Proof. Consider

holy =)= B@) + B(- 7 = T2 2C AL DONCD

_ ()

d+(y)

n, and d, are of order 1/2 in the variable y, and the type of n_is vy 4+ 75.
Hence, by application of Theorem A3.1 h_(y) is of order 1/2 at most,
and, if it is of order 1/2, its type is at most

i2““ (Tiv -+ TD) .
Similarly, we can consider
E() — E(— %)
ho(y) = 2B = E(=7)

z

and get analogous results.
If one reconstructs E from A, and %_ one gets that
i) E is at most of order 1;
ii) if E is of order 1 its type 75 satisfies

T
T = 5 (Ty + Tp) -

Notice that this result may not be the best possible one. However,
there is an obvious example where 7 = Ty + 7p:

E (z) = exp(ryz)/exp(— Tp2) .
Finally, one can restate Theorem A3.2 in a new way:

Theorem A3.3. The type 1,5 of the product of two entire functions of
order one and types v, and T, is such that

2
Tlgg'_n—fl—'fz,

2
1122;;1:2—11.

If 7, and 7, are sufficiently different, this is a non-trivial and possibly
new result (according to Ref. [15], p. 126).
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